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Abstract: In this paper, we present algorithms for predicting a spatio-temporal random field measured
by mobile robotic sensors under uncertainties in localization and measurements. The spatio-temporal
field of interest is modeled by a sum of a time-varying mean function and a Gaussian Markov
random field (GMRF) with unknown hyperparameters. We first derive the exact Bayesian solution
to the problem of computing the predictive inference of the random field, taking into account
observations, uncertain hyperparameters, measurement noise, and uncertain localization in a fully
Bayesian point of view. We show that the exact solution for uncertain localization is not scalable as
the number of observations increases. To cope with this exponentially increasing complexity and to
be usable for mobile sensor networks with limited resources, we propose a scalable approximation
with a controllable trade-off between approximation error and complexity to the exact solution.
The effectiveness of the proposed algorithms is demonstrated by simulation and experimental results.

Keywords: Gaussian markov random field; fully Bayesian; mobile sensor network; localization uncertainty

1. Introduction

In recent years, there has been an increasing exploitation of mobile robotic sensors in
environmental monitoring [1,2]. Gaussian processes defined by mean and covariance functions
over a continuum space have been frequently used for mobile sensor networks to statistically model
physical phenomena such as harmful algal blooms, pH, and temperature, e.g., [3–5]. The significant
computational complexity in Gaussian process regression due to the growing number of observations
has been tackled in different ways. Xu et al. [4] analyzed the conditions under which near-optimal
prediction can be achieved, using truncated observations when the covariance function is known
a priori. Xu and Choi [6] developed a new efficient and scalable inference algorithm for a class
of static Gaussian processes that builds on a Gaussian Markov random field (GMRF) is developed
for known hyperparameters. In terms of the computational cost reduction, Ref. [7,8] showed that
Gaussian processes can be formulated as infinite-dimensional Kalman filtering and such approach
can scale down computational complexity. Ref. [9] combined Gaussian process and Kalman filter for
efficient computation. On the other hand, unknown hyperparameters in the covariance function can be
estimated by a maximum likelihood (ML) estimator or a maximum a posteriori (MAP) estimator and
then can be used for the prediction [10]. However, the point estimate itself needs to be identified using
a certain amount of measurements and it does not fully incorporate the uncertainty in the estimated
hyperparameters into the prediction in a Bayesian perspective.
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The advantage of a fully Bayesian approach is the capability of incorporating various
uncertainties in the model parameters and measurement processes in the prediction [2]. However,
the solution often requires an approximation technique such as Markov Chain Monte Carlo (MCMC),
Laplace approximation, or variational Bayes methods, which still requires a high level of computational
complexity [2]. Xu et al. [11] designed a sequential Bayesian prediction algorithm and its distributed
version for Gaussian processes to deal with uncertain bandwidths. Xu et al. [12] presented sequential
fully Bayesian prediction algorithms for a static GMRF with unknown hyperparameters.

Inexpensive wireless/mobile sensor networks [13] are widespread at the cost of precision in
localization. Due to their growing usage, there are many practical opportunities where continuously
sampled measurements need to be fused for sensors with localization uncertainty [14]. Secure indoor
localization has been proposed based on extracting trusted fingerprint [15]. Theoretically-correct yet
efficient (or scalable) inference algorithms need to be developed to meet such demands.

Related works involving uncertain localization in our context are as follows. Gaussian process
regression has been used in building maps and localization in many practical applications.
Brooks et al. [16] utilized Gaussian process regression to model geo-referenced sensor measurements
(obtained from a camera) in a supervised learning manner. Kemppainen et al. [17] used Gaussian
process regression to implement simultaneous localization and mapping (SLAM) using a magnetic field.
O’Callaghan et al. [18] investigated the problem of using laser range-finder data to probabilistically
classify a robot’s environment. McHutchon and Rasmussen [19] presented a Gaussian process for
training on input points corrupted by independent and identically distributed (i.i.d.) Gaussian noise.
Do et al. [20] conducted visual feature selection via Gaussian process regression for position estimation
using an omnidirectional camera. The works in [19,20] assume that all hyperparameters are trained
offline a priori. Jadaliha et al. [21] and Choi et al. [22] formulated and solved the problem of Gaussian
process regression with uncertain localization and known hyperparameters for both centralized and
distributed fashions, respectively. A key limitation of such approaches with fixed hyperparameters
arises from the fact that, after the initial training phase, learning is discontinued. If the environment
changes, it is desirable that the localization algorithm adapts to the changes on the fly. A fully Bayesian
approach that treats hyperparameters as random variables can address this issue with increased
computational complexity.

The novelty of our work in contrast to ones in [11,12] is to fully consider the uncertainty on the
sampling positions along with other uncertainties such as hyperparameters, observation noise, etc.,
in a fully Bayesian manner. The fully Bayesian field SLAM presented in [23] is quite similar to our
current work in this paper. However, it is limited to a static random field while ours can deal with
the time-varying random field. To the best of our knowledge, fully Bayesian prediction algorithms
for spatio-temporal random fields that can take into account uncertain localization are scant to date.
Hence, this paper aims to develop such inference algorithms for robotic sensor networks in practical
situations by building on spatio-temporal models developed by Lynch et al. [1] and Xu et al. [2].
With continuous improvement in computation power in embedded systems, it is very important to
prepare theoretically-correct, and flexible fully Bayesian approach to cope with such practical problems.

The contributions of the paper are as follows. Firstly, we model a physical spatio-temporal
random field as a GMRF with uncertain hyperparameters and formulate the prediction problems with
and without localization uncertainty. Next, we derive the exact Bayesian solution to the problem of
computing the predictive inference of the random field, taking into account uncertain hyperparameters,
measurement noise, and uncertain localization in a fully Bayesian point of view. We show that the
exact solution for uncertain localization is not scalable as the number of observations increases. To cope
with this increasing complexity, we propose a scalable approximation with a controllable trade-off
between approximation error and complexity to the exact solution. The effectiveness of the proposed
algorithms is demonstrated by experimental results in both static and dynamical environments.

The paper is organized as follows. In Section 2, we explain how a GMRF can be viewed as a sparse
and discretized version of a Gaussian process. In Sections 3 and 4, we introduce a spatio-temporal
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field model based on a GMRF and the mobile sensor network. In Section 5.1, we present a fully
Bayesian inference approach to estimate the spatio-temporal field. The Bayesian prediction algorithm
is extended for uncertain sampling positions in Section 5.2. Finally, we evaluate our approach on a real
experimental setup in Section 6.

Standard notation is used. Let R and Z>0 denote, respectively, the sets of real and positive
integer numbers. The operator of expectation is denoted by E. A random vector x, which has
a multivariate normal distribution of mean vector µ and covariance matrix Σ, is denoted by
x ∼ N (µ, Σ). For given G = {c, d} and H = {1, 2}, the multiplication between two sets is defined as
H × G = {(1, c), (1, d), (2, c), (2, d)}. Other notation will be explained in due course.

2. From Gaussian Processes to Gaussian Markov Random Fields

There are efforts to fit a computationally efficient GMRF on a discrete lattice to a Gaussian random
field on a continuum space [12,24,25]. It has been demonstrated that GMRFs with small neighborhoods
can approximate Gaussian fields surprisingly well [24]. This approximated GMRF and its regression
are efficient and very attractive [26] as compared to the standard Gaussian process and its regression.
Fast kriging of large data sets by using a GMRF as an approximation of a Gaussian random field has
been proposed in [25].

We now briefly review a GMRF as a discretized Gaussian process on a lattice. Consider a
zero-mean Gaussian process: z(q) ∼ GP(0, Σ(q, q′)), where Σ(·, ·) is the covariance function defined
in a continuum space Sc. We discretize the compact domain Sc := [0 xmax]× [0 ymax] into n spatial
sites S := {s[1], · · · , s[n]} ⊂ R2, where n = hxmax × hymax. h will be chosen such that n ∈ Z>0.
Note that n→ ∞ as h→ ∞. The collection of realized values of the random field in S is denoted by
z := (z[1], · · · , z[n])T ∈ Rn, where z[i] := z(s[i]).

The prior distribution of z is given by z ∼ N (0, Σ0), and so we have

π(z) ∝ exp
(
−1

2
zTΣ−1

0 z
)

, (1)

where Σ0 ∈ Rn×n is the covariance matrix. The i, j-th element of Σ0 is defined as Σ[ij]
0 = Cov(z[i], z[j]) =

Σ(z[i], z[j]). The prior distribution of z can be written by a precision matrix Q0 = Σ−1
0 , i.e.,

z ∼ N (0, Q−1
0 ). This can be viewed as a discretized version of the Gaussian process (or a GMRF)

with a precision matrix Q0 on S . Note that Q0 of this GMRF is not sparse. However, a sparse version
of Q0, i.e., Q̂0 with a local neighborhood that can represent the original Gaussian process can be
found, for example, making Q̂0 close to Q0 in some norm [24,25]. This approximate GMRF will be
computationally efficient due to the sparsity of Q̂0. For our main problems, we will use a GMRF with
a sparse precision matrix that represents a Gaussian process precisely.

We assume that we take N noisy measurements y = (y[1], · · · , y[N])T ∈ RN from corresponding
sampling locations qc = (q[1]Tc , · · · , q[N]T

c )T ∈ SN
c . The measurement model is given by

y[i] := y(q[i]c ) = z(q[i]c ) + ε[i], ∀i = 1, · · · , N, (2)

where ε[i]
i.i.d.∼ N (0, σ2

ε ) is the measurement noise and is assumed to be independent and identically
distributed (i.i.d.).

Using Gaussian process regression, the posterior distribution for z ∈ Rn is given by

z|qc, y ∼ N (µ, Σ). (3)

The predictive mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n can by obtained by
µ = KTC−1y, Σ = Σ0−KTC−1K, where the covariance matrices are defined as K := Cov(y, z) ∈ RN×n,
C := Cov(y, y) ∈ RN×N , and Σ0 := Cov(z, z) ∈ Rn×n.
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The pose of a robot can be estimated by fusing different sensory information producing its
estimate and estimation error statistics [27,28]. Throughout the paper, we assume that the positions of
mobile robotic sensors and their uncertainties are estimated by a standard technique. Having had the
aforementioned assumption, from a localization algorithm, the prior distribution for sampling location
q[i]c is given as π(q[i]c |q̃

[i]
c ), possibly with a compact support in Sc. Then, the predictive distribution of z

given the measured locations q̃c = (q̃[1]Tc , · · · , q̃[N]T
c )T is thus given by

π(z|q̃c, y) =
∫

q∈Sc
π(z|q, y)π(q|q̃c, y)dq, (4)

where π(z|q, y) can be obtained by Equation (3). However, the predictive distribution in Equation (4)
does not have a closed-form solution and needs to be computed either by MCMC methods or
approximation techniques [29].

Now we consider a discretized version of the Gaussian process, i.e., (GMRF) with a precision
matrix Q0 on S . Since the sampling points of Gaussian process regression are not necessarily
on a finite compact domain S , we use the nearest grid point of a given sampling point qc in
Sc q[i] = arg minq∈S ‖q

[i]
c − q‖. The sampling positions for the GMRF are then exactly on the lattice, i.e.,

q[i] ∈ S . The posterior distribution of z ∈ Rn on S given by measurements in y ∈ RN and sampling
positions in q = (q[1]T , · · · , q[N]T)T ∈ SN is then obtained by

z|q, y ∼ N (Q−1b, Q−1), (5)

where Q = Q0 + HP−1HT , b = HP−1y, with P = σ2
ε I ∈ RN×N and H ∈ Rn×N defined as

H[ij] =

{
1, if s[i] = q[j],
0, otherwise.

(6)

The proof of this posterior distribution of z in Equation (5) is very similar to that of Proposition 6.1
in Chapter 6 of [2], which was derived by using the Woodbury matrix identity.

We consider again localization uncertainty for this GMRF. Let the measured noisy location q̃[i]

be the nearest grid point of the measured noisy sampling point q̃[i]c of the Gaussian process. Now we
obtain a set of discretized probabilities in S induced by the continuous prior distribution defined in Sc.
The discrete prior distribution for the sampling location q[i] is given by

π(q[i] = s[j]|q̃[i]) =
∫

s⊂Vj

π(s|q̃[i])ds, (7)

where π(s|q̃[i]) is the continuous prior as in Gaussian process regression and Vj is the Voronoi cell of
the j-th grid point s[j] given by Vj := {s ∈ S | ‖s− s[j]‖ ≤ ‖s− s[i]‖, ∀i 6= j}. The predictive distribution
of z given y and q̃ is thus given by

π(z|q̃, y) = ∑
q∈S

π(z|q, y)π(q|q̃, y), (8)

where π(z|q, y) can be obtained by Equation (5) and the summation is over all possible locations in S .
Figure 1 shows two examples of using this approximation approach with h1 > h2 to convert a

continuous space to a discrete one. When h→ ∞, q̃→ q̃c and the standard Gaussian process regression
in a continuum space shall be recovered from the prediction using the GMRF in a discretized space.
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(a) (b)

Figure 1. Example of localization uncertainty for q[i]. The measured sampling location q̃[i] is indicated
in a small red circle which is the closest point in the discrete support to the measured sampling position
in the continuous space. The small red circle along with the blue squares and the blue star show the
possible locations of the true sampling point q[i] according to the prior distribution π(q[i]|q̃[i]) with a
compact support as shown in the big red circle. The blue star indicates q[i] which is the closest point in
the discrete support to the true sampling position in the continuous space. (a) h1; (b) h2.

3. Mobile Sensor Networks

Suppose that the sampling time t ∈ Z>0 is discrete. Let zt := (zt
[1], · · · , zt

[n])T ∈ Rn be the
corresponding values of the scalar field at n special sites and time t.

Consider N spatially distributed mobile sensing agents indexed by j ∈ J := {1, · · · , N} sampling
at time t ∈ Z>0. At time t, agent j takes a noise corrupted measurement at its current location
qt

[j] = s[i] ∈ S , i.e.,

y[j]t = z[i]t + ε
[j]
t , ε

[j]
t

i.i.d.∼ N (0, σ2
ε ), (9)

where the measurement errors {ε[j]t } are assumed to be i.i.d. The measurement noise level σ2
ε > 0 is

assumed to be known. We denote all agents’ locations at time t by qt =
(

qt
[1]T , · · · , qt

[N]T
)T
∈ SN

and the observations made by all agents at time t by yt =
(

y[1]t , · · · , y[N]
t

)T
∈ RN . Furthermore,

we denote the collection of agents’ locations and the collective observations from time 1 to t by
q1:t =

(
q1

T , · · · , qt
T)T ∈ SNt and y1:t = (y1, · · · , yt)

T ∈ RNt, respectively. In addition, let us

define zt = (zt
[1], · · · , zt

[n])T ∈ Rn on S , and εt = (ε
[1]
t , · · · , ε

[N]
t )T ∈ RN . We then have the

following notation.
yt = HT

t zt + εt, (10)

where Hτ ∈ Rn×N is defined by

H[ij]
τ =

{
1, if s[i] = q[j]τ ,
0, otherwise.

(11)

4. Spatio-Temporal Field Model

The value of the scalar field at s[i], z[i]t is modeled by a sum of a time-varying mean function and
a GMRF

zt
[i] = λ

[i]
t + η

[i]
t , ∀i ∈ {1, · · · , n}, t ∈ Z>0. (12)

Here the mean function λ
[i]
t : S ×Z>0 → R is defined as

λ
[i]
t = f (s[i])T βt, (13)
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where f (s[i]) = ( f1(s[i]), · · · , fp(s[i]))T ∈ Rp is a known regression function and βt = (β
[1]
t , · · · , β

[p]
t )T ∈ Rp

is an unknown vector of regression coefficients. The time evolution of βt ∈ Rp is modeled by a linear
time-invariant system:

βt+1 = Atβt + Btωt, (14)

where ωt ∼ N (0, W), β0 ∼ N
(
µβ0 , Σβ0

)
, and At and Bt are known system parameters or can be

found as discussed in [30].

In addition, we consider a zero-mean GMRF [31] ηt =
(

η
[1]
t , · · · , η

[n]
t

)T
∈ Rn whose covariance

matrix is given by
E(ηtη

T
k |θ) = Q−1

θ δ(t− k), (15)

where t, and k are time indices, and δ(·) is the Kronecker delta defined by

δ(k) =

{
1, k = 0,
0, otherwise,

(16)

and the inverse covariance matrix (or precision matrix) Qθ ∈ Rn×n is a function of the hyperparameter
vector θ.

There are different parameterizations of the GMRF (i.e., the precision matrix Qθ) [31].
Our Bayesian approach does not depend on the choice of the parameterization for the precision
matrix. However, for a concrete and useful exposition, we describe a specific parameterization used
in this paper. The precision matrix is parameterized with the full conditionals as follows. Let η be a
GMRF on a regular two-dimensional lattice. The associated Gaussian full conditional mean is

E(η[i]
t |η

[−i]
t , θ) = − 1

Q[ii]
θ

n

∑
j=1

Q[ij]
θ η

[j]
t , (17)

where Q[ij]
θ is the i-th row and j-th column element of κ−1Qθ . Here, η

[−i]
t is the collection of ηt values

everywhere except s[i]. The hyperparameter vector is defined as θ = (κ, α)T ∈ R2
>0, where α = a− 4.

The value of Q[ii]
θ is 4 + a2 as denoted at the center node of the graph. That of Q[ij]

θ is −2a if j is one

of the four closest neighbors of i in the vector 1-norm sense. Thus, the value of Q[ij]
θ is zero if j is not

one of the twelve closest neighbors of i (or twelve neighbors whose 1-norm distance to the i-th location
is less than or equal to 2), as shown in [32]. The equation in Equation (17) states that the conditional
expectation of η

[i]
t given the value of ηt everywhere else (i.e., η

[−i]
t ) can be determined just by knowing

the value of ηt on the twelve closest neighbors (see more details in [32]). The resulting GMRF accurately
represents a Gaussian random field with the Matérn covariance function as shown in [32]

G(r) = σ2
f

21−ρ

Γ(ρ)

(√
2ρr
`

)ρ

Kρ

(√
2ρr
`

)
, (18)

where Kρ(·) is a modified Bessel function [33], with order ρ = 1, a bandwidth ` = 1/h
√

α
2 , and vertical

scale σ2
f = 1/4πακ. The hyperparameter α > 0 guarantees the positive definiteness of the precision

matrix Qθ . In the case where α = 0, the resulting GMRF is a second-order polynomial intrinsic
GMRF [31,34].

From the presented model in Equations (12), (14), and (15), the distribution of zt given βt and θ is

zt|βt, θ ∼ N
(

Fsβt, Q−1
θ

)
, (19)

where Fs := ( f (s[1]), · · · , f (s[n]))T ∈ Rn×p.
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In other words, zt|βt, θ ∼ GP(Fsβt, Σθ) ∈ Rn is a non-zero mean Gaussian process. Here,
the covariance matrix Σθ is defined as inverse of the precision matrix (i.e., Σθ = Q−1

θ ). Note that the

precision matrix is a positive definite matrix and invertible, and Σ[ij]
θ = Cov(z[i]t , z[j]t ), where Σ[ij]

θ is the
i, j-th element of the covariance matrix.

For simplicity, let us define Bt = {βt, qt, yt, θ}. Using Gaussian process regression, the posterior
distribution for zt|Bt ∈ Rn is given by

µzt |Bt
= Fsβt + Σθ Ht

(
HT

t Σθ Ht + σ2
ε I
)−1 (

yt − HT
t Fsβt

)
,

Σzt |Bt
= Σθ − Σθ Ht

(
HT

t Σθ Ht + σ2
ε I
)−1

HT
t Σθ .

(20)

The basic idea behind the model introduced in Equations (12), (14), and (15) stems from the space-time
Kalman filter model proposed in [35]. The advantage of this spatio-temporal model with known
hyperparameters is to make inferences in a recursive manner as the number of observations increases.

In this paper, however, uncertainties in the precision matrix and sampling positions are considered
in a fully Bayesian manner. In contrast to [35,36], the GMRF with a sparse precision matrix is used to
increase the computational efficiency.

5. Fully Bayesian Predictive Inference

5.1. Uncertain Hyperparameters and Exact Localization

In this section, we consider the problem of predicting a spatio-temporal random field,
using successive noisy measurements sampled by a mobile sensor network. For a known covariance
function, the prediction can be shown to be recursive [37] based on Gaussian process regression.
The uncertainty in θ in a GMRF has been considered and its sequential prediction algorithms are
derived in [12]. However, only the static field has been considered, i.e., µt = µ0. In this section, we use
a Bayesian approach to make predictive inferences of the spatio-temporal random field zt ∈ Rn for
the case with uncertain hyperparameters and the exact localization. To this end, we use the following
Assumptions 1–5.

Assumption 1. The spatio-temporal random field is generated by Equations (12), (14), and (15);

Assumption 2. The precision matrix Qθ is a given function of an uncertain hyperparameter vector θ;

Assumption 3. The noisy measurements {yt}, as in Equation (10), are continuously collected by mobile robotic
sensors in time t;

Assumption 4. The sample positions {qt} are measured precisely by mobile robotic sensors in time t;

Assumption 5. The prior distribution of the hyperparameter vector θ is discrete with a support Θ =

{θ(1), · · · , θ(L)}.

A.1 and A.2 stem from the discretization of a Gaussian process as we described in Section 2. From the
model in A.1, the zero-mean GMRF represents a spatial structure by assuming that the difference between
the parametric mean function and the dynamical environmental process is governed by a relatively large
time scale. A.3 is a standard assumption over the measured observations [36]. A.4 will be relaxed to A.6
in Section 5.2 to deal with localization uncertainty. A.5 is from the discretization of the hyperparameter
vector to replace an integration with a summation over possible hyperparameters.

We denote the full latent field of dimension n + p by xt = (zt
T , βT

t )
T . Let’s define

Dk:r := {Pk−1, qk:r, yk:r}, where Pk = {µxk |D1:k
, Σxk |D1:k

} ∪ {π(θ|D1:k)|θ ∈ Θ}, and P0 is assumed
to be known.
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We formulate the first problem as follows.

Problem 1. Consider the Assumptions 1–5. Our problem is to find the predictive distribution, mean,
and variance of xt conditional on D1:t.

We then summarize the intermediate steps to obtain the solution to Problem 1. In what follows,
our results are presented in terms of lemmas and theorems. We provide proofs when they are not
straightforward.

Lemma 1. Under Assumptions 1 and 2, the predictive distribution of xt conditional on the hyperparameter
vector θ and the measurements D1:t−1 is Gaussian with the following mean and precision matrix:

µxt |θ,D1:t−1
=

(
Fsµβt |θ,D1:t−1

µβt |θ,D1:t−1

)
,

Qxt |θ,D1:t−1
=

(
Qθ −Qθ Fs

−FT
s Qθ FT

s Qθ Fs + Σ−1
βt |θ,D1:t−1

)
,

(21)

where µβt |θ,D1:t−1
= Atµβt−1|θ,D1:t−1

denotes the expectation of βt conditional on θ and D1:t−1 and
Σβt |θ,D1:t−1

= AtΣβt−1|θ,D1:t−1
AT

t + BtWBT
t denotes the associated estimation error covariance matrix.

Proof of Lemma 1. It can be shown by the update using the prior precision matrix and the previous
iteration as in [12] (see more details in Section 3 of [12]).

For a given hyperparameter vector θ, Equation (21) provides the optimal prediction of the
spatio-temporal field in time t using data up to time t− 1.

The following lemma is used to compute the posterior distribution of θ, recursively.

Lemma 2. Under Assumptions 3 and 4, the posterior distribution of the hyperparameter vector θ can be
obtained recursively via

π(θ|D1:t) ∝ π(yt|θ,D1:t−1, qt)π(θ|D1:t−1), (22)

where the distribution of yt given {θ,D1:t−1, qt} is Gaussian with the following mean and variance:

µyt |θ,D1:t−1,qt
= ΓT

qt µxt |θ,D1:t−1
,

Σyt |θ,D1:t−1,qt
= ΓT

qt Σxt |θ,D1:t−1
Γqt + σ2

ε I,
(23)

where ΓT
qt = [HT

t 0] ∈ RN×(n+p).

Proof of Lemma 2. The posterior distribution of θ given in Equation (22) is computed by applying
Bayes’ rule on π(θ|yt,D1:t−1). The predictive statistics of yt|θ,D1:t−1 are straightforward results of
using Equation (10). Note that π(θ|D1:t−1) is equal to π(θ|D1:t−1, qt).

Lemma 3. Under Assumptions 1–4, the full conditional distribution of xt for a given hyperparameter vector
and data up to time t is

xt|θ,D1:t ∼ N (µxt |θ,D1:t
, Q−1

xt |θ,D1:t
),

where

Qxt |θ,D1:t
= Qxt |θ,D1:t−1

+ σ−2
ε Γqt Γ

T
qt ,

µxt |θ,D1:t
= µxt |θ,D1:t−1

+ σ−2
ε Q−1

xt |θ,D1:t
Γqt(yt − ΓT

qt µxt |θ,D1:t−1
).

(24)



Sensors 2018, 18, 2866 9 of 20

In order to keep computing the prediction error covariance matrix Q−1
xt |θ,D1:t

alone, the Woodbury
lemma could be used to reduce the computational load as follows:

Q−1
xt |θ,D1:t

= Q−1
xt |θ,D1:t−1

−Q−1
xt |θ,D1:t−1

Γqt

(
σ2

ε I + ΓT
qt Q
−1
xt |θ,D1:t−1

Γqt

)−1
ΓT

qt Q
−1
xt |θ,D1:t−1

, (25)

where Q−1
xt |θ,D1:t−1

can be computed with blockwise inversion using Equation (21),

Q−1
xt |θ,D1:t−1

=

(
Q−1

θ + FsΣβt |θ,D1:t−1
FT

s FsΣβt |θ,D1:t−1

ΣT
βt |θ,D1:t−1

FT
s Σβt |θ,D1:t−1

)
.

The blockwise inversion needs to be updated only with Σβt |θ,D1:t−1
.

The following theorem explicitly illustrates how the results of Lemmas 2 and 3 lead to the
predictive statistics of xt under Assumptions 1–5, which will be the solution to Problem 1.

Theorem 1. Under Assumption 5, the predictive distribution of xt|D1:t is given by

π(xt|D1:t) = ∑
θ∈Θ

π(xt|θ,D1:t)π(θ|D1:t), (26)

where π(θ|D1:t) and π(xt|θ,D1:t) are given by Lemmas 2 and 3, respectively. The predictive mean and variance
follow as

µxt |D1:t
= ∑

θ∈Θ
µxt |θ,D1:t

π(θ|D1:t),

Σxt |D1:t
= ∑

θ∈Θ

[
Σxt |θ,D1:t

+ (µxt |θ,D1:t
− µxt |D1:t

) (µxt |θ,D1:t
− µxt |D1:t

)T
]

π(θ|D1:t).
(27)

Proof of Theorem 1: The predictive mean and variance is obtained by marginalizing over the
conditional distribution of θ given D1:t. The marginal mean and variance are EY(Y) = EY(EX(Y|X))

and VarY(Y) = EX(Var(Y|X)) + VarX(E(Y|X)), where EX and VarX denote the expectation and the
variance with respect to the random variable X. Having Y := xt|D1:t and X := θ|D1:t completes the
proof of Theorem 1.

The optimal prediction of the spatio-temporal field xt|θ,D1:t−1 using predictive statistics of
xt−1|θ,D1:t−1 is provided by Lemma 1. Lemma 3 provides the optimal estimator of xt|θ,D1:t,
using predictive statistics of xt|θ,D1:t−1 which is given by Lemma 1. Using Lemmas 1 and 3
sequentially, we can update predictive statistics of xt|θ,D1:t for known hyperparameters. Lemma 2
gives us the posterior distribution of θ based on the measured data. Finally, Theorem 1 provides the
optimal Bayesian prediction of the spatio-temporal random field with a time varying mean function
and uncertain hyperparameters by marginalizing θ over the conditional distribution of θ|D1:t.

The proposed solution to the formulated problem is summarized by Algorithm 1.
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Algorithm 1 Sequential Bayesian Predictive Inference

Initialization:
1: initialize Fs
2: for θ ∈ Θ, initialize Qθ , and compute Q−1

θ

At time t ∈ Z>0, do:
1: obtain new observations yt at current locations qt
2: find the map Γqt from qt to spacial sites S , and compute radial basis values Fqt in qt.
3: for θ ∈ Θ do
4: predict µxt |θ,D1:t−1

and Qxt |θ,D1:t−1
using measurements up to time t− 1, given by Equation (21).

5: compute µxt |θ,D1:t
and Qxt |θ,D1:t

given by Equation (24).
6: compute µyt |θ,D1:t−1,qt

and Σyt |θ,D1:t−1,qt
by Equation (23).

7: calculate π(θ|D1:t) given by Equation (22).
8: end for
9: compute the predictive mean and variance using Equation (27).

5.2. Uncertain Hyperparameters and Localization

In the previous section, we assumed that the localization data q1:t is exactly known. However,
in practice, positions of sensor networks cannot be measured without noise. Instead, for example,
there could be several probable possibilities inferred from the measured position. In this section,
the proposed method in the previous section will be extended for the uncertain localization data.

In order to take into account the uncertainty in the sampling positions, we replace Assumption 4
with the following Assumption 6.

Assumption 6. The prior distribution π(qt) is discrete with a support Ω(t) = {q(k)t |k ∈ I(t)}, which is
given at time t along with the corresponding measurement yt. Here, I(t) = {1, · · · , γ(t)} denotes the index in
the support and γ(t) is the number of the probable possibilities for qt.

A straightforward consequence of Assumption 6 is that the prior distribution π(qk:r) is discrete
with a support Ω(k : r) := ∏r

g=k Ω(g). In addition, I(k : r) := ∏r
g=k I(g) denotes the index in the

support Ω(k : r), and γ(k : r) := ∏r
g=k γ(g) is the number of the probable possibilities for qk:r. Now we

state the problem as follows.

Problem 2. Consider Assumptions 1–3, 5, and 6. Our problem is to find the predictive distribution, mean and
variance of xt conditional on the prior P0 and the measurements y1:t.

For the sake of conciseness, let us defineRr:k := {Pr−1, yr:k}. We then haveRr:k ⊂ Dr:k, where we
recall that Dr:k := {Pr−1, qr:k, yr:k}.

To solve Problem 2, we first look for a way to compute the posterior distribution of qt as
summarized in the following lemma.

Lemma 4. Consider π(yt|θ,D(n)
1:t−1, q(k)t ) given by Equation (23) and π(θ|D(n)

1:t−1) given by Equation (22),

where n ∈ I(1 : t− 1), k ∈ I(t), and D(n)
1:t−1 := {P0, q(n)1:t−1, y1:t−1}. Under Assumption 5, we have

π(yt|D(n)
1:t−1, q(k)t ) = ∑

θ∈Θ
π(yt|θ,D(n)

1:t−1, q(k)t )π(θ|D(n)
1:t−1).

Under Assumption 6, the posterior distribution of qt can be obtained, recursively, via

π
(

q(n)1:t−1, q(k)t |R1:t

)
∝π(q(n)1:t−1|R1:t−1)π(yt|D(n)

1:t−1, q(k)t )π(q(k)t ). (28)

We now give the exact solution to Problem 2 as follows.
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Theorem 2. Consider the predictive distribution π(xt|D(i)
1:t) given by Theorem 1 and the posterior

π
(

q(i)1:t |R1:t

)
given by Lemma 4, where q(i)1:t ∈ Ω(1 : t) and D(i)

1:t = {P0, q(i)1:t , y1:t}. Under Assumption 6,
the predictive distribution of xt|R1:t can be obtained as follows:

π (xt|R1:t) = ∑
i∈I(1:t)

π
(

xt|D(i)
1:t

)
π
(

q(i)1:t |R1:t

)
. (29)

Consequently, the predictive mean and variance are given by the formulas:

µxt |R1:t
= ∑

i∈I(1:t)
µ

xt |D
(i)
1:t

π
(

q(i)1:t |R1:t

)
,

Σxt |R1:t
= ∑

i∈I(1:t)

[
Σ

xt |D
(i)
1:t
+

(
µ

xt |D
(i)
1:t
− µxt |R1:t

) (
µ

xt |D
(i)
1:t
− µxt |R1:t

)T
]

π
(

q(i)1:t |R1:t

)
.

(30)

Proof of Theorem 2: The proof is similar to that of Theorem 1. Hence, the predictive mean and
variance are obtained by marginalizing over the conditional distribution of q1:t. The marginal
mean and variance are EY(Y) = EY(EX(Y|X)) and VarY(Y) = EX(Var(Y|X)) + VarX(E(Y|X)),
where EX and VarX denote the expectation and the variance with respect to the random variable X.
Having Y := xt|R1:t and X := q1:t|R1:t proves Theorem 2.

The complexity of the proposed algorithm in Theorem 2 is proportional to the number of
possibilities for q1:t. The result of Lemma 4 enables us to compute these probable possibilities
recursively. However, the number of the non-zero probable combinations grows exponentially by a
power of time index t.

In what follows, we propose an approximation, with a controllable trade-off between
approximation error and complexity, to the exact solution given in Theorem 2 by including an option
of ignoring uncertainties on past position data. This approximation will include a case of the exact
solution with the maximal and original complexity. The idea is based on the fact that the estimation
of xt is more susceptible to the uncertainties in recently sampled positions as compared to old ones.
To formulate our idea clearly, we present first the following results.

Lemma 5. Using prior distribution of xt−m and measured data yt−m+1:t, where m ∈ Z>0, the posterior
distribution of qt−m+1:t can be obtained recursively via

π
(

q(j)
t−m+1:t−1, q(k)t |Rt−m+1:t

)
∝ π(q(j)

t−m+1:t−1|Rt−m+1:t−1)π(yt|D(j)
t−m+1:t−1, q(k)t )π(q(k)t ), (31)

where j ∈ I(t−m + 1 : t− 1), and k ∈ I(t).

Theorem 3. Consider µ
xt |D

(h)
t−m+1:t

and Σ
xt |D

(h)
t−m+1:t

computed by Theorem 1. Under Assumption 6,

the predictive statistics of xt|Rt−m+1:t are as follows:

µxt |Rt−m+1:t
= ∑h∈I(t−m+1,t) µ

xt |D(h)
t−m+1:t

π
(

q(h)t−m+1:t|Rt−m+1:t

)
,

Σxt |Rt−m+1:t
= ∑h∈I(t−m+1,t)

[
Σ

xt |D(h)
t−m+1:t

+

(
µ

xt |D(h)
t−m+1:t

− µxt |Rt−m+1:t

)
(

µ
xt |D(h)

t−m+1:t
− µxt |Rt−m+1:t

)T
]

π
(

q(h)t−m+1:t|Rt−m+1:t

)
.

(32)

To implement approximations to the predictive statistics of xt|R1:t which are given by Theorem 2,
we consider the following conditions.

C.1 For 1� m ≤ t, we have that
π(xt|R1:t) ≈ π(xt|Rt−m+1:t). (33)



Sensors 2018, 18, 2866 12 of 20

C.2 For 1� m ≤ t, Pt can be approximated by

Pt ≈{µxt |Rt−m+1:t
, Σxt |Rt−m+1:t

} ∪ {π(θ|Rt−m+1:t)|θ ∈ Θ}. (34)

Under conditions C.1 and C.2, it is natural for us to propose the following approximations:

µxt |R1:t
≈ µxt |Rt−m+1:t

, Σxt |R1:t
≈ Σxt |Rt−m+1:t

. (35)

In Theorem 3, the predictive statistics of xt|D(h)
t−m+1:t are obtained from Algorithm 1, which is

given in Section 5.1. The only difference is that we start from time t−m+ 1 instead of time 1 with Pt−m

instead of P0. Note that, without condition C.2, we cannot use Algorithm 1 to calculate the statistics
of xt|D(h)

t−m+1:t. The proposed approximation for the case of uncertain localization in Equation (35)
is quite different from a mere truncation of old data in the sense that past measurements still affect
the current estimation through the approximately updated prior information using Equation (34).
Note that we update the prior information from Pt−m to Pt with the cumulative data collected from
time t−m + 1 up to time t, which is different from only using truncated observations. The proposed
approximation for the formulated problem is summarized by Algorithm 2.

To further understand the nature of the proposed approximation, consider the following two
extreme special cases.

Corollary 1. As a special case of Theorem 3 for m = 1, the posterior distribution of qt can be obtained via

π(q(k)t |Pt−1, yt) ∝ π(yt|Pt−1, q(k)t )π(q(k)t ), (36)

where k ∈ I(t). The predictive distribution of xt|R1:t can be approximated in a constant time as time t increases
in a sequential way.

π (xt|R1:t) ≈ π (xt|Pt−1, yt) ,

where

π (xt|Pt−1, yt) = ∑
k∈I(t)

π
(

xt|Pt−1, q(k)t , yt

)
π
(

q(k)t |Pt−1, yt

)
(37)

and the posterior π
(

q(k)t |Pt−1, yt

)
is given by Equation (36). Consequently, the predictive mean µxt |R1:t

and
variance Σxt |R1:t

can be approximated by µxt |Pt−1,yt
and Σxt |Pt−1,yt

, respectively, i.e.,

µxt |Pt−1,yt
= ∑k∈I(t) µ

xt |Pt−1,q(k)t ,yt
π
(

q(k)t |Pt−1, yt

)
,

Σxt |Pt−1,yt
= ∑k∈I(t)

[
Σ

xt |Pt−1,q(k)t ,yt
+

(
µ

xt |Pt−1,q(k)t ,yt
− µxt |Pt−1,yt

)
(

µ
xt |Pt−1,q(k)t ,yt

− µxt |Pt−1,yt

)T
]

π
(

q(k)t |Pt−1, yt

)
.

(38)

Corollary 2. For another special case with m = t, Theorem 3 becomes Theorem 2.

For a fixed m ∈ Z>0, Algorithm 2 is scalable as time t increases. In our approach, the level of
the approximation can be controlled by users by selecting a trade-off (or by choosing m) between the
approximation error and complexity. Most simplistic and practical approximation can be obtained by
choosing m = 1 as in Corollary 1. The original exact solution with maximal complexity is recovered by
selecting m = t as shown in Corollary 2.



Sensors 2018, 18, 2866 13 of 20

Algorithm 2 Sequential Bayesian Predictive Inference Approximation with Uncertain Localization

At time t ∈ Z>0, do:
1: obtain new observations yt along with the probabilities for locations π(qt)

2: for q(h)t ∈ Ω(t−m + 1 : t) do

3: predict µ
xt |D(h)

t−m+1:t
, Σ

xt |D(h)
t−m+1:t

and π(yt|D
(j)
t−m+1:t−1, q(k)t ) using Algorithm 1

4: compute π
(

q(h)t−m+1:t|Rt−m+1:t

)
by Lemma 5.

5: end for
6: compute µxt |Rt−m+1:t

and Σxt |Rt−m+1:t
, using Theorem 3.

7: use following approximation to update estimations

µxt |R1:t
≈ µxt |Rt−m+1:t

, Σxt |R1:t
≈ Σxt |Rt−m+1:t

,

Pt ≈ {µxt |Rt−m+1:t
, Σxt |Rt−m+1:t

, π(Θ|Rt−m+1:t)}.

5.3. Complexity of Algorithms

In this section, we discuss complexity aspects of the proposed algorithms. For a fixed number of
the radial basis functions (i.e., p) and a fixed number of the special sites (i.e., n), the computational
complexity of Algorithm 1 is dominated by Equation (24). The complexity of Algorithm 1 in
each time step is O(LN2), where L is the number of possible hyperparameter vectors and N is
the number of agents. The complexity of Algorithm 2 in time t is O (γ(t−m + 1 : t)) times the
complexity of Algorithm 1 for m time steps. Hence, the complexity of Algorithm 2 in time t is
O
(
γ(t−m + 1 : t)LN2M

)
. The numbers of special sites and radial basis functions affect the complexity

of Algorithm 1 as well. The complexity of the three cases is O(n3) with respect to the number of special
sites due to the matrix inversion. Thus, if we use finer grids, we increase the number of special sites,
i.e., n, and the complexity increase cubical. For a fixed set of L, n and N, the complexity of Algorithm 1
with respect to p is O(p3).

6. Experimental Results

Similarly to [38], a vision-based robotic sensor was built to validate the proof of concept.
The wireless mobile robot is equipped with two motorized wheels, a micro-controller, and a 360-degree
omnidirectional camera, a motion sensor, a wireless receiver, and a transmitter. The omnidirectional
camera is homemade from a cheap Wi-Fi remote CCD camera (Ai-Ball R©, Trek 2000 International,
Singapore) and a globe mirror. The vision images of the 360-degree environment around the robot
produced by the omnidirectional camera are streamed via 802.11 b/g Wi-Fi interface to a laptop for
image processing (see Figure 2).

In this section, we apply the proposed prediction algorithms to real experimental data. Figure 2
shows our experimental setup in which a redness intensity field is sampled by the captured images from
the CCD camera on top of the mobile robot. The CCD camera captures 360-degree images. The redness
intensity is computed by simply averaging the red component of the RGB picture. Noisy visual
measurements are sampled at random sampling positions by our robot. The position of the robot has
been measured by an image processing software which is built by the authors and the true sampling
positions are obtained manually by inspection.

The experimental objective is to predict the redness intensity field over a spatial space or a
spatio-temporal space using the scalar field model proposed in Section 4. Note that each image has a
lot of information. However, we only used the redness out of each image as a scalar value of interest.
In the future, we plan to extend this experiment for multivariate random fields for multiple features
from each image. Here we are considering two different scenarios. First, we consider a static field and
then a time-varying field with a moving person in the surveillance region.
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(a)

(b)

Figure 2. The experimental setup. (a) The measured position of the robot and four possible sampling
positions are shown in dark green star (*) and light green squares (�), respectively. The spatial sites are
marked with aqua blue dots on the ground. The panoramic view of the robot is pictured on the upper
left-hand side of the figure; (b) a vision-based robot is built with a 360-degree omnidirectional camera.

6.1. Spatial Field in the Static Experiment

In this study, the spatial sites in S are considered to be 10× 26 grid points, i.e., n = 260. The grid
points are shown in Figure 2 with aqua-blue dots. The mean function µt consists of only one radial basis
function that keeps moving average of the field. Note that this basis function can model the changes in
the brightness of the images caused by the slow changes of the environment lights. The center of the
radial basis function is (5, 13), and its bandwidth σ1 is ∞. The prior distribution of the hyperparameter
vector θ is chosen to be discrete with a support Θ = {25, 50, 100, 200, 400} × {0.1, 0.2, 0.4, 0.8, 1.6} and
the associated uniform probabilities. The measurement noise variance σε = 0.01 is estimated.

To demonstrate the usefulness of our model in Equations (12), (14), and (15), and our prediction
algorithm, we simulate eighty mobile robots with a single mobile robot that measures spatially
distributed eighty samples, i.e., n = 80, where each of nine sampling positions is uncertain with four
possibilities. Thus, there is 49 possible combinations for this set of sampling positions. After two sets
of observations, the resulting posterior probabilities of the hyperparameters for Case 1 are shown
in Figure 3. Figure 3 shows that the estimated hyperparameters converge to κ = 100 and α = 0.8,
which is equivalent to ` = 1.58 and σf = 0.0315.
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Figure 3. The posterior probability of the hyperparameter vector at t = 2.

We consider three cases: Case 1 using Algorithm 1 with exact sampling positions, Case 2 using
Algorithm 1 naively to measured sample positions including noisy locations, and Case 3 using by
applying Algorithm 2 with m = 1. The prediction and prediction error variance are computed for
Cases 1, 2, and 3. The prediction and the prediction error variance using true sampling positions
(Case 1), are shown in Figure 4a,d, respectively. Red and blue colors represent the highest and the
lowest values, respectively. Figure 4b,e show the resulting fields, by applying Algorithm 1 naively to
measured sample positions including noisy locations (Case 2).

Figure 4c,f show the results by applying Algorithm 2 with m = 1 (Case 3). Blue trails shown in
Figure 4d–f represent the low predicted error variances due to sampling. The results confirm that the
quality of the prediction in Case 3 are not very compromised as compared to Case 1 and demonstrate
the capability of our proposed algorithm to deal with uncertain sampling positions.

Figure 5 shows the controllable trade-off between approximation error and complexity for
another simulated example. The complexity of Algorithm 2 increases exponentially with respect
to m. The predicted field is compared between Case 1, which is the best prediction quality expected,
and Case 3. Clearly, by increasing m, the mean square difference between Case 1 and Case 3 decreases.
However, this mild improvement results in the exponentially increasing computational load, which
guides us to use m = 1 for practical cases.

Figure 6 shows the effect of an increasing number of observations with uncertain sampling
positions on the three cases from the same simulated example. Here we assume that we have seven
observations with known true sampling positions plus a few observations with uncertain sampling
positions. Clearly, the root mean square (RMS) error decreases in Case 1 and Case 3 by adding new
observations with true and uncertain sampling positions, respectively. On the other hand, as shown in
Figure 6, adding new observations with noisy sampling positions could increase RMS error for Case 2.
Figure 6 also shows the efficacy of our proposed algorithm, which can be compared to the previous
work [23]. The previous work in [23] was limited to a static random field and achieved 3.63 RMS
error with a bandwidth of 4.47. Note that our proposed method (Case 3) considers the temporal
random field and achieved averaged RMS error less than 1.2 with a bandwidth of 1.58. For a fair
comparison against [23], we normalize the input space of the GMRF by the bandwidth and compare
resulting values in terms of RMS over bandwidth. Our current work achieved 0.759 RMS/bandwidth
outperforming the previous work in [23] with 0.812 RMS/bandwidth.
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Figure 4. The prediction results of Cases 1, 2, and 3 at time t = 2 are shown in the first, second, and
third columns, respectively. The first and second rows correspond to the predictions and the natural
logarithm of the prediction error variance.
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Figure 5. The mean square difference between Case 1 and Case 3 is shown for the different
approximation orders m = 1, · · · , 5. On each box, the central mark is the median, the upper and
lower edges of the box are the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points.
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Figure 6. The number of observations with uncertain sampling position on the three different cases is
shown on the horizontal axis. The field prediction root mean square (RMS) error for Case 1, Case 2 and
Case 3 are shown with white, black, and hatched bars, respectively.

6.2. Spatio-Temporal Field in the Dynamic Experiment

In this scenario, the spatial sites are the same as in the previous experiment. The mean
function µt consists of twenty nine radial basis functions. The centers of radial basis functions are
{(5, 13)} ∪ {1, 4, 7, 10} × {1, 5, 9, 13, 17, 21, 25}. The time evolution of βt is modeled by Equation (14),
where the state matrix At and the input matrix Bt are given by I and 0.05I, respectively. The first radial
basis function has an infinity bandwidth (i.e., σ1 = ∞) to represent the average of the field, and the
others have a bandwidth that is equal to σj = 4. A person moves to a spot and stays still while a robot
is collecting observations, the process of which is then repeated in order to efficiently simulate multiple
robots. The robot collects 57, 40, 31, and 45 observations corresponding to times t = 1, 2, 3, and 4,
respectively. The first column (a1–4) in Figure 7 shows the positions of moving robot and person in the
domain. As mentioned, the position of the robot has been measured with a fixed camera and an image
processing software. Sometimes, the robot is not visible by the positioning system since the moving
person blocks the robot. The black areas in the second column (b1–4) of Figure 7 show the blind spots
of the positioning system. Note that other positioning systems like GPS also have blind spots such as
GPS denied areas. Therefore, when the robot moves to a blind spot the position cannot be determined
precisely. In this case, we assign different probabilities on multiple sampling positions.

True sampling positions in each time step are shown with blue dots in the second column (b1–4)
of Figure 7 while just blue dots in the white area are measured through the positioning system and the
positions in the blind spots are recorded manually for a comparison purpose.

The prediction results of Case 1 and Case 3 are compared with a trivial method of prediction
defined as follows.

Case 4: The fifth column (e1–4) of Figure 7 shows the resulting fields, by applying Algorithm 1 on
just observed sampling positions. Here, all the observations whose sampling positions are uncertain
are discarded. In particular, 12, 3, 2, and 4 observations have been discarded for time t = 1, 2, 3 and 4,
respectively.

The predicted field using true sampling positions (Case 1) and uncertain sampling positions (Case 3)
are shown in the third (c1–4) and forth (d1–4) columns of Figure 7, respectively. Since in the fully
automated experiment true sampling positions in the blind spot are not available, we used the proposed
algorithm in this paper to deal with uncertain sampling positions in the blind spot areas. The predicted
field simply by discarding uncertain sampling positions is shown in the fifth column (e1–4) of Figure 7.
The results obtained for Case 3 with m = 1, is not compromised considering the result for Case 1. Thus,
the experimental result demonstrates the effectiveness of the proposed algorithm.
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Figure 7. The time varying field is shown for four time iterations. The first column (a1–4) shows the
moving object in the field. The second column (b1–4) shows the sampling positions with blue dots and
the positioning blind spot with black areas. The third (c1–4), fourth (d1–4) and fifth (e1–4) columns
show predicted field for Case 1, Case 3 and Case 4, respectively. The rows are correspond to the time
intervals t = 1, 2, 3 and 4.

7. Conclusions

We have tackled a problem of predicting a spatio-temporal field using successive noisy scalar
measurements obtained by mobile robotic sensors, some of which have uncertain localization.
We developed the spatio-temporal field of interest using a GMRF and designed sequential prediction
algorithms for computing the exact and approximated predictive inference from a Bayesian point of
view. The most important contribution is that the computation times for Algorithms 1 and 2 with a
finite m at each time step do not grow as the number of measurements increases. Two different static
and time-varying experimental results along with a comparison study using simulation results provide
a solid proof of concept on the proposed scheme. The proposed algorithm will be useful for robotics
applications such as environmental monitoring by autonomous aquatic robots and drones. Future work
is to apply our algorithms to spatio-temporal sensory information fusion for autonomous driving.
In particular, we plan to predict a spatio-temporal scalar field of a risk measure. The self-driving
vehicle will be designed to perform path-planning taking into account such predicted risk measures
over space and time for better safety.
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