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Abstract: In order to solve the problem where existing mode-matching methods in
microelectromechanical systems (MEMS) vibrating gyroscopes fail to meet real-time and reliability
requirements, this paper presents a novel method to accomplish automatic and real-time mode-matching
based on phase-shifted 45◦ additional force demodulation (45◦ AFD-RM). The phase-shifted 45◦

additional force signal has the same frequency as the quadrature force signal, but it is phase-shifted by
45◦ and applied to the sense mode. In addition, two-way phase-shifted 45◦ demodulations are used at
the sense-mode detection output to obtain a phase metric that is independent of the Coriolis force and
can reflect the mode-matching state. Then, this phase metric is used as a control variable to adaptively
control the tuning voltage, so as to change the sense-mode frequency through the negative stiffness
effect and ultimately achieve real-time mode-matching. Simulation and experimental results show
that the proposed 45◦ AFD-RM method can achieve real-time matching. The mode frequency split is
controlled within 0.1 Hz, and the gyroscope scale factor, zero-bias instability, and angle random walk are
effectively improved.

Keywords: MEMS gyroscope; real-time mode-matching; 45◦ additional force; phase-shifted
demodulation; negative stiffness effect

1. Introduction

Microelectromechanical systems (MEMS) vibratory gyroscopes have the advantages of small
size, light weight, and low cost [1], resulting in wide application prospects in military and civilian
fields. The oscillation amplitude greatly increases when the oscillator vibrates at the resonant
frequency. Therefore, the mechanical sensitivity is maximized and the signal-to-noise ratio can
be effectively improved when the two modes of the gyroscope have the same resonant frequency
(mode-matched) [2,3]. However, because of fabrication imperfections, it is difficult to completely match
the resonant frequencies of the two modes through structural design [4]. Therefore, mode-matching
through electrostatic tuning is often adopted; this has become a research focus for MEMS gyroscopes.

At present, the popular tuning method is to use the negative-stiffness electrostatic effect of the
flat-plate capacitor structure and apply DC voltage on the flat-plate electrode to change the mode
frequency to achieve mode matching [5–7]. The mode-matching method is divided into one-time
matching and real-time matching. One-time matching is achieved through manual adjustment or
one-time automatic matching. Manual adjustment is performed by sweeping at different tuning
voltages to determine tuning voltage values, but this process is time-consuming and has poor stability.
One-time automatic matching is mainly based on the frequency characteristics (phase-frequency
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and amplitude-frequency) of the gyroscope vibration mode. For example, the phase-frequency
characteristic is that the phase delay between the quadrature input and output of the sense mode is
−90◦ when mode-matched. This characteristic was used to achieve mode matching in [8–10], and the
phase-locked loop (PLL) technique was used to adjust the tuning voltage. The amplitude-frequency
characteristic is the quadrature response signal amplitude being maximized when mode-matched.
This characteristic was used in [11,12]. However, the signal out of the Coriolis demodulation channel is
used to control the frequency tuning voltage in these methods. As a result, only when the tuning voltage
is fixed and the matching loop is cut off after mode-matching can the angular rate be measured. For this
reason, these methods cannot achieve real-time mode-matching. However, in practical applications,
the frequency split of the gyroscope mode varies with changes in environmental parameters [13–15].
Therefore, one-time matching cannot meet the requirements.

Therefore, a real-time mode-matching method that does not affect normal angular rate detection
is urgently needed. At present, there are only a few studies on real-time matching, which can be
divided mainly into the external force method and the system compensation method. The external
force method applies an external load on the sense mode and detects its response information to
achieve mode-matching. For example, a low-frequency disturbance signal is additionally applied to
the sense-mode in [16], and real-time matching is achieved by detecting the maximum amplitude of
the vibration caused by the disturbance signal. However, the accuracy of the maximal value search
is not high, and the disturbance signal is not completely eliminated from the Coriolis detection loop,
which affects the normal Coriolis demodulation output. An external force signal in phase with the
Coriolis force is applied to the sense mode in [17], which achieved real-time matching by detecting
the phase information of the external force signal. However, it requires the response amplitude of
the external force to be much larger than that of the Coriolis and quadrature force in order to achieve
accurate matching, which limits its application. The system compensation method adaptively adjusts
the sense-mode frequency according to environmental changes by an intelligent system. For example,
a fuzzy neural network is used to adaptively adjust the tuning voltage to achieve real-time matching
in [18]. However, this method needs to learn the frequency split data in different environments for each
gyroscope in advance, which is difficult to achieve in practical applications. Thus, existing real-time
mode-matching methods have problems such as influencing angular rate detection and difficulty
in implementation.

This paper proposes a new real-time mode-matching method called phase-shifting 45◦ additional
force demodulation (45◦ AFD-RM). By applying a phase-shifted 45◦ additional force signal on the
sense mode to obtain a phase metric and using this phase metric to adjust the tuning voltage through a
proportional-integral (PI) controller, real-time mode-matching is finally realized. Section 2 introduces
the gyroscope dynamic model and system characteristics in mode-matching. Section 3 describes the
design framework of the 45◦ AFD-RM mode-matching method. Sections 4 and 5 provide simulation
and experimental results, respectively, showing the benefits of 45◦ AFD-RM, mainly in scale factor and
zero-bias stability.

2. Gyroscope Model

2.1. Gyroscope Dynamic Model

The vibratory gyroscope is composed of a drive mode and sense mode. The mode dynamic
model can be described by a second-order mass-damper-spring system [19], as shown in Figure 1.
The gyroscope dynamic equation is{

m
..
x + cx

.
x + kxx = F(t)

m
..
y + cy

.
y + kyy = −2mΩ

.
x− kyxx

(1)

where x and y are the vibration displacement in drive mode (x-axis) and sense mode (y-axis), m is
the mode mass, F(t) is the driving force (i.e., F(t) = cos(ωdt)), c and k are the damping and stiffness



Sensors 2018, 18, 3001 3 of 16

coefficients, Ω is the angular rate input, 2mΩ
.
x is the Coriolis force, kyx x is the stiffness coupling force,

and kyx is the stiffness coupling coefficient from the sense mode to the drive mode.
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where dω  is the drive signal frequency. From these equations, the phase delay o90xϕ = −  when 

d xω ω= . 
For the sense mode, its transfer function, displacement, and phase characteristics are consistent 

with those of the drive mode. However, its inputs are the stiffness coupling force (quadrature force) 
and the Coriolis force. The Coriolis force is proportional to the vibration speed ( )x t  of the drive 

mode, i.e., ( ) 2 ( ) ( )F t m t x tΩ = − Ω  , in which ( )tΩ  is the angular rate, i.e., ( ) ( )cost tωΩΩ = Ω . The 
quadrature force is proportional to the vibration displacement ( )x t  of the drive mode, i.e., 
( ) ( )q yxF t k x t= − . 

The sense-mode displacement ( )qy t  and ( )y tΩ  caused by the quadrature force and the 
Coriolis force are: 

( )
( ) sin( )

( ) cos( )
q ys yx x d y

ys y d d y

y t A k A t

y t A m t t

ω ϕ

ω ω ϕΩ

= − +
 = − Ω +

 
(4) 

Figure 1. Gyroscope dynamic model.

For the drive mode, the transfer function is given as

H(s) =
X(s)
F(s)

=
1/m

s2 + ωx
Qx

s + ω2
x

(2)

where ωx and Qx are the natural resonant frequency and quality factor (Q) of the drive mode,
respectively. The displacement and phase expressions of the drive mode during steady state are:{

x(t) = Ax cos(ωdt + ϕx)

ϕx = arctan ωdωx

(ω2
d−ω2

x)Qx

(3)

where ωd is the drive signal frequency. From these equations, the phase delay ϕx = −90
◦

when
ωd = ωx.

For the sense mode, its transfer function, displacement, and phase characteristics are consistent
with those of the drive mode. However, its inputs are the stiffness coupling force (quadrature force)
and the Coriolis force. The Coriolis force is proportional to the vibration speed

.
x(t) of the drive mode,

i.e., FΩ(t) = −2mΩ(t)
.
x(t), in which Ω(t) is the angular rate, i.e., Ω(t) = Ω cos(ωΩt). The quadrature

force is proportional to the vibration displacement x(t) of the drive mode, i.e., Fq(t) = −kyxx(t).
The sense-mode displacement yq(t) and yΩ(t) caused by the quadrature force and the Coriolis

force are: {
yq(t) = −Ayskyx Ax sin(ωdt + ϕy)

yΩ(t) = −AysmyωdΩ(t) cos(ωdt + ϕy)
(4)


Ays =

1√
(ω2

y−ω2
x)

2
+
(

ωyωx
Qy

)2

ϕy = −arctan ωyωx

Qy(ω2
y−ω2

x)

(5)

where ϕy is the phase delay caused by the sense mode. When the resonant frequencies of the two
modes are equal (ωy = ωx), then ϕy = −90

◦
. This means that this phase delay information can be

used to determine whether the two modes are matched.

2.2. System Characteristics in Mode-Matching

Because of fabrication imperfections, there is a frequency split between the two modes of the
gyroscope. According to Equation (5), the vibration response and phase characteristics at different
mode frequency splits ( fx − fy) are shown in Figure 2, where the sense-mode Qy is set to 5000.
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It can be seen that when the two mode frequencies are equal, the vibratory response of the
sense mode is maximized and the phase delay ϕy = −90

◦
. For the Coriolis response, the gyroscope

mechanical sensitivity Sm is given as

Sm =
∣∣∣yΩ

Ω

∣∣∣ = 2Axωd√(
ω2

y −ω2
x

)2
+
(

ωyωx
Qy

)2
(6)

When ωy = ωx, the sensitivity also reaches its maximum. For this reason, mode-matching is
highly important to improve the mechanical sensitivity of MEMS gyroscopes and the stability of the
zero bias [20].

2.3. Electrostatic Negative Stiffness Tuning

Mode-matching through electrostatic tuning is usually based on the electrostatic negative stiffness
effect [21]. In a gyroscope structure, a set of electrodes with a flat capacitance structure is usually
designed as a tuning electrode in sense mode. When DC voltage is applied to the tuning plate
electrode, the equivalent stiffness k of the oscillator exhibits a negative quadratic correlation with the
tuning voltage Vp; also, increasing the voltage reduces the equivalent stiffness, thereby reducing the
sense-mode resonance frequency.

With S as the area of the flat-plate capacitor, d0 the distance between the plates, d the displacement
of the moving plate, ε the vacuum dielectric constant, Vp the tuning voltage, and ω0 the initial resonant
frequency, the relationship between the tuning voltage Vp and resonant frequency ω is:

ω =
√

ω2
0 − bVp2, b =

εS

m(d0 − d)3 (7)

3. 45◦ AFD-RM Mode-Matching Method

3.1. Method Framework

In drive mode, the drive signal is cos(ωdt) and uses traditional phase-locked loop and automatic
gain control (PLL + AGC) closed-loop control to achieve drive-mode resonance (ωx = ωd). At steady
state, the drive vibration displacement response is x(t) = Ax sin(ωdt). Thus, the Coriolis force is
FΩ(t) = −AxmyωdΩ(t) cos(ωdt), and the quadrature force is Fq(t) = −Axkyx sin(ωdt).

A block diagram of the 45◦ AFD-RM method is shown in Figure 3. First, an additional force signal
x45◦ (t) = A′

45◦
sin(ωdt + 45

◦
) shifts the reference signal sin(ωdt) forward by 45◦, and it works with

the Coriolis force and quadrature force on the sense mode at the same time. Then, the phase-shift
signal cos(ωdt+ 45

◦
) and sin(ωdt+ 45

◦
) demodulate the sense-mode output signal. After that, the two
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demodulated signals are passed through a low-pass filter (LPF) and added to obtain a phase metric
∆ϕy that can reflect whether the modes are matched. Finally, according to ∆ϕy, the PI controller adjusts
the tuning voltage VT to change the sense-mode frequency, and finally makes ∆ϕy = 0, achieving
real-time mode-matching.
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3.2. Mode-Matching Loop Analysis

The force generated by the phase-shifted 45◦ additional force signal on the sense mode is F45◦ (t) =
x45◦ (t)KVF. Then, the combined force input into the sense mode is Fy(t) = FΩ(t) + Fq(t) + F45◦ (t).
Therefore, the vibration displacement response of the sense mode is

y(t) =
AΩ

2
(
cos
(
(ωd + ωΩ)t + ϕωd+ωΩ

)
+ cos

(
(ωd −ωΩ)t + ϕωd−ωΩ

))
︸ ︷︷ ︸

Coriolis response

+Aq sin(ωdt + ϕωd)︸ ︷︷ ︸
Quadrature response

+ A45◦ sin(ωdt + 45
◦
+ ϕωd)︸ ︷︷ ︸

45◦additional force response

(8)

where the Coriolis response amplitude is AΩ = −AxmyωdΩAys, the quadrature response amplitude
is Aq = −Axkyx Ays, and the additional force response amplitude is A45◦ = A′

45◦
Ays. Ays is the

sense-mode amplitude gain in the steady state, and ϕωd is the sense-mode phase delay when the input
signal frequency is ωd.

Then, y(t) is demodulated by reference signals cos(ωdt + 45
◦
) and sin(ωdt + 45

◦
), and these two

demodulated signals are filtered by LPF to obtain

y1LPF = LPF
{

y(t)× cos(ωdt + 45
◦
)
}

= AΩ
4
(
cos(ωΩt + ϕωd+ωΩ − 45

◦
) + cos(−ωΩt + ϕωd−ωΩ − 45

◦
)
)

+
Aq
2 sin(ϕωd − 45

◦
) +

A45
◦

2 sin(ϕωd)

(9)

y2LPF = LPF
{

y(t)× sin(ωdt + 45
◦
)
}

= − AΩ
4
(
sin(ωΩt + ϕωd+ωΩ − 45

◦
) + sin(−ωΩt + ϕωd−ωΩ − 45

◦
)
)

+
Aq
2 cos(ϕωd − 45

◦
) +

A45
◦

2 cos(ϕωd)

(10)



Sensors 2018, 18, 3001 6 of 16

After that, y1LPF and y2LPF are added to obtain the phase metric ∆ϕy:

∆ϕy = y1LPF + y2LPF

=
AΩ

4

(
cos(ωΩt + ϕωd+ωΩ − 45

◦
) + cos(−ωΩt + ϕωd−ωΩ − 45

◦
)− sin(ωΩt + ϕωd+ωΩ − 45

◦
)− sin(−ωΩt + ϕωd−ωΩ − 45

◦
)
)

︸ ︷︷ ︸
Coriolis response

+
Aq

2

(
sin(ϕωd − 45

◦
) + cos(ϕωd − 45

◦
)
)

︸ ︷︷ ︸
Quadrature response

+
A45◦

2
(
cos(ϕωd) + sin(ϕωd)

)
︸ ︷︷ ︸

45◦additional force responce

(11)

To simplify the analysis, set the input angular rate to a constant value, i.e., ωΩ = 0, Ω(t) = Ω.
Then, ∆ϕy can be reduced to:

∆ϕy =
AΩ

2

(
cos(ϕωd − 45

◦
)− sin(ϕωd − 45

◦
)
)

︸ ︷︷ ︸
Coriolis response

+
Aq

2

(
sin(ϕωd − 45

◦
) + cos(ϕωd − 45

◦
)
)

︸ ︷︷ ︸
Quadrature response

+
A45◦

2
(
cos(ϕωd) + sin(ϕωd)

)
︸ ︷︷ ︸

45◦additional force response

= (
√

2AΩ
2 +

A45
◦

2 ) cos(ϕωd) + (
√

2Aq
2 +

A45
◦

2 ) sin(ϕωd)

(12)

A parameter k45◦ is set to indicate the proportional relationship between the 45◦ additional
force response amplitude and the quadrature response amplitude, i.e., A45◦ = k45◦ Aq. When setting
k45◦ = −

√
2, the quadrature response term is canceled by the 45◦ additional force response term. Then,

(12) can be simplified as

∆ϕy =

√
2

2
(

AΩ − Aq
)

cos(ϕωd) (13)

It can be seen that, unlike the method of [16], the phase metric ∆ϕy in the 45◦ AFD-RM method
only contains a cos(ϕωd) item and has no sin(ϕωd) item. Therefore, it can be used as a basis for judging
whether the mode matched.

Figure 4 shows the relationship curves of phase metrics ∆ϕy and sense-mode phase delay ϕωd

with the sense-mode frequency fy ( fy = ωy/2π), where the drive-mode frequency fx = 5550 Hz,
sense-mode Q value Qy = 5000, and Aq = −1 × Ays, AΩ = −0.5 × Ays. We can see that when
mode-matched, ( fy = fx = 5550 Hz), ϕωd = −90

◦
, and ∆ϕy = 0. When fy < fx, ∆ϕy is always

positive; when fy > fx, ∆ϕy is always negative. Therefore, we can use ∆ϕy as an input variable to
control the tuning voltage by the PI controller, and whether ∆ϕy is equal to 0 is used as a judgment
basis for the mode-matched condition. In addition, in the frequency range near fy ≈ fx, the ∆ϕy value
changes quite sensitively, which helps the system to quickly converge and improve the control accuracy.
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3.3. Influence Analysis of 45o
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3.3. Influence Analysis of k45◦

It is noteworthy that we set A45◦ = k45◦ Aq, k45◦ = −
√

2. In practical applications, the realization
steps of the coefficient k45◦ = −

√
2 are as follows: First, the quadrature response amplitude Aq of

the sense mode is measured when the drive mode is in steady state. Then, a 45◦ additional force
signal x45◦ (t) = A′

45◦
sin(ωdt + 45

◦
) is applied to the sense mode and the response amplitude A45◦

is measured. Finally, the A′45◦ value is reasonably adjusted, and the A′45◦ value that can satisfy
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A45◦ = −
√

2Aq is selected as the final set value. For each gyroscope, this process is performed
only once.

In order to evaluate the influence of the coefficient k45◦ value on the accuracy of the 45◦ AFD-RM
control system, the degree of influence of the phase metrics ∆ϕy on k45◦ is analyzed. Figure 5 shows
the relationship between ∆ϕy and the sense-mode frequency when k45◦ takes different values. It can be
seen that when k45◦ 6= −

√
2, the sense-mode resonant frequency corresponding to ∆ϕy = 0 ( fy(∆ϕy=0))

is not 5550 Hz. Figure 6 shows the relationship between k45◦ and the frequency fy(∆ϕy=0). It can be seen
that the change in coefficient k45◦ has little effect on fy(∆ϕy=0). When k45◦ doubles up or down, fy(∆ϕy=0)
changes within 1 Hz. Therefore, the 45◦ AFD-RM control system is not very sensitive to the value of
k45◦ . For this reason, it is necessary to properly adjust only the value A′

45◦
so that A45◦ ≈ −

√
2Aq in

practical applications, which is easy to implement.
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3.4. Angular Rate Detection Output

The traditional phase demodulation method is used to obtain the Coriolis response amplitude
(angular rate), the sense-mode output y(t) is multiplied by the reference signal− sin(ωdt) and cos(ωdt);
the Coriolis response amplitude r(t) and quadrature response amplitude q(t) are obtained after passing
through the LPF:

{
r(t) = AΩ

4
(
sin(ωΩt + ϕωd+ωΩ) + sin(−ωΩt + ϕωd−ωΩ)

)
− Aq

2 cos(ϕωd)−
A45

◦

2 cos(ϕωd + 45
◦
)

q(t) = AΩ
4
(
cos(ωΩt + ϕωd+ωΩ) + cos(−ωΩt + ϕωd−ωΩ)

)
+

Aq
2 sin(ϕωd) +

A45
◦

2 sin(ϕωd + 45
◦
)

(14)

For ϕωd+ωΩ and ϕωd−ωΩ , because it is the phase delay caused by the signal cos((ωd + ωΩ)t)
and cos((ωd −ωΩ)t) through the sense mode, according to the phase-frequency characteristics
at resonance state, ϕωd+ωΩ and ϕωd−ωΩ are symmetrical about −90

◦
in mode-matching, i.e.,

ϕωd−ωΩ + ϕωd+ωΩ = −180
◦
. Therefore, when A45◦ = −

√
2Aq and is mode-matched, Equation (14)

can be simplified as: {
r(t) = Aq

2 + AΩ
2 sin(ωΩt + ϕωd+ωΩ)

q(t) = AΩ
2 cos(ωΩt + ϕωd+ωΩ)

(15)
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It can be seen that the Coriolis response amplitude r(t) contains not only the Coriolis response
but also a relatively constant quadrature response term Aq

2 . When there is no angular rate input (i.e.,

AΩ = 0, ωΩ = 0), then r(t) = Aq
2 , which is the zero-bias output; also, q(t) is 0, because the additional

force cancels the quadrature force. In this study, q(t) was used to estimate the actual mode frequency
split in mode-matched condition.

Because the gyroscope cannot be swept to determine the mode frequency during normal work,
the frequency split can only be estimated by r(t) and q(t). When there is no angular rate input and
A45◦ = −

√
2Aq, Equation (14) can be expressed as{

r(t) = − Aq
2 sin(ϕωd)

q(t) = − Aq
2 cos(ϕωd)

(16)

The actual phase delay can be estimated by ϕωd = arctan(r(t)/q(t)). Then, on the basis of the
phase-frequency curve obtained by the frequency sweep in advance, the actual mode frequency split
in mode-matched state can be estimated.

4. Simulation Analysis

Simulation analysis was performed in MATLAB Simulink; the simulation parameters were set
according to the existing MW-AVG silicon micromachined wheel vibratory gyroscope in the research
group. The gyroscope parameters are shown in Table 1. In addition, the tuning voltage bias Vre f = 2.5 V
and the initial input Coriolis force was zero. After the drive-mode closed-loop control became stable,
the mode-matching process was started at t = 0.1 s. The waveform of the matching process is shown
in Figure 7. It can be seen that after starting the mode-matching, because fy > fx, the phase metric
∆ϕy < 0, so that the tuning voltage VT continuously rises to 1.21 V, finally making ∆ϕy = 0 and
stabilizing in the mode-matched state. At this time, the sense-mode displacement amplitude y(t)
reaches a maximum, the sense-mode frequency fy decreases from 5719 Hz to 5550 Hz, and the mode
frequency split is controlled within 0.03 Hz.

In theoretical calculations, when AΩ = 0 and A45◦ = −
√

2Aq, the signal phase relationship in

mode-matched state is x45◦ (t) = A′
45◦

sin(ωdt + 45
◦
), x(t) = Ax sin(ωdt), and y(t) =

√
2

2 Aq sin(ωdt).
Figure 8 shows the phase diagram of these signals in mode-matched state. It can be seen that
without the input of Coriolis force, the sense-mode displacement y(t) is in phase with the drive-mode
displacement x(t) and is 45◦ delayed from the 45◦ additional force signal x45◦ (t). This is exactly the
same as the theoretical calculation, which proves the correctness of the proposed scheme.
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5. Experimental Analysis

5.1. Experimental Setup

Taking an MW-AVG silicon micromachined wheel vibratory gyroscope as the experimental
object, a gyroscope drive-mode closed-loop and mode-matching control system was realized by Field
Programmable Gate Array (FPGA). The relevant data were collected through the serial port and
LabVIEW software, with a sampling rate of 180 Hz. Table 1 shows some electrical parameters of the
gyroscope. The gyroscope internal structure and the control circuit are shown in Figures 9 and 10.
In addition, the tuning voltage bias Vre f = 2.5 V, i.e., the voltage applied to the tuning electrode was
Vp = VT + Vre f .
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There were two pairs of plate electrodes in the gyroscope sense mode; one pair was used as sense
detection electrodes, one of the other pair was used as a tuning electrode, and the other was used
to apply the 45◦ additional force signal x45◦ (t). In addition, the drive-mode control system used the
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traditional PLL + AGC method [22,23], where the reference amplitude of the drive-mode displacement
x(t) was set to 0.05 V. The Coriolis response detection method for the sense mode used open-loop
detection. After relevant measurements, the A′

45◦
value was set to 0.1 V, so that A45◦ ≈ −

√
2Aq.

Table 1. Main electrical parameters of the gyroscope.

Parameter Drive mode Sense mode

Inertia Ix, Iy (kg·m2) 1.11 × 10−14 8.86 × 10−15

Resonance frequency fx, fy (Hz) 5550 5719
Quality value Qx, Qy 2.2 × 105 5200

Conversion factor of voltage to torque kvtx, kvty (N/V) 5.28 × 10−11 4.18 × 10−9

Conversion factor of swing angle to capacitance kxc, kyc (F/rad) 6.3 × 10−12 446 × 10−12

Conversion factor of detector capacitance to voltage kcvx, kcvy (V/F) 1.3 × 1012 10.4 × 1012

Coupling stiffness kyx (N/m) — 2.2 × 10−9

5.2. Mode-Matching Process

In the experiment, the mode-matching process was started at t = 2 s. The waveform of the
startup process is shown in Figure 11. It can be seen that when mode-matching is started, the tuning
voltage (Vp = VT + Vre f ) continuously rises and stabilizes at approximately 3.61 V, and the vibration
displacement of the sense mode rapidly increases. The right side of Figure 11 shows that when the
matching is stable, the drive-mode displacement x(t) is in phase with the sense-mode displacement
y(t) and is 45◦ delayed from the 45◦ additional force signal x45◦ (t), which is exactly the same as the
simulation result and shows that mode-matching has been achieved.
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Figure 12 shows variation of the relevant signal during the start of matching. It can be seen
that at the beginning, because fy > fx, the phase metric ∆ϕy < 0, so that the tuning voltage VT rises.
In the close mode matching, VT rises sharply and then quickly converges to 0, which is consistent
with the trajectory shown in Figure 4. The condition ∆ϕy = 0 indicates mode matching. At this time,
VT stabilizes to approximately 1.11 V. In addition, it can be seen that the Coriolis demodulation result
r(t) stabilizes to a negative value, Aq

2 , which is the zero-bias output of the angular rate detection.
According to Equation (17), the actual mode frequency split under 45◦ AFD-RM real-time

matching is estimated by r(t) and q(t). In the steady state shown in Figure 12, r(t) = −0.4366 V and
q(t) = 0.0083 V, so the phase delay ϕωd = −88.91◦. Then, according to the measured sense-mode
phase-frequency curve, the mode frequency split is within approximately 0.1 Hz.
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5.3. Gyroscope Performance Analysis

In the experiment, the gyroscope performance under real-time mode-matched (45◦ AFD-RM),
one-time manual mode-matched (OMM), and mismatched conditions was compared and analyzed.
For the mismatched condition, two fixed tuning voltage were set: (1) Vp = 3V, corresponding to a
frequency split ∆ f of approximately 60 Hz; and (2) Vp = 3.5V, corresponding to a frequency split ∆ f
of approximately 10 Hz.

For the OMM condition, this was achieved by manually adjusting the tuning voltage. However,
because the resonant frequency of the gyroscope changes with the environmental parameters, the
matching voltages at different times may be different. In addition, around the mode-matched point,
the gain Ays of sense mode is greatly affected by the frequency split. Therefore, for high-Q gyroscopes,
OMM cannot achieve perfect mode matching, and only approximate matching can be achieved. By
performing manual fine adjustment at normal temperature, the mode matching was optimal at the
tuning voltage Vp = 3.652V. At this time, in the case of no angular rate input, the demodulation
outputs of the sense mode were q(t) = −0.098 V, r(t) = 0.067 V. Then, the phase delay was
calculated as ϕωd = −55.64◦ and the mode frequency split was estimated to be approximately 1 Hz.

In order to test the scale factor, the Coriolis force must be applied to the sense mode. In this
study, the virtual Coriolis force calibration method [24] was used to apply the virtual Coriolis force
signal FΩ(t) = A′Ω cos(ωΩt) cos(ωdt) on the sense-mode electrodes through the FPGA, and the
corresponding actual angular rate was calibrated by the rate table. In experiments, the input virtual
Coriolis force was set to a constant value, ωΩ = 0.

First, under the normal temperature environment and using the open-loop detection method,
the gyroscope under fixed tuning voltage and real-time mode-matching conditions was tested for
scale factor. For the fixed tuning voltage condition, the range of amplitude A′Ω was −0.6 V to 0.6 V,
corresponding to an actual angular rate of approximately −300◦/s to 300◦/s, which was divided into
24 levels. For the 45◦ AFD-RM real-time mode-matching and OMM conditions, because the linear
measurable range is smaller when mode-matched, the amplitudes A′Ω were set to −0.06 V to 0.06 V
and −0.2 V to 0.2 V, respectively, and the corresponding actual angular rates were approximately
−30◦/s to 30◦/s and −100◦/s to 100◦/s, respectively. The gyroscope detection results at different
input angular rates are shown in Figure 13.

It can be seen that under open-loop detection, the Coriolis response becomes larger as the
mode frequency split ∆ f decreases. At −300◦/s to 300◦/s, the Coriolis response amplitude changes
approximately 0.04 V at Vp = 3V and approximately 0.25 V at Vp = 3.5V. In mode-matched condition,
the amplitude change reaches 0.35 V at −30◦/s to 30◦/s, which means that the sensitivity is increased
by several dozen times. However, as can be seen from Figure 13b, nonlinearity occurs when the
response is large, which is the reason why the measurable range under the mode-matched condition
is small.
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Figure 13. Detection output at different angular rate inputs: (a) mismatched and one-time manual 
mode-matched (OMM) conditions; (b) 45° AFD-RM condition (mode-matched). 
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Figure 13. Detection output at different angular rate inputs: (a) mismatched and one-time manual
mode-matched (OMM) conditions; (b) 45◦ AFD-RM condition (mode-matched).

The Coriolis response test results under the four conditions above were counted. With the
zero-bias output normalized to zero, the data in an angular rate range with good linearity were selected
to perform linear fitting, so that a scaling factor was obtained, as shown in Figure 14. In addition, after
the gyroscope worked stably for 30 min, the gyroscope zero-bias output was collected for 1 h and
the zero-bias performance was analyzed by the Allan variance [25]. The zero-bias output under 45◦

AFD-RM real-time mode-matching is shown in Figure 15, and the Allan variance curve under the four
conditions is shown in Figure 16. The results of scale factor, nonlinearity, zero-bias instability, and
angle random walk are shown in Table 2.
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Figure 15. Zero-bias output under 45◦ AFD-RM.
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Table 2. Performance test results (normal temperature, open-loop detection).

Matching Condition
Performance Parameters

Scale Factor
(mV/◦/s)

Nonlinearity
(%)

Measurable
Range (◦/s)

Zero-Bias
Instability (◦/h)

Angle Random
Walk (◦/

√
h)

Vp = 3V(∆f ≈ 60 Hz) 0.064 0.056 Greater than
±300 42.65 3.671

Vp = 3.5V(∆f ≈ 10 Hz) 0.352 0.054 ±200 13.23 0.667
OMM (∆f ≈ 1 Hz) 1.821 0.076 ±50 7.52 0.325

45◦ AFD-RM (∆f ≈ 0 Hz) 5.371 0.078 ±20 7.08 0.367

For the mode-matched and mismatched conditions, it can be seen that under the 45◦ AFD-RM
real-time mode-matched condition, the scale factor reaches 5.371 mV/◦/s, which is 84 times that of
Vp = 3V and 15 times that of Vp = 3.5V. This is because the sense-mode gain is the largest and
the mechanical sensitivity is the highest under the mode-matched condition. In addition, under
mode-matching, the phase delay in the sense mode is constant, which contributes to the accuracy of
Coriolis demodulation, so zero-bias instability and angle random walk performance also improved
compared to the mismatched conditions, reaching 7.08◦/h and 0.367◦/

√
h, respectively, which is 46.4%

and 45.5% lower than Vp = 3.5V. However, the measurable range is ±20◦/s, which decreased
significantly, because under the mode-matched condition, the gyroscope sense-mode vibration
displacement (Coriolis response) is the largest under the same angular rate input; due to the limitations
of the gyroscope structure and the detection circuit, the measurable range is reduced. However, this
problem can be mitigated by the force feedback closed-loop detection method.

For the OMM condition, there is a frequency split of approximately 1 Hz at normal temperature.
Therefore, the scale factor of 45◦ AFD-RM is 2.9 times that of OMM. However, its zero-bias instability
and angle random walk are approximately equal to OMM. This is because the 45◦ AFD-RM introduces
an additional force and a tuning voltage closed-loop control system for real-time matching, which
results in additional noise. However, this problem can also be mitigated by force feedback closed-loop
detection. In other words, the quadrature force feedback is used to correct the quadrature force, so as to
reduce the value of Aq, thereby reducing the amplitude A45◦ of 45◦ additional force (A45◦ = −

√
2Aq)

and the electrical coupling noise.
It is worth noting that in the actual applications, the biggest drawback of OMM is that it uses

fixed voltage tuning, which causes the mode-matching to be affected by environmental parameters
(especially temperature), which will result in poor accuracy and reliability of angular rate detection.
In this paper, the 45◦AFD-RM can adjust the matching voltage in real time, so that the gyroscope
maintains the mode-matched state, which makes it robust to environmental changes.
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5.4. Temperature Experiment

The temperature of the chamber was set to 30 ◦C, 50 ◦C, and 70 ◦C and OMM and 45◦ AFD-RM
were performed. Among them, OMM is manually matched and fixed tuning voltage Vp = 3.652V at
normal temperature.

Zero-bias Allan variance graphs of 45◦ AFD-RM under three different temperatures are shown in
Figure 17. The higher the temperature, the worse the bias instability, because as temperature rises, the
Q value will decrease. Both of these changes will induce a loss of mechanical sensitivity and increase
the noise.Sensors 2018, 18, x FOR PEER REVIEW  16 of 18 
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The tuning voltage and performance parameters are calculated and summarized in Table 3. It can
be seen that the tuning voltage of the 45◦ AFD-RM changes with temperature, keeping the gyroscope
in the mode-matched state. In addition, with the change of temperature, 45◦ AFD-RM is better than
OMM in terms of zero-bias instability and angular random walk. This is because the frequency split of
the gyroscope changes with temperature, and the fixed tuning voltage in the OMM cannot achieve
mode-matching, which further reduces the sensitivity of the gyroscope.

Table 3. Gyroscope performance at different temperatures (open-loop detection).

Temperature
(◦C)

45◦ AFD-RM OMM

Tuning
Voltage (V)

Zero-Bias
Instability

(◦/h)

Angle
Random

Walk (◦/
√

h)

Tuning
Voltage (V)

Zero-Bias
Instability

(◦/h)

Angle
Random

Walk (◦/
√

h)

30 3.6372 7.76 0.328 3.652 8.26 0.351
50 3.6253 8.84 0.412 3.652 10.03 0.482
70 3.6185 9.59 0.465 3.652 11.32 0.616

6. Conclusions

This paper presents an automatic real-time mode-matching method called 45◦ AFD-RM.
The difference from the existing external force-based real-time mode-matching method is that 45◦

phase-shifted additional force and 45◦ phase-shifted demodulation are used, so as to obtain a phase
metric that has no interference by Coriolis force and quadrature force, thereby reducing the limitations
of method implementation and improving matching accuracy. The experimental results show that the
45◦ AFD-RM method can accurately achieve mode-matching, significantly increase the scale factor,
and reduce bias instability and angle random walk.

However, because the open-loop detection method was adopted in this study, the measurable
range is small and the improvement of zero-bias instability and angle random walk is not ideal.
These problems can be solved by closed-loop detection. However, because the Coriolis demodulation
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output is different under the 45◦ AFD-RM and fixed tuning voltage method, the traditional force
feedback closed-loop detection method cannot be used directly. Therefore, in future research, a forced
feedback closed-loop detection method that matches the 45◦ AFD-RM will be constructed to further
improve gyroscope performance.
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discussed and revised the paper; B.F. and M.C. give some advises in experiment.
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