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Abstract: Low-frequency vibration is a harmful factor that affects the accuracy of
micro/nano-measuring machines. Low-frequency vibration cannot be completely eliminated by
passive control methods, such as the use of air-floating platforms. Therefore, low-frequency vibrations
must be measured before being actively suppressed. In this study, the design of a low-cost
high-sensitivity optical accelerometer is proposed. This optical accelerometer mainly comprises
three components: a seismic mass, a leaf spring, and a sensing component based on a four-quadrant
photodetector (QPD). When a vibration is detected, the seismic mass moves up and down due
to the effect of inertia, and the leaf spring exhibits a corresponding elastic deformation, which is
amplified by using an optical lever and measured by the QPD. Then, the acceleration can be calculated.
The resonant frequencies and elastic coefficients of various seismic structures are simulated to attain
the optimal detection of low-frequency, low-amplitude vibration. The accelerometer is calibrated
using a homemade vibration calibration system, and the calibration experimental results demonstrate
that the sensitivity of the optical accelerometer is 1.74 V (m·s−2)−1, the measurement range of the
accelerometer is 0.003–7.29 m·s−2, and the operating frequencies range of 0.4–12 Hz. The standard
deviation from ten measurements is under 7.9 × 10−4 m·s−2. The efficacy of the optical accelerometer
in measuring low-frequency, low-amplitude dynamic responses is verified.

Keywords: optical accelerometer; low-frequency vibration; leaf spring; four-quadrant photodetector

1. Introduction

In ultra-precision measurement, ultra-precision machining, metrological verification and similar
applications, the low-frequency micro-vibration caused by human activity and natural factors has
great influence. Its amplitude is extremely small (in the micron range) and it cannot be eliminated
completely by passive control methods, such as the use of air-floating platforms. Thus, a vibration
control technique is a good solution. The main problems of active vibration isolation techniques involve
the design of appropriate sensor techniques and control schemes. In terms of vibration frequency,
the vibration generated by certain human activities, transportation, and mechanical devices ranges
of 1–10 Hz [1,2]. Accordingly, the accelerometer used in measuring environmental vibration must be
designed specifically for low frequency and high sensitivity.

Table 1 shows a summary of the existing accelerometers for low-frequency, low-amplitude
vibration, which include piezoelectric (PZT) accelerometers, strain accelerometers, fiber Bragg grating
(FBG) accelerometers, micro-electro-mechanical system (MEMS) accelerometer, optical accelerometers
and other types.
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Tian et al. [3] designed a high sensitivity and low transverse effect PZT accelerometer.
The piezoelectric accelerometer fabricated on an n-type single crystal silicon wafer and the sensor
chips were wire-bonged to printed circuit boards (PCBs). The sensitivity of the accelerometer is
9 mV/g, the linearity is 0.0205, and the hysteresis error is 0.0033. Zou et al. [4], Nishshanka et al. [5],
and Tims et al. [6] have also made progress in this field and the detailed data is shown in
Table 1. From Table 1, we can see that the PZT accelerometers have a wide bandwidth. However,
their sensitivities are low, and they cannot be used to detect low frequency micro-vibrations.

Kamentse et al. [7] presented a strain gauge accelerometer. A nonconductive ceramic beam was
used as elastic element. Four strain gauges were attached on the surface of the beam using screen
printing process. This accelerometer has a wide detection range. Santana et al. [8] have also made
progress in this field and the detailed data is shown in Table 1. Strain gauge accelerometers have
widely used in industry because of high stability and low price. However, the accuracy of the strain
gauge accelerometer is low, and the detection of low frequency micro-vibration cannot be achieved.

Liu et al. [9] applied FBG to an accelerometer. In their design, two symmetrical bended spring
plates were used as elastic elements so as to double the wavelength shift of the FBG. This accelerometer
has a low-frequency response range of 0.7–20 Hz. However, it cannot describe the output when the
outside acceleration is small (less than 1 m·s−2). Gao et al. [10], Zhang et al. [11], Zhang et al. [12],
Zeng et al. [13], and Li et al. [14] have also made progress in this field and their results is shown in
Table 1. It can be seen that the FBG accelerometers can achieve the detection of low-frequency vibration.
However, it is difficult for them to detect the vibration of low-frequency and low-amplitude since their
resolution is limited.

Sabato et al. [15–17] developed a wireless MEMS accelerometer for micro-vibrations.
This accelerometer used voltage to frequency conversion (V/F) other than analog to digital
conversion (ADC) to promote the accelerometer’s performance. However, the validations for
the wireless accelerometer in the low-frequency, ultra-low amplitude range have not been
reported. Swartz et al. [18], Cho et al. [19], Whelan et al. [20] Meyer et al. [21], Rice et al. [22],
and Kohler et al. [23,24] have also made progress in this field and their results are shown in
Table 1. We can find that the MEMS accelerometer has a wide frequency response range. However
low-frequency and low-amplitude vibration detection cannot be achieved because their low sensitivity.

Several accelerometers were developed based on the high precision displacement or angle sensor
modified from DVD pick up head [25–27]. These optical accelerometers have high sensitivity and
enable low amplitude vibration detection. The cantilever beam produces angular motion when sensing
vibration, thereby causing measurement errors.

In addition to the above technologies, Zheng et al. [28] proposed a new maglev sensor to
measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with
electromagnets and permanent magnets as the supporting component. Jiang et al. [29] proposed an
all-metal double metal diaphragm-based optical fiber accelerometer with low transverse sensitivity.
Lin et al. [30] designed a compact-size fiber optic accelerometer to achieve both high resolution and
wide dynamic range.

In summary, for the cost-effective and accurate measurement of low-frequency, low-amplitude
vibration, a new optical accelerometer system is developed in this study. A centrally symmetric leaf
spring fixed on a seismic mass was used as a vibration sensitive unit, four-quadrant photodetector
(QPD) based optical sensor was used to sensor the seismic mass’s displacement. Section 2 introduces
the structure and principles. Section 3 explains the design, analysis, and fabrication of the optical
accelerometer. The performances of the optical accelerometer are discussed in Section 4. The summary
and prospect of the optical accelerometer are presented in Section 5.
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Table 1. Summary of accelerometers of low-frequency micro-vibration. BW: bandwidth; PZT:
piezoelectric; FBG: fiber Bragg grating; MEMS: micro-electro-mechanical system.

Principle Sensitivity (V/g) Range (g) BW (Hz) Noise-Density (µg Hz−1/2) Study

PZT

9 mV/g – – – [3]
X-0.93 mV/g

>0.04 <100 – [4]Y-1.13 mV/g
Z-0.88 mV/g
15.6 mV/g – 60–1.5 k 1.7 [5]

2.82 – 2–500 – [6]

Strain – 0–5 <100 – [7]
Variable ±20,000 µε <100 70 [8]

FBG

* – 0.7–20 – [9]
0.135 0.1–2 80–800 – [10]
0.362 < 0.5 1–10 – [11]

* – 0–25 – [12]
* 0.5–1.5 20–70 – [13]
* 0.1–0.4 5–15 – [14]

MEMS

1.2 ±3 0.2–1500 0.3 [15,16]
2 ±1 0–50 70 [18]
1 ±2 0–50 140 [19]

0.66 ±2 0–100 30 [20]
0.66/0.22 ±6/±2 0–100 30 [21]

0.66 ±2 0–50 50 [22]
1.2 ±3 0–1500 0.3 [23,24]

Optical
12.28 <0.017 F 3–24 20 [25]
24.36 <0.0023 F 3–6 – [26]
22.9 <0.08 F 0.5–50 30 [27]

Others
– – 0.2–0.4 – [28]
* – 5–400 0.09 [29]
– – 20–140 0.048 [30]

“*” indicates that the parameter is not comparable; “–” indicates that the parameter is not mentioned; “F” indicates
that the parameter is not mentioned, and read from the picture of the paper.

2. Structure and Principle

As shown in Figure 1, a common contact accelerometer comprises a spring, a seismic mass, and a
displacement sensor arranged within a housing attached to a base. In operation, the base is mounted
on the vibrating structure to be measured, and the relative displacement between the seismic mass
and the base is recorded by the displacement sensor. Following Newton’s second law, the force acting
on the seismic mass m can be expressed as:

ma = k(xm − xb), (1)

where xm is the displacement of the seismic mass and xb is the displacement of the base; thus,
the relative displacement between the seismic mass and the base can be expressed as:

(xm − xb) =
m
k

a. (2)

If the acceleration a is constant, then the larger the seismic mass m and the smaller the elastic
coefficient of spring k would result in the larger relative displacement between the seismic mass and the
base. Therefore, the stronger the output signal of the displacement sensor is, the higher the sensitivity
of the accelerometer will be. Nevertheless, if the seismic mass m is too heavy and the elastic coefficient
k of the spring is too low, then the seismic mass is liable to generating a lateral yaw and increasing the
measurement error. Thus, the elastic coefficient k of the elastic support and the mass m of the seismic
mass directly affect the accelerometer performance. The appropriate spring and seismic mass must
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be selected to realize the high-sensitivity detection of low-frequency vibration. The third part of this
paper emphasizes the design of spring and seismic mass.Sensors 2018, 18, x 4 of 15 
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Figure 1. Typical accelerometer structure diagram.

On the basis of the typical accelerometer structure shown in Figure 1, a leaf spring is used as
the elastic support in this study. As shown in Figure 2, the leaf spring is mounted on the frame of
the accelerometer. A seismic mass fixed to the lower surface of the leaf spring is used as a vibration
system, and the QPD in association with a laser diode is regarded as a pick-up sensor. Mirror 2 is
attached to the bottom of the seismic mass. When vibration occurs, the leaf spring undergoes elastic
deformation, and the seismic mass moves up and down. The position of the projected light spot on
the four-quadrant photodetector then shifts. To add a fine-tuning device for optical path adjustment,
Mirror 1 is added on the left side and installed on the fine-tuning device.

Figure 2 shows the optical path of the sensor system. The laser beam from the laser diode with an
incident angle is reflected by the mirrors and then projected onto the QPD. A vertical displacement ∆h
of Mirror 2 causes a lateral shift ∆l of the light spot on the QPD. The relationship between ∆h and ∆l is
expressed by:

∆l =
∆h

sin α
, (3)

where α is the angle between the laser and Mirror 2. Equation (3) shows that the vertical motion of
the seismic mass is magnified by the factor of (sinα)−1. Provided that the value of angle α is smaller,
the sensitivity of the sensor is higher, but this situation also increases the lateral size of the accelerometer.
Considering the elastic structure, optical path, and circuit design, which affect accelerometer sensitivity,
the existing amplifier design can meet the requirements well. Therefore, in the design of the elastic
structure and optical path, although the basic performance requirements of the accelerometer are met,
we must consider the difficulty of processing and reduce the cost. Thus, 45◦ is selected as the value
of the included angle α. Mirror 1, which is introduced into the design to adjust the optical path, is
mounted on a 2D fine-tuning device, and the angle can be fine-tuned.
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3. Design, Analysis and Fabrication

In this study, the accelerometer is intended to measure the movement of the environmental
vibration (1–10 Hz) [1,2]. The frequency of the acceleration cannot be correctly measured until it
is lower than 20% of the resonance frequency of the accelerometer when the acceleration acts on
the base. This limits the frequency response design of the accelerometer. Therefore, the required
resonance frequency value of the accelerometer should be approximately 50 Hz. In addition to the
resonance frequency of the accelerometer, the elastic coefficient of the accelerometer’s elastic part must
be considered in the design.

As shown in Figure 2, the elastic part of the optical accelerometer contains a seismic mass, a leaf
spring, a floating plate, and a mirror. The symmetrical structure has the same deformation; thus,
the horizontal position of Mirror 1 is maintained to avoid the lateral yaw motion. The design of the leaf
spring must consider its structural symmetry and elasticity coefficient. Given these two factors and
previous experience in leaf spring design, we propose four types of leaf springs (as shown in Figure 3).
The leaf spring of shape (a) has a simple structure and a large elastic coefficient. The leaf spring of
shape (b) has a complex structure but a small elastic coefficient. The leaf springs of shapes (c) and (d)
are simpler than that of shape (b), and the elasticity coefficient is more moderate than those of (a)
and (b). The outer rings of the four types of leaf springs are the same size (33 mm). In accordance with
the laboratory’s existing leaf spring manufacturing process technology, leaf spring of two thicknesses
(0.1 and 0.15 mm) are produced. To reduce the processing difficulty of the accelerometer, a 10 mm
diameter cylindrical structural steel block is selected as the seismic mass. Its mass is 6.25 g. Simulation
software ANSYS 14.0 (ANSYS Co., Ltd., Pittsburgh, PA, USA) is used to simulate the eight seismic
structures. The simulation results are shown in Table 1, in which the elastic coefficient k is calculated by:

k =
mg
∆x

, (4)

where m is the mass of the seismic mass, g is the acceleration of gravity, and ∆x is the static deformation
of the seismic structure. Following the results of the analysis in Table 2, the two seismic structures
formed by the leaf spring of shape (a) have resonance frequencies higher than the design requirements;
however, their elasticity coefficient is large, which may reduce the sensitivity of the accelerometer.
The resonant frequencies of the two types of seismic structures that compose the leaf spring of shape (b)
are much lower than the design requirements, and the first three resonant frequencies have a small
difference, which can easily generate higher-order resonance and cannot be used in accelerometers.
The problem of the two types of seismic structures formed by the leaf spring of shape (d) is similar to
that of the structure of the leaf spring of shape (a). The most appropriate seismic structure consists
of the leaf spring with (c) and a thickness of 0.1 mm, in which the resonant frequency of the seismic
structure is 48 Hz, the static deformation is 107.9 µm, and the elastic coefficient is 0.56 mN/µm,
as shown in Figure 4. This seismic structure has a modest rigidity and can satisfy the requirements
of the seismic structure in this study. Thus, the leaf spring with shape (c) and 0.1 mm thickness is
selected for fabrication. The leaf spring is fabricated from beryllium bronze, and the outer and inner
diameters are specified as 33 and 16 mm, respectively. The seismic mass is fabricated from 4041 alloy
steel. The dimensions of the completed optical accelerometer are as follows: length, 70 mm; width,
50 mm; and height, 70 mm. Figure 5 presents a photograph of the completed optical accelerometer.
The laser diode and the QPD are fixed to the accelerometer frame by a fixing seat. Mirror 1 is attached
to the fine-tuning device, which is fixed to the accelerometer frame by screws. As shown in Figure 5,
in order to reduce optical system noise, the optical part of the proposed accelerometer is sealed in a
housing shell, which can avoid the disturbance from an external light source.

The model of the QPD we used in the accelerometer is SPOT-4D (OSI Optoelectronics Co.,
Ltd., Hawthorne, CA, USA), which has an active area of 1.3 mm × 1.3 mm, a responsivity of about
0.4 A W−1 corresponding with a wave length of 630 nm, a maximum dark current of 1 nA, and a noise
equivalent power (NEP) of 8.7 × 10−15 W (Hz1/2)−1. The four-channel photocurrent signal output
(µA) by the QPD is converted into a voltage signal (using a resistor of 33 kΩ) output by a low-power
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quad-operational amplifier LM124 (Texas Instruments Co., Ltd., Dallas, TX, USA). A low-pass filter
circuit with a cut-off frequency of 40 Hz was used to reduce the interference from high frequency
electrical noise and the power supply.

Table 2. Modal analysis and static analysis.

Thickness
(mm)

Leaf Spring
Shape

Resonant Frequency (Hz) Statics
Deformation (µm)

Elastic Coefficient
(mN/µm)1st Order 2nd Order 3rd Order

0.1

a 70.33 2156.2 2158.9 50.527 1.21
b 20.82 24.01 24.11 577.53 0.11
c 48 1245.6 1246.5 81.61 0.56
d 76.02 2411.9 2414.2 43.03 1.42

0.15

a 121.87 135.85 136.77 16.96 3.61
b 31.26 35.66 35.73 256.54 0.24
c 89.35 108.73 109.57 24.92 1.96
d 135.64 3299.2 3306.5 13.53 4.52
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4. Experimental Setup and Measurement Results

In general, the accelerometer is calibrated by the recording of its output under a particular
excitation force and then a comparison of this output with that generated by a reference accelerometer
under the same excitation conditions [26]. This type of calibration is known as the comparative
method. In this study, a laser displacement sensor (LDS) (OptoNCDT 1402-10, MICRO-EPSILON
Co., Ltd., Ortenburg, Germany) is applied as the reference sensor. The measurement range is 10 mm,
the resolution is 1 µm, and the bandwidth is 1.5 kHz. The displacement values from the LDS can be
converted to acceleration by:

a = (2π f )2D, (5)

where D is the measured amplitude of vibration by LDS and f is the frequency of the sinusoidal
excitation signals applied to the calibration vibration generator.

Figure 6 illustrates the experimental setup used for the comparison calibration test. In this
arrangement, a vibration generator (Modalshop 2075E, The Modalshop MTS Systems Co., Ltd.,
Cincinnati, OH, USA) was used to provide the excitation acceleration. A high-precision wave generator
(Keysight 33519B, Keysight Technologies Co., Ltd., Santa Rosa, CA, USA) was used to generate the
sinusoidal excitation signal, which was then amplified by a power amplifier (Modalshop 2100E21,
The Modalshop MTS Systems Co., Ltd., Cincinnati, OH, USA) to drive the vibration generator.
The output signals of the proposed accelerometer and LDS were acquired to the computer by a
synchronous acquisition card (Keysight U2542A, Keysight Technologies Co., Ltd., Santa Rosa, CA, USA).
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Figure 6. Experimental setup for the designed optical accelerometer calibration. (a) Diagram, (b) photo.
LDS: laser displacement sensor.

4.1. Resonance Frequency Measurement

The resonance frequency of the optical accelerometer was obtained using the experimental set-up
shown in Figure 6. The wave generator was used to output a swept sine waveform signal, which was
input to the power amplifier, amplified, and then supplied to the vibration generator. The outputting
voltage from the optical accelerometer was recorded in the range of 2–26 Hz with an interval of 2 Hz,
and in the range of 26–57 Hz with an interval of 1 Hz. The results are presented in Figure 7.
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The first resonance frequency of the optical accelerometer is approximately 45 Hz, which is in
agreement with the simulation results obtained by ANSYS 14.0 (Figure 5). The difference is mainly
due to the machining and the overall assembly errors of the leaf spring and the accelerometer.

4.2. Acceleration Sensitivity Measurement at Low-Frequency

The acceleration sensitivity of the optical accelerometer was measured at frequency far lower than
the resonance frequency, which can make sure that the proposed accelerometer works steadily. A sine
waveform with a constant frequency of 5 Hz was generated to drive the vibration generator with the
amplitude changing from 1 Vpp to 10 Vpp. The measured displacement amplitude by LDS changes
from 24 µm to 282 µm. The converted output acceleration signal of the LDS and the output voltage
of the optical accelerometer are presented in Figure 8. The results from data fitting indicated that the
sensitivity of the optical accelerometer is 1.739 V (m·s−2)−1. The R-square is 0.9998, thereby indicating
that the optical accelerometer has excellent linearity characteristics.
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Figure 8. The sensitivity of the optical accelerometer.

To test the stability of the accelerometer’s output, repetitive tests were performed. A homemade
high-performance vibration generator [31] is used to provide an acceleration excitation signal.
The vibration generator can achieve steady output displacement with frequency range of 0.6–50 Hz,
an analytical displacement resolution of 3.1 nm and an acceleration range of 0–1.93 m·s−2. In order
to monitor the displacement of the homemade vibrator, an eddy current sensor [32,33] is used as
a reference sensor, the output sensitivity of the sensor is 0.2312 V·µm−1, the measurement range
is 50 µm, the resolution is 0.72 nm, and the maximum nonlinearity error is less than 1%. We used
a sine waveform with a constant frequency of 8 Hz as the excitation signal and varied the input
amplitude of the vibration generator within the range of 12–120 Vpp (corresponding amplitude
ranging of 2.2–19.7 µm). The reference sensor and optical accelerometer output signals were recorded.
The experiment was repeated ten times. The output voltage of the optical accelerometer was converted
into the corresponding acceleration by using the sensitivity value obtained from Figure 8. As shown
in Figure 9, the deviation between the measured acceleration and the reference acceleration served
as the ordinate, and the excitation acceleration served as the abscissa. The standard deviation of ten
measurements ranges of 1.4 × 10−4–7.9 × 10−4 m·s−2.
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4.3. Frequency Response Range, Acceleration Detection Range and Phase-Frequency Response

The frequency response of the proposed optical accelerometer was tested using the setup in
Figure 6. The wave generator was used to output sine waveform signals with frequencies in the
range of 0.4–1 Hz with an interval of 0.1 Hz, and in the range of 1–12 Hz with an interval of 1 Hz.
Then, the outputting voltage from the optical accelerometer and the LDS was recorded at the same
time. And the converted output acceleration signal of the LDS and the output voltage of the optical
accelerometer are presented in Figure 10. The sensitivity of the accelerometer in Figure 10 measured at
different frequencies is consistent with the sensitivity measured at different amplitudes in Figure 8.
That is to say, the operation frequency range is 0.4–12 Hz.
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The acceleration detection resolution and range experiments used a sine waveform with a constant
frequency of 1 Hz as the excitation signal, and the amplitude of the excitation was adjusted from small
to large until the accelerometer produced a clearly sinusoidal waveform. Then, the output voltage
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of the optical accelerometer was converted into the corresponding acceleration by dividing by the
sensitivity. The experimental results are shown in Figure 11. It can be seen that the resolution of the
accelerometer is 0.003 m·s−2 approximately. The maximum acceleration that the accelerometer can
measure amax can be calculated by:

amax =
Vmax

s
, (6)

where s is the sensitivity of the accelerometer and Vmax is the maximum voltage that the accelerometer
can output. The maximum voltage that the accelerometer can output is 12.7 V, and its sensitivity
is 1.74 V (m·s−2)−1. Therefore, the maximum acceleration that the accelerometer can measure is
7.29 m·s−2, and the measurement range of the accelerometer is 0.003–7.29 m·s−2.

Experiments were also conducted to investigate the phase-frequency performance of the
accelerometer with frequencies in the range of 0.4–1 Hz with an interval of 0.1 Hz, and in the range of
1–12 Hz with an interval of 1 Hz. The LDS was configured to output analog signal of 4–20 mA, which
was converted to voltage signal and collected together with the output signal of the accelerometer
are collected into a computer for further processing. Origin 2017 software (OriginLab Co., Ltd.,
Northampton, MA, USA) was used to fit the two signals, and then the phase difference between
the two fitted waveforms was calculated, which is shown in Figure 12. The experimental results
show that the accelerometer has a nonlinear phase error of less than 0.011 rad, which can cause the
corresponding relative error of acceleration measurement of about 0.006% (calculated by: 1−cos 0.011).
This is relatively quite small and can be neglected.
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4.4. Noise Equivalent Acceleration Measurement.

To measure the noise equivalent acceleration (NEA) of the designed optical accelerometer,
the output voltage noise was recorded by a DAQ card when the vibration generator was turned off.
The spectral density of the NEA was calculated using the sensitivity value shown Figure 8. Figure 13
plots the NEA spectral density in frequency domain. The electronic circuit of the current optical
accelerometer generated an electrical noise of less than 160 (µm·s−2) (Hz−1/2) over the frequency
range of 0.5–50 Hz. Considering that the NEA in this study is lower than the ones from related
literature [12–16,19,21], the NEA in this study has been promoted visibly.
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4.5. Signal Drift of the Optical Accelerometer

During the operation of the accelerometer, its accuracy is usually affected by a Gaussian laser beam,
angular drift and other influencing factors. To determine the effect of these factors on the accelerometer,
the accelerometer’s drift was tested for more than 6 h in a resting state. The experimental results are
shown in Figure 14. From Figure 14, we can see that the 6-h drift of the accelerometer is about 37 mV,
whose equivalent acceleration is 0.021 m·s−2.
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5. Discussions and Conclusions

This work presents an optical accelerometer that consists of a QPD-based sensor, a leaf spring,
and a seismic mass for low-frequency, low-amplitude vibration. The principle and structure of the
optical accelerometer are introduced. The elastic structure is analyzed, designed, simulated, and
fabricated. The experimental results show that the accelerometer has a sensitivity of 1.74 V (m·s−2)−1,
the measurement range of the accelerometer is 0.003–7.29 m·s−2, the operating frequencies range of
0.4–12 Hz, and electrical noise of less than 160 (µm·s−2) (Hz−1/2) is found over the frequency range of
0.5–50 Hz.

The accelerometer is useful in the detection of low-frequency, low-amplitude vibration and can be
used as a sensor in an active vibration isolation system. Furthermore, different elastic structures can be
designed (such as by changing the shape or thickness of the leaf spring and increasing or decreasing
the mass of the seismic mass), and the amplification of the signal processing circuit can be modified to
widen the frequency response range of the accelerometer. The proposed system can be applied to the
acceleration measurement of a broad range of vibrational fields, such as the monitoring and diagnosis
of machine tools and structural health monitoring.
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