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Abstract: With the capability to automatically learn discriminative features, deep learning has
experienced great success in natural images but has rarely been explored for ship classification in
high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper,
convolutional neural networks (CNNs) are applied to ship classification by using SAR images with
the small datasets. First, ship chips are constructed from high-resolution SAR images and split into
training and validation datasets. Second, a ship classification model is constructed based on very deep
convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to
train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model
with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship
classification model trained by fine tuning achieves more than 95% average classification accuracy,
even with 5-cross validation; (2) compared with other models, the ship classification model based on
VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the
effectiveness of our proposed method.

Keywords: high-resolution SAR images; ship classification; convolutional neural networks;
fine tuning; transfer learning; small datasets

1. Introduction

Due to their all-weather, all-day, and high-resolution advantages, synthetic aperture radar (SAR)
images have recently been used for ship classification in marine surveillance. There are several satellites
that have provided high-resolution SAR images since 2007, such as ASI’s COSMO-SkyMed, DLR’s
TerraSAR-X, Japan’s ALOS-2, and China’s Gaofen-3, These high-resolution SAR images provide a
resolution greater than 3 m that contain rich information about the targets, such as the geometry of
ships, which makes discriminating different types of ships possible [1–4].

The methods used for ship classification with SAR images mainly focus on feature selection
and optimized classifier techniques [1–13]. Currently, commonly used features are (1) geometric
features, such as ship length, ratio of length to width, distribution of scattering centers, covariance
coefficient, contour features [11], and ship scale; and (2) scattering features, such as 2D comb features [7],
local radar cross section (RCS) density [1], permanent symmetric scatterers [12], and polarimetric
characteristics [13]. For classifiers, models from machine learning can be adapted, such as support
vector machines [14] and artificial neural networks [15]. Besides, many researchers provide classifiers
that aim for high-classification accuracy given the particularity of ships in SAR images, such as the
analytical hierarchy process [2] and hierarchical scheme [3]. Since these methods are highly dependent
on features and classifiers, researchers exploit several strategies to relieve the processes of feature

Sensors 2018, 18, 2929; doi:10.3390/s18092929 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7700-7284
https://orcid.org/0000-0002-0088-8148
http://dx.doi.org/10.3390/s18092929
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/9/2929?type=check_update&version=1


Sensors 2018, 18, 2929 2 of 15

selection and classifier optimization, such as hierarchical feature selection [6], multiple kernels to
combine various features [9] and joint feature and classifier selections [8].

Since Hinton [16] integrated the single-layer, restricted Boltzmann machine into a deep neural
network, deep learning, which is the automatic learning of discriminative features, has achieved
enormous success in object classification, object detection, and semantic segmentation studies from
normal RGB images [17]. Even in SAR images, deep-learning models are gradually used [18–20].
Zhu et al. [18] reviewed the potential of deep learning when applied to remote sensing and gave a
list of deep-learning materials. Zhang et al. [19] surveyed perspectives for the application of deep
learning to remote sensing, especially in hyperspectral communities. Nogueira et al. [20] presented
three methods for six popular ConvNets on two optical datasets and one multispectral dataset and
demonstrated that the method with fine-tuning features and the SVM classifier achieved the best results.
Bentes et al. [21] explored convolutional neural networks for ship classification via TerraSAR-X images.
The benefit of deep leaning is that unlike feature selection and optimized classifiers, it automatically
learns the representation of SAR images and provides an end-to-end scheme for a given application
without human interference [22], which saves time for feature extraction and selection and classifier
optimization. Based on the advantages of deep learning, convolutional neural networks (CNNs) are
adapted in this paper.

One of the major bottlenecks when applying deep learning is that it needs a considerably large
training dataset [22]. Since this volume of labeled data is time consuming and almost impossible to
obtain, there are two methods to address small datasets during training: fine tuning and transfer
learning [22]. Transfer learning and fine tuning need the model to be pretrained on a large portion
of the dataset. Currently, the widely used datasets from natural images, such as ImageNet [23] or
Coco [24]. However, by considering the difference between SAR images and natural images (e.g.,
imaging mechanisms and target information [25,26]), features extracted from natural images via the
pretrained model are not suitable for SAR images. Thus, it is imperative to use the SAR images to
modify the weights of the pretrained model. Transfer learning treats the learned model as a feature
extractor, as it changes the last few layers and only trains the parameters in the modified layers [27].
Unlike transfer learning, fine tuning takes the weights of trained models for initialization, modifies the
top layers, and then trains the model with the target dataset. Therefore, based on the above analysis,
fine tuning is adapted to train the ship classification model.

In addition, with deeper and increased deep-learning models, the features from the pretrained
model become more abstract [28]. Since SAR images are different from natural images (e.g.,
range compression [26]), the greater features of pretrained models may not suitable for SAR images.
To relieve this, a relatively shallow convolutional network (i.e., VGG [29]) is selected as our original
model. Especially, VGG16, one kind of VGG, is the winner in the ILSVRC-2014 competition and
has 23 layers. Compared with other deep learning models, such as InceptionV3 (159 layers), VGG19
(29 layers), and Xception (126 layers), VGG16 has a relatively shallow depth. It is used to construct a
ship classification model in this paper. To evaluate the effectiveness of the proposed method, deeper
models, such as VGG19 [29], are also used to evaluate our proposed method.

Based on the above analysis and to better exploit the benefits of deep learning with the capability
to automatically learning features of structurally complex objects, VGG16 is used to construct a ship
classification model in this paper. In addition, 4 models, including VGG16, VGG19, Xception [30],
and InceptionV3 [31], and two training methods, including transfer learning and fine tuning,
are conducted individually. The aim of this paper focuses on the application of convolutional neural
networks (CNNs) to ship classification in high-resolution SAR images using small dataset. Compared
to the feature-based method, CNNs automatically learn the discriminative features without human
interference. To address the limited dataset when training the model, fine tuning is proposed to train
the model with the consideration of SAR characteristics.

The organization of this paper is organized as follows. Section 2 relates the materials to the
background of the VGG16 and our proposed ship classification model and also presents the workflow
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of our experiments, especially our training scheme with small datasets. Section 3 introduces our
experimental results and analysis. Sections 4 and 5 are the discussion and conclusions of this
paper, respectively.

2. Materials and Method

2.1. Background on VGG16

The building blocks for VGG16 are a convolutional operation, pooling operation and an activation
function, including rectified linear units (ReLu) and softmax. The convolutional operation is defined
in Equation (1).

zi0 j0 =
m

∑
i=1

n

∑
j=1

WijcXi0+i, j0+j (1)

where the size of the kernel is represented by m × n. X represents the input, and W represents the
weights of the kernel in the cth channel.

For the pooling operation, there are two widely used pooling operations (i.e., maximum and
average pooling), and they are expressed by Equations (2) and (3), respectively.

y = max
1≤i≤m, 1≤j≤n

zi0+i,j0+j (2)

y =
∑m

i=1 ∑n
j=1 zi0+i,j0+j

m × n
(3)

Even though there are many variations of activation functions (e.g., rectified linear units (ReLu),
softmax, Tanh, and leaky ReLU), the most commonly used variations are ReLu and leaky ReLu in the
feature extraction phase and softmax in the fully connected layers. These variations are expressed
by Equations (4)–(6), respectively, and the others are referred to elsewhere [22]. α in Equation (5) is a
hyperparameter [22]. ReLu is adapted in the original VGG16.

y = max(0, x ) (4)

y = max(αx, x ) (5)

yi = exp(Xi )/
C

∑
j=1

Xj (6)

There are two architectures of VGG: VGG16 and VGG19. The main difference between them is that
VGG19 has 3 more convolutional layers than VGG16. Therefore, compared with VGG19, VGG16 has a
relatively shallow depth of neural networks. The building blocks of VGG16 can be divided into two
groups: convolutional building blocks and fully connected (FC) layer blocks, as indicated by the green
and brown rectangles in Figure 1, respectively. Convolutional building blocks distill image features that
range from low-level to high-level. They consist of five convolutional layer groups (each layer is stacked
with convolutional layers (Conv), rectified linear units (ReLu), and pooling layers (Pool)). Specifically,
there are two Conv layers, two ReLu layers, and one Pool layer in the first two groups and there are
three Conv layers, three ReLu layers, and one Pool layer for the last three groups. Each Conv layer
has a kernel size of 3, the stride of 1, and the padding of 1 and generates an output feature map with
units of 64, 128, 256, 512, and 512. For each Pool layer, the stride and kernel size are both 2. The four
numbers that occur after each layer indicate the output number of the feature maps, padding, kernel size,
and stride. Fully connected layers act as classifiers. The outputs of these three fully connected layers are
4096, 4096, and 1000, where 4096 is the number of hidden neural units in the fully connected layers and
1000 is the number of classes. Drop layers (Drop) are also used to avoid overfitting. The parameter after
Drop indicates the random removal of neurons with a probability of 0.5.
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Figure 1. The architecture of VGG16. The green boxes indicate the convolutional blocks, and the brown
boxes represent the fully connected blocks.

2.2. Proposed Method

The experimental workflow is shown in Figure 2. Black, blue, and red arrows represent the phase
of data processing, training, and testing, respectively. First, three categories of ship chips which include
Bulk Carrier, Container, and Oil tanker, are obtained from the high-resolution COSMO-SkyMed Images.
Then, these ship chips are split into training and validation dataset, with percentages of 70% and 30%,
respectively. After that, the ship classification model based on VGG16 is constructed and trained on
the basis of the pretrained VGG16 via the ImageNet dataset. Finally, the validation dataset is used to
evaluate the performance of the trained model. The dataset is discussed later in Section 3.1, and the
constructed ship classification and training strategies are the focus in this section.
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Figure 2. Experimental workflow. The black, blue, and red arrows represent the data processing,
training, and test phases, respectively.

2.2.1. Ship Classification Model

Our proposed ship classification model is based on VGG16. Unlike the ImageNet and Coco
dataset, there are only three categories. To better suit the SAR ship classification, the fully connected
layer blocks are substituted with two fully connected blocks, as shown in Figure 3. The settings for the
convolutional layers blocks are the same as those for VGG16. The main difference from VGG16 is the
top layers. There are two fully connected layers with 4096 hidden units in VGG16, whereas there is
only one layer with 32 hidden units in the ship classification model. For fully connected layer blocks,
the dropout value is 0.5, and the output for softmax is 3. Since the training dataset is small, the number
of neural units is the hyperparameter and will be discussed later in Section 3.2.1.
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2.2.2. Fine Tuning Ship Classification Model

There are two efficient ways to train deep-learning models with small datasets: fine tuning
and transfer learning. These two methods first train the model on large public datasets, such as
ImageNet, and then usually modify the top layers to accommodate a specific application. They have
the advantages of training a deep learning model with small datasets. Besides, as stated in Ref. [32],
the low level neural layers learned by deep learning models are similar to Gabor filters [32], which is
useful for extracting features such as corners, edges [33]. So, we make the assumption that the lower
level neural layers share common features. Here, the top layer is typically a fully connected layer.
Both methods take the weights of the models in the low-level features as the inputs instead of random
weights. The difference between them is the training process. Transfer learning only trains the newly
modified features [32], whereas fine tuning not only trains the new layers but also the pretrained layers.

To better illustrate the difference between them, VGG16 is used as an example. First, VGG16
is trained using a public ImageNet dataset with weights initialized with the Gaussian distribution,
as shown in Figure 4. During training, the weights (except for the top layers (i.e., fully connected
layers)) are transferred to the model for ship classification, as shown in Figures 5 and 6. It is obvious
that the parameters for both fine tuning and transfer learning are initialized by those trained on the
ImageNet dataset. Transfer learning maintains the transferred weights indicated by the green arrows
and only learns the parameters of the newly added layers indicated by the red arrows, as shown in
Figure 6, whereas fine tuning learns both parts (as indicated by the red arrows shown in Figure 5).
Even transfer learning and fine tuning have the advantages of flexibility and robustness and are
widely used in the natural image community [22] and remote sensing [19,20,33], but the weights of the
low-level and mid-level convolutional blocks for transfer learning are fixed; thus, it may not suitable
for SAR images. Therefore, fine tuning is utilized in this paper.
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2.2.3. Training Details

Our experiment was performed with a free and open operating system with the version
14.04 released by international Canonical Ltd, and an 8G memory NVIDAI GPU GTX1070.
Our implementations are on the top of Keras [34], which is a deep-learning library that is built
on the basis of TensorFlow, CNKT, and Theano. The pretrained models are downloaded from the Keras
website. As stated in Section 2.2.2, transfer learning is also used to train the models to compare it with
the performance of fine tuning. Fine tuning is learned by a stochastic gradient descent [22,35,36], with a
learning rate of 0.0001 and a moment of 0.99. Transfer learning is guided by RMSprop [22,37], with a
learning rate of 0.001 and a moment of 0.9. The conditions for termination are that the classification
accuracy or loss almost remains the same.

3. Results

3.1. Experimental Data

3.1.1. SAR Images

A total of 6 scenes from the COSMO-SkyMed level 1A HIMAGE (single-look complex Slant (SCS)
product) images in the X-band with single HH or VV polarization are used to evaluate our approach,
and the detailed information is shown in Table 1. The data are calibrated and converted into grey in
the range [0, 255]. The ships are found automatically or manually on the SAR images. Three kinds of
ships are obtained from these images through SAR experts and field experiments, and there are 146
bulk carriers, 156 containers, and 144 oil tankers used for classification. Some ship chips are shown
in Figure 7. The bulk carriers have repeating textures due to the box-like hatches in the longitudinal
direction. The containers also have repeating characteristics due to truck-size containers. The oil tankers
have symmetric features because of the intense backscattering of pipelines along the centerline [3].

Table 1. Experimental SAR images information.

Sensors Imaging Time Pixel Spacing
(Azi × Rg, m)

Near Range
Incidence (◦) Band Orbit

COSMO-SkyMed 12 July 2010 1.90 × 2.23 58.79 X Descending
COSMO-SkyMed 12 July 2010 0.93 × 2.22 24.87 X Descending
COSMO-SkyMed 12 July 2010 1.67 × 2.05 48.63 X Ascending
COSMO-SkyMed 13 July 2010 1.90 × 2.23 58.79 X Descending
COSMO-SkyMed 13 July 2010 1.66 × 2.05 48.63 X Ascending
COSMO-SkyMed 14 July 2010 1.14 × 1.92 30.71 X Descending
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3.1.2. Pretrained Models

To evaluate the effectiveness of our proposed method, three other models, including VGG19,
Xception, and InceptionV3, are also used to construct our ship classification in these experiments.
These four models can be divided into groups: the first two stem from VGG and the last two
models evolve from GoogleNet [38]. The aim of GoogleNet is focused on the fact that the deeper
the neural network is, the higher the performance. In addition, the inception module is used to
increase both the width and depth of the neural network. There are five variations of GoogleNet,
including GoogleNet, InceptionV2, InceptionV3, InceptionV4, and Xception. Considering the fact
that InceptionV3 and Xception have the top performances regarding classification and are available
now, these two neural architectures are used in this paper. InceptionV2 adds batch normalization
to GoogleNet, and InceptionV3 exploits factorization ideas in the Inception and Xception variations,
which introduces the depth-wise separable convolution of InceptionV3 [30]. These four models are
pretrained on the ImageNet dataset, and the ship classification model based on them is constructed
similarly to that based on VGG16, as shown in Section 2.2.1. To save energy when training these
models on the ImageNet dataset, pretrained models are downloaded from the Keras website, and the
information is shown in Table 2. It is obvious that VGG16 has a relatively shallow depth, which is
equal to the sum of the input layer, Conv, Pool, FC, and an output layer.

Table 2. Pretrained model information via the ImageNet dataset. During the inference for an image in
ImageNet, the trained deep learning model outputs the probabilities of each class. The Top-1 accuracy
means if the label corresponding to the maximum probability is correct, then this image is correctly
classified. The Top-5 accuracy means if the label is included in the top-5 maximum probability, then this
image is regarded as correctly classified.

Model Top-1 Accuracy (%) Top-5 Accuracy (%) Depth

InceptionV3 78.8 94.4 159
VGG16 71.5 90.1 23
VGG19 72.7 91.0 26

Xception 79.0 94.5 126

3.2. Experimental Results and Analysis

3.2.1. Influence of Units in the Fully Connected Layers

Considering that the number of neural units in the fully connected layers may have a potential
impact on the classification results, comparison experiments are conducted with a different number of
units in the fully connected layers 32, 64, 128, 256, and 4096. The classification accuracy and validation
accuracy are shown in Table 3. In addition, precision, recall, and F1 score are also used to evaluate the
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influence of units in the fully connected layers. It is obvious that the number of units has little impact on
the classification results from Table 3 with regard to the five metrics (e.g., training accuracy, validation
accuracy, and F1 score) when using fine tuning to train the ship classification model. To evaluate the
performance of these five models, McNemar’s test is used [39,40]. There is no significant difference
among these models because the p-value is larger than the significance level of 0.05. Since the model
has the minimum hidden neural units (32), which means few weights to be learned to avoid overfitting,
it is used for our experiments.

Table 3. Experimental results with different units in the fully connected layers of the ship classification
model based on VGG16.

The Number
of Units

Training
Accuracy (%)

Validation
Accuracy (%)

Average
Precision (%)

Average
Recall

Average F1
Score

32 100 97.66 97.85 0.9774 0.9779
64 100 97.79 97.81 0.9774 0.9778
128 100 96.09 96.24 0.9632 0.9628
256 100 97.92 97.81 0.9774 0.9778

4096 100 97.01 97.00 0.9710 0.9705

3.2.2. Comparison of Fine Tuning and Transfer Learning

To evaluate the effectiveness of our proposed training method, the constructed ship classification
model based on VGG16 is trained via fine tuning and transfer learning separately. The training and
validation accuracies are shown in Table 4 and Figures 8 and 9. On the one hand, it is obvious that fine
tuning is more stable than transfer learning during the training process. On the other hand, even when
the training accuracies of both methods are the same (i.e., 100%), the validation accuracy of the model
trained by fine tuning is approximately 2% higher than that trained by transfer learning. The reason
for this phenomenon may be that features in the deeper models are suitable for natural images and not
SAR images. Besides, the time for training by transfer learning is less than that by fine tuning. This is
because compared with transfer learning, fine tuning also modifies the weights in the transferred
weights, which may cost time. For better clarification, the confusion matrix of the two training methods
is shown in Table 5 and the precision, recall, and F1 score of each category are shown in Table 6.
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McNemar’s test is also used and the contingency table is shown in Table 7. It is easy to obtain
the fact that there is no significant difference between these two models. However, compared with
the model trained via fine tuning, even the model via transfer learning can exactly classify oil tankers,
but it failed to recognize the containers as shown in Table 5. Therefore, the precision, recall, and F1

score of the model trained by fine tuning are higher than those trained by transfer learning. In addition,
it is obvious that F1 score via fine tuning is 2% greater that via transfer learning. The reason for
this is that the features of the pretrained model may be suitable for natural images, not SAR images.
Unlike transfer learning, fine tuning also modifies the weights of the low layers in the pretrained
models, thus the features learned may suitable for SAR images. Since the weights of convolutional
neural networks are fixed for the ship classification model, it may be beneficial for transfer learning in
SAR images if the dataset of the pretrained models is from SAR images.

Table 4. Classification accuracy of the ship classification model via fine tuning and transfer leaning.

Training Methods Training Accuracy (%) Validation Accuracy (%) Training Time (s)

Fine tuning 100 97.66 811
Transfer learning 100 95.83 710

Table 5. Confusion Matrix of the model trained via transfer leaning and fine tuning on validation dataset.

Transfer Learning Fine Tuning

Bulk Carrier Container Oil Tanker Bulk Carrier Container Oil Tanker

Bulk Carrier 41 1 1 41 2 0
Container 2 43 2 0 46 1
Oil Tanker 0 0 43 0 0 43
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Table 6. Precision, recall, and F1 score of the model trained via transfer leaning and fine tuning on
validation dataset.

Label
Transfer Learning Fine Tuning

Precision Recall F1 Score Precision Recall F1 Score

Bulk Carrier 0.9535 0.9535 0.9535 1.0 0.9535 0.9762
Container 0.9773 0.9149 0.9451 0.9583 0.9787 0.9684
Oil Tanker 0.9348 1.0 0.9663 0.9773 1.0 0.9885

Average total 0.9552 0.9561 0.9556 0.9785 0.9774 0.9780

Table 7. Contingency table of the models trained by fine tuning and transfer learning.

Model Trained by Transfer Learning Model Trained by Fine Tuning

No. of Cor_cla No. of Incor_cla

No. of cor_cla * 124 2
No. of incor_cla * 6 1

* No. of cor_cla and No. of incor_cla represent the number of correct and incorrect classification ships in the
test dataset.

3.2.3. Comparison with Other Models

Three other models are trained via fine tuning based on the same condition (i.e., the fully connected
layers have one layer with 32 units). The training and validation accuracies are shown in Table 8 and
Figure 10. McNemar’s test is also used. Except for the ship classification model based on Xception,
the other two models are not significantly changed through through McNemar’s test. However,
the VGG16 performs better than the other three models with regard to F1 score. It is apparent that
VGG16 has the lowest Top-1 and Top-5 accuracies and the shallowest depths among these four models
in the pretrained models from Table 2. However, the ship classification accuracy of VGG16 achieves
the highest accuracies (at least 2% for the F1 score). This may be due to the fact that because of the
differences between SAR images and natural images, features in the higher layers of the deeper model
pretrained on the ImageNet dataset are suitable for natural images and not SAR images. To further
evaluate the performance of these four models, the confusion matrix, precision, recall, and F1 score are
used. The confusion matrices of these four models are shown in Tables 5 and 9, and the metrics are
shown in Table 10. It is obvious that the ship classification model based on VGG16 has the highest
F1 score. In addition, it is easy to see that the higher classification on the ImageNet dataset is not
guaranteed to be higher in the SAR images. For the first group, VGG16 with a relatively shallow
depth has a 5% higher accuracy compared to VGG19; for the second group, InceptionV3 improves by
almost 5% with regard to F1 score. The reason for this may be that transfer learning only trains the
newly modified features, whereas fine tuning not only trains the new layers but also the pretrained
layers. Thus, through training the model by fine tuning, the features may be more suitable for SAR
images. Besides, compared with the other three models, the time of our proposed model has a fast
speed. There are two reasons for this, i.e., the depth of the constructed model and the training times of
these models. Since both the depth of VGG16 and the training time are the minimum, VGG16 has the
fast training speed.
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Figure 10. Training and validation accuracies of the ship classification model based on Xception.
(a,c,e) show the training and validation accuracies, and (b,d,f) show the corresponding training and
validation losses via the VGG19, InceptionV3, and Xception models, respectively.

Table 8. Classification accuracies and training time of the four models.

Model Type Training Accuracy (%) Validation Accuracy (%) Training Time (s)

VGG16 100 97.66 811
VGG19 100 92.48 1829

InceptionV3 99.37 95.48 2400
Xception 100 89.47 5500
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Table 9. Confusion matrix of the model based on VGG19, InceptionV3, and Xception.

Model
VGG19 InceptionV3 Xception

Bulk
Carrier Container Oil

Tanker
Bulk

Carrier Container Oil
Tanker

Bulk
Carrier Container Oil

Tanker

Bulk
Carrier 41 0 2 39 4 0 36 0 7

Container 4 41 2 0 47 0 5 40 2
Oil Tanker 1 1 41 1 1 41 0 0 43

Table 10. Precision, recall, and F1 score of the models based on VGG19, InceptionV3, and Xception.

Label
VGG19 InceptionV3 Xception

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Bulk Carrier 0.8913 0.9535 0.9213 0.9750 0.9070 0.9397 0.8780 0.8372 0.8571
Container 0.9762 0.8723 0.9213 0.9038 1.0 0.9495 1.0 0.8511 0.9195
Oil Tanker 0.9111 0.9535 0.9318 1.0 0.9535 0.9762 0.8269 1.0 0.9053

Average total 0.9262 0.9264 0.9263 0.9596 0.9535 0.9565 0.9017 0.8961 0.8988

In addition, it is easy to note that bulk carriers and containers are misclassified as other kinds
of ships in these four models. Examples of misclassified bulk carriers and containers are shown in
Figure 11.
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Figure 11. Examples of misclassified ships. (a) Bulk Carrier is classified as Container; (b) Container is
misclassified as Oil Tanker. Their corresponding classification probabilities into three categories are
also shown as indicated by royal blue histograms.

4. Discussion

Since the volume of ship constructed datasets is small, cross validation is important to evaluate
the performance of the classifier. In this paper, 5-cross validation is used. Table 11 is the cross validation
accuracy for transfer learning and fine tuning of VGG16 and fine tuning of VGG19. It is obvious that
compared with transfer learning, fine tuning achieves higher average classification accuracy and lower
standard deviation. This is because fine tuning also modifies the transferred weights, which may make
the learned features suitable for SAR images.

Through the above experiments and analysis, it can be clearly seen that among the above four
models, each model has its own advantages. The model based on VGG16 achieves the best F1 score
and the best observations of Oil Tankers. The model based on VGG19 has the best observations of
Bulk Carriers. The model based on InceptionV3 has the best precision for Oil Tankers and the best
observations of Containers. The model based on Xception has the best precision for containers and
the best observations of oil tankers. It will be our future goal to adapt ensemble learning [41] to take
advantage of these models and achieve the best performance. However, among these four models,
i.e., VGG16, VGG19, Xception, and InceptionV3, but not Xception, the other three models have no
significant change for ship classification with McNemar’s test. This may be characteristic of this dataset
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and more ship classification datasets are needed to verify this in the future. In addition, due to the
differences between SAR images and optical images, large SAR image datasets will be constructed to
better exploit the methodology of deep learning, and future research will be conducted on pretrained
models with SAR images, which may show the benefits of transfer learning and combined SAR
inherent characteristics (e.g., statistical distributions with convolutional neural networks) to enhance
the classification results of ship classifications. Not only does fine tuning achieve promising results,
it also results in overfitting of the present model. The increase in datasets is likely to solve this problem.

Table 11. Overall classification accuracies on the dataset for various network configurations using
5-fold cross validation.

Model 1 2 3 4 5 Mean Standard Deviation

VGG16-FT * 98.11% 93.56% 100% 93.98% 92.42% 0.9561 0.0326
VGG16-TF * 93.98% 90.13% 100% 92.80% 91.23% 0.9363 0.0385
VGG19-FT * 91.29% 90.56% 93.13% 89.47% 92.05% 0.9130 0.0140

* VGG16-FT and VGG16-TF mean the ship classification model based on VGG16 are trained by fine tuning and
transfer learning respectively. VGG19-FT means the ship classification model based on VGG19 trained by fine tuning.

5. Conclusions

In this paper, convolutional neural networks are used to classify ships in high-resolution
SAR images with small datasets. Specifically, firstly, a SAR ship dataset is constructed from
6 COSMO-SkyMed images and, considering the characteristics of SAR images, a ship classification
model based on VGG16 is constructed. Second, fine tuning is utilized to train the model, which is
pretrained on an ImageNet dataset. The experimental results reveal that (1) our proposed ship
classification model achieves the best performance with regard to classification accuracy, even with
5-cross validation; (2) compared with the model trained via transfer learning, the model trained
by fine tuning has the best performance in classification accuracy; (3) compared with other models,
the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification.
The inherent characteristics of SAR images will be combined with convolutional neural networks to
enhance performance in future works. In addition, the ensemble of different deep-learning models
will be used to improve performance.
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