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Abstract: The employment of mobile vehicles to charge sensors via wireless energy transfer is
a promising technology to maintain the perpetual operation of wireless sensor networks (WSNs).
Most existing studies assumed that sensors are powered with off-the-shelf batteries, e.g., Lithium
batteries, which are cheap, but it takes some non-trivial time to fully charge such a battery
(e.g., 30–80 min). The long charging time may incur long sensor dead durations, especially when
there are many lifetime-critical sensors to be charged. On the other hand, other studies assumed that
every sensor is powered with an ultra-fast charging battery, where it only takes some trivial time to
replenish such a battery, e.g., 1 min, but the adoption of many ultra-fast sensors will bring about high
purchasing cost. In this paper, we propose a novel heterogeneous sensor network model, in which
there are only a few ultra-fast sensors and many low-cost off-the-shelf sensors. The deployment
cost of the network in the model is low, as the number of ultra-fast sensors is limited. We also have
an important observation that we can significantly shorten sensor dead durations by enabling the
ultra-fast sensors to relay more data for lifetime-critical off-the-shelf sensors. We then propose a joint
charging scheduling and routing allocation algorithm, such that the longest sensor dead duration
is minimized. We finally evaluate the performance of the proposed algorithm through extensive
simulation experiments. Experimental results show that the proposed algorithm is very promising
and the longest sensor dead duration by it is only about 10% of those by existing algorithms.

Keywords: rechargeable sensor networks; heterogeneous sensor network; ultra-fast sensors;
off-the-shelf sensors; joint charging scheduling; routing allocation algorithm

1. Introduction

Wireless sensor networks are widely used in many Internet of Things (IoTs) applications, including
video monitoring, traffic control, structural health monitoring, radiation detection, forest fire and
volcanor monitoing, etc. [1–5]. The energy consumption of sensors on data transmission however is
very high. Although many techniques have been proposed to save sensor energy, such as dynamic
duty cycle [6–8], sensors will run out of their energy eventually.

Many researchers proposed to prolong sensor lifetimes by enabling them to harvest energy from
their surrounding environments, such as solar energy, wind energy, etc. [9,10]. However, the energy
harvesting rates of sensors are low and unstable, due to their dynamic surrounding environments.
For example, it is reported that the energy generating rates in sunny, cloudy and shadowy days can
vary by up to three orders of magnitude in a solar harvesting system [11]. Such unpredictability and
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intermittency pose challenges in the efficient usage of harvested energy for various monitoring or
surveillance tasks [12]. Recently, some pioneering researchers [13–16] proposed a revolutionary way to
replenish sensor energy, that is, employing a mobile vehicle equipped with a charging device to move
in the vicinity of a lifetime-critical sensor, and charge it via wireless energy transfer [14]. By doing so,
the charging rate is high and stable.

A lot of attention has been paid to the vehicle charging scheduling for wireless sensor networks.
Most of these studies assumed that sensors are powered with off-the-shelf batteries [15,17–25], such as
Lithium batteries, we here abbreviate an off-the-shelf battery powered sensors by an off-the-shelf
sensor. The price of such a battery is only about a few dollars [26]; however, it usually takes some
non-trivial time to fully charge one, e.g., 30–80 min [26]. Therefore, these studies mainly focused on
shortening sensor dead durations due to the long charging time of off-the-shelf sensors.

Although excellent studies have been conducted for shorten sensor dead durations, some
sensors still expire their energy for some durations, as the charging time of a sensor is non-trivial
(e.g., 30–80 min). For example, in Figure 1a, assume that there are four off-the-shelf sensors v1, v2, v3

and v4 in a sensor network and three of them, i.e., v1, v2, v3, will run out of their energy soon. Assume
that the residual lifetime li of each lifetime-critical sensor vi is 40 min, i.e., l1 = l2 = l3 = 40 min, and it
takes an hour to fully charge each of them and their charging sequence is v1 → v2 → v3. For the sake
of convenience, we ignore the traveling time of the charging vehicle, as it is usually much shorter
than the sensor charging time [27]. It can be seen that the dead durations of sensors v1, v2, v3 are 0,
60− 40 = 20 min, and 2× 60− 40 = 80 min, respectively.

On the other hand, other researchers [12,27–30] assumed that every sensor is powered with an
ultra-fast charging battery, and it only takes a trivial time to fully charge such a battery, e.g., within
1 min [27,28], we here abbreviate an ultra-fast charging battery powered sensor by an ultra-fast sensor.
Therefore, they usually ignored the sensor charging time when scheduling charging vehicles.

It is obvious that the adoption of ultra-fast sensors can significantly shorten sensor dead durations
or even avoid their energy expirations. For example, in Figure 1a, if every sensor is powered with
an ultra-fast charging battery, the energy expirations of sensors v1, v2, v3 can be avoided, as the
residual lifetime of each of these sensors is 40 min and it takes a very short time to charge such a sensor,
e.g., 1 min.

It can be seen that, although the adoption of off-the-shelf sensors is cheap, but the dead durations
of sensors may be long due to the long charging time of the sensors. Contrarily, the adoption of many
ultra-fast sensors can significantly shorten sensor dead durations, but the adoption will incur a high
purchasing cost. For example, the price of an ultra-fast charging battery is usually about 30–40 dollars,
which is about ten times the cost of an off-the-shelf battery, e.g., a Lithium battery with the same
capacity costs only 2–3 dollars [27,31]. Therefore, it is unrealistic to adopt many ultra-fast sensors in
a wireless sensor network.

In this paper, we propose a novel heterogeneous sensor network model, in which there are only
a few ultra-fast sensors and many low-cost off-the-shelf sensors in a sensor network. The ultra-fast
sensors are deployed at some strategic locations near to the base station, as the sensors close to the
base station need to relay a large amount of data from other remote sensors.

We here illustrate a heterogeneous sensor network. In Figure 1b, we only deploy one ultra-fast
sensor v1, instead of three. We now consider the charging order v1 → v2 → v3 again in Figure 1b,
where the residual lifetimes of the three lifetime-critical sensors v1, v2, v3 are 40 min, and it takes
1 min to charge the ultra-fast sensor v1 and an hour to fully charge either off-the-shelf sensor v2 or v3.
Then, the dead durations of v1, v2, v3 are reduced to 0, 0, and 60 + 1− 40 =21 min, which are shorter
than the sensor dead durations with only off-the-shelf sensors in Figure 1a, i.e., 0, 20 min, and 80 min.

We, however, observe that we can further reduce sensor dead durations by jointly considering
charging scheduling and routing allocation in the heterogeneous sensor network. We can enable
ultra-fast sensors to relay more data than off-the-shelf sensors, since the former can be quickly charged.
For example, sensor v2 can forward its data to the ultra-fast sensor v1, rather than v3 (see Figure 1c).
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Then, the residual lifetime l1 of v1 is shortened from 40 min to, e.g., 20 min, while the residual
lifetime l3 of v3 is prolonged from 40 min to, e.g., 80 min. In addition, the residual lifetime l2 of sensor
v2 remains 40 min, as its routing load does not change. If we still charge the three lifetime-critical
sensors in the order of v1 → v2 → v3, none of them runs out of their energy before their energy
replenishments, as their start charging time points are 0, 1st, and 61th min, respectively, while their
residual lifetimes are 20, 40, and 80 min, respectively.
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off-the-shelf sensor

base station
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Figure 1. An illustration of a novel network model with deploying a few ultra-fast sensors. (a) a
sensor network consists of only off-the-shelf sensors. (b) deploy one ultra-fast sensor. (c) allocate a
new routing.

In this paper, we propose a novel heterogeneous network model, where a sensor network consists
of only a few ultra-fast sensors and many low-cost off-the-shelf sensors. Then, the cost of deploying
such a sensor network is low, due to the limited number of deployed ultra-fast sensors. On the other
hand, we can significantly shorten sensor dead durations by not only scheduling the charging vehicle
but also allocating routing among sensors smartly.

The main contributions in this paper are highlighted as follows:

• Unlike existing studies that either assumed that all sensors are powered with low-cost off-the-shelf
batteries, or assumed that every sensor is equipped with a high-cost ultra-fast charging battery,
in this paper, we propose a novel heterogeneous sensor network model, where a sensor network
consists of a few ultra-fast sensors and many low-cost off-the-shelf sensors. The deployment cost
of such a network then is very low.

• Under this novel network model, we study a fundamental problem of joint charging scheduling
and routing allocation, such that the longest sensor dead duration is minimized. We also propose
an efficient algorithm for this problem.

• We finally evaluate the performance of the proposed algorithm through extensive simulation
experiments. The experimental results show that the proposed algorithm is very promising,
and the longest sensor dead duration by it is only 10% of those by existing algorithms.

The rest of this paper is organized as follows: Section 2 defines the network model, charging
model and the problem, Section 3 presents the algorithm for the problem, Section 4 analyzes the
proposed algorithm, Section 5 evaluates the performance of the proposed algorithm through extensive
simulation experiments, Section 6 introduces the related work. Finally, Section 7 concludes this paper.

2. Preliminaries

In this section, we first introduce a novel heterogeneous network model and then present the
charging model. We finally define the problem.
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2.1. A Novel Heterogeneous Network Model

We consider a wireless sensor network Gs = (Vs ∪ {b}, Es), which is deployed in
a two-dimensional area, where Vs is a set of ns sensors in the network, and b is a base station for
collecting data from all sensors.

We assume that there are two types of sensors in the network. The first type of sensors are powered
by off-the-shelf batteries, e.g., Lithium battery, and it usually takes a while to fully charge such a
sensor, e.g., 30–80 min [26]. The other type of sensors are powered by ultra-fast charging batteries,
and it takes only a very short time to fully charge such one, e.g., 1 min [27]. Assume that there are nN
off-the-shelf sensors v1, v2, ..., vnN and nF ultra-fast sensors u1, u2, ..., unF . Let VN = {v1, v2, ..., vnN} and
VF = {u1, u2, ..., unF}. Then, Vs = VN ∪VF. Notice that the number nF of ultra-fast sensors usually is
very small, e.g., nF = 5, as the cost of each ultra-fast charging battery is not cheap. Denote by cN and
cF the energy capacities of a sensor in VN and VF, respectively.

We now consider the placement of sensors. We assume that the off-the-shelf sensors are randomly
deployed. On the other hand, since the communication range of a sensor is limited, sensors close
to the base station have to relay sensing data from other remote sensors. Therefore, the former
sensors consume more their energy on relaying data than the latter ones. We thus assume that the
ultra-fast sensors are deployed at some strategic locations near to the base station, as they can be
quickly charged. For example, the ultra-fast sensor can be co-located with the most energy-consuming
off-the-shelf sensors.

We assume that there is an edge (vi, vj) in Es for any two nodes vi and vj in Vs ∪ {b} if they are
within the transmission range of each other. Denote by N(vi) the set of neighbor nodes of each node vi
in Gs, i.e, N(vi) = {vj|vj ∈ Vs ∪ {b}, (vi, vj) ∈ Es}.

Assume that each sensor vi generates data at a rate of ri, and the generated data will be relayed
to the base station via a given routing path, e.g., the delay-aware routing [32,33]. Each sensor can
monitor its residual energy level and estimate its energy consumption rate. Denote by ei (ei ≥ 0)
the amount of residual energy of sensor vi at time t. On the other hand, following [34], the energy
consumption rate of sensor vi at time t is ρi = µs · ri + ∑

vj∈N(vi)
µt

ij · fij + µr · ∑
vj∈N(vi)

f ji, where µs, µt
ij,

µr are the energy consumptions for data sensing, data transmission and data reception per unit data,
respectively, fij and f ji are the data transmission rates from sensors vi to vj, and from vj to vi, at time t,
respectively, µt

ij = β1 + β2wα
i,j, β1 is the distance-independence constant term, β2 is a coefficient of the

distance-independence term, wi,j is the distance between sensor vi and sensor vj, and α is the path-loss
index. Then, the residual lifetime li of sensor vi at time t is li =

ei
ρi

.

2.2. Charging Model

As the energy stored in every sensor battery is limited, it will run out of its energy due to data
sensing, data transmission and data reception. To provide controllable and perpetual energy to sensors,
we employ a charging vehicle equipped with a recharging device to replenish sensor energy. Denote
by ηN and ηF the charging rates of the vehicle for charging an off-the-shelf sensor and an ultra-fast
sensor, respectively. We assume that the vehicle can move at a speed of s m/s.

The energy consumptions of different sensors vary significantly, i.e., some sensors may have little
energy left while the others consume only a small fraction of their energy. Then, it is unnecessary
for the vehicle to charge all sensors in each round, and sensors should be charged in an on-demand
manner. To this end, each sensor vi sends a charging request to the base station once its residual
lifetime li falls below a given lifetime threshold lc at some time t0, e.g., lc = 2 h. After receiving the
charging request, the base station starts a new charging round by dispatching the vehicle to charge
lifetime-critical sensors.

Let V be the set of to-be-charged sensors in the current charging round. There are two types
of sensors in set V, the lifetime-critical off-the-shelf sensors in Vc and the ultra-fast sensors in VF,
i.e., V = Vc ∪ VF, where an off-the-shelf sensor vi is contained in Vc if its residual lifetime li at time
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t0 is no longer than λlc, i.e., Vc = {vi|vi ∈ VN , li ≤ λlc}, λ is a given constant with λ ≥ 1, and lc
is the lifetime-critical threshold. Notice that every ultra-fast sensor in VF is contained in the set of
to-be-charged sensors V, as they are deployed at strategic locations where data traffics are extremely
heavy. Moreover, it only takes a very short time to fully charge an ultra-fast sensor, and the number of
ultra-fast sensors nF usually is small, e.g., nF = 5.

The base station will find a closed charging tour C of the charging vehicle for the sensors in V
and allocate routing for the network Gs. Let C = b → v1 → v2 · · · → vnv → b, where nv = |V|.
Then, the charging vehicle is dispatched to fully charge the sensors in V along tour C one by one
(see Figure 2). Once all sensors in V is fully charged, the vehicle will return to the base station
and recharge itself for the next charging round. Denote by T the duration that the vehicle spends

for charging sensors along tour C, i.e, T =
(wb,1+

nv−1
∑

i=1
wi,i+1+wnv ,b)

s + ∑
vj∈Vc

cN−ej
ηN

+ ∑
vk∈VF

cF−ek
ηF

, which

consists of the time spent on vehicle traveling, charging the lifetime-critical off-the-shelf sensors in Vc,
and charging the ultra-fast sensors in VF.

off-the-shelf sensor

ultra-fast sensor

base station

charging tour

charging vehicle

Figure 2. An example of a charging tour of the vehicle.

2.3. Problem Definition

Many applications of sensor networks are sensitive to the data collection delay, and they usually
require a continuous data collection, such as the sensor networks for video monitoring, radiation
detection and forest fire detection [1,35,36]. For example, in a sensor network for radiation detection,
once the energy depletion of a sensor lasts for a few hours, a radiation release cannot be detected
in real time and the radiation may quickly spread to the degree of out of control and thus lead to
a disaster. Therefore, we must shorten the dead durations of sensors as much as possible, due to
their energy depletions. The objective of this paper is thus to find a charging tour C of the vehicle for
charging sensors in V and allocate routing for each link (vi, vj) in network Gs, such that the longest
dead duration of sensors in V is minimized. Let ti be the start charging time of sensor vi in V when the
vehicle starts to charge sensor vi in tour C; the dead duration of sensor vi then is di = ti − li if ti > li,
where li is the residual lifetime of sensor vi at time t0; otherwise, (ti ≤ li), di = 0.

Given a heterogeneous sensor network Gs, a charging vehicle, and a set V of to-be-charged sensors
at some time t0, the dead duration minimization problem is to find a charging tour C of the vehicle for
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charging sensors in V, and allocate the routing fij for each link (vi, vj) in period [t0, t0 + T], such that
the longest dead duration of sensors in V is minimized, i.e.,

min
fij ,C

max
vi∈V
{di}, (1)

subject to the following constraints, i.e.,

∑
vj∈N(vi)

fij = ri + ∑
vj∈N(vi)

f ji, ∀vi ∈ Vs, (2)

∑
vi∈Vs

ri = ∑
vj∈N(b)

f jb, (3)

ρi = µs · ri + ∑
vj∈N(vi)

(β1 + β2wα
i,j) · fij + µr · ∑

vj∈N(vi)

f ji, ∀vi ∈ Vs, (4)

li =
ei
ρi

, ei ≥ 0, ∀vi ∈ Vs, (5)

di = max{ti − li, 0}, ∀vi ∈ V, (6)

ti =

{
ti−1 +

cF−ei−1
ηF

+
wi−1,i

s , i ≥ 2, ∀vi−1 ∈ VF, ∀vi ∈ V,

ti−1 +
cN−ei−1

ηN
+

wi−1,i
s , i ≥ 2, ∀vi−1 ∈ Vc, ∀vi ∈ V.

(7)

Constraint (2) shows the flow reservation of each sensor vi. Constraint (3) indicates that the
generated data from all sensors in Vs must be sent back to the base station. Constraints (4) and (5)
calculate the energy consumption rate and the residual lifetime of each sensor vi at time t0, respectively.
Constraints (6) and (7) define the dead duration di and the start charging time ti of sensor vi in the
tour, and t1 = t0 +

wb,1
s .

3. Algorithm for the Dead Duration Minimization Problem

In this section, we devise a joint charging scheduling and routing allocation algorithm for the
dead duration minimization problem. We first present the framework of the algorithm, which invokes
two algorithms for two subproblems of the original problem. We then detail the two algorithms.

3.1. Algorithm Framework

Recall that the dead duration minimization problem is to allocate the routing fij for each link
(vi, vj) in period [t0, t0 + T], and find a charging tour C for the charging vehicle to replenish sensors in
V, such that the longest dead duration of sensors is minimized. It can be seen that the allocation of
routing fij and the scheduling of charging tour C are tightly coupled. On one hand, the residual lifetime
of each sensor is highly related to the routing fij, where a sensor consumes its energy quickly if it relays
a large amount of data from other sensors. To minimize the longest sensor dead duration, the vehicle
should charge the sensors with short residual lifetimes first. On the other hand, once the charging tour
C is delivered, the start charging time that each sensor will be charged by the vehicle can be derived,
by following Constraint (7). The routing fij should be carefully allocated, such that the dead duration
of each sensor before its start charging time is minimized. In this paper, we tackle the challenging dead
duration minimization problem by considering its two subproblems. In the first subproblem, assume
that the routing fij is given, and the subproblem is to find a charging tour C, such that the longest dead
duration of sensors in V is minimized, and this subproblem is referred to as the charging scheduling
subproblem. In the second subproblem, we assume the charging tour C is given, and the subproblem
is to allocate the routing fij for each link (vi, vj), so that we can deliver the minimum longest sensor
dead duration, and this problem is referred to as the routing allocation subproblem. We will propose two
algorithms for the two subproblems in two later subsections, respectively. Having the two algorithms,
we devise a joint charging scheduling and routing allocation algorithm as follows.
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The algorithm iteratively finds the routing and charging tour. Denote by f K−1
ij and f K

ij the routings

allocated before and after the Kth iteration, respectively. Similarly, denote by CK−1 and CK the charging
tours delivered before and after the Kth iteration, respectively, where K = 1, 2, . . .. Initially, we obtain
f 0
ij by assuming that each sensor uploads its data along its minimum energy path to the base station.

Within each iteration K, the algorithm consists of two steps. In the first step, with the given routing
f K−1
ij , it finds a charging tour CK, by utilizing the algorithm for the charging scheduling subproblem.

In the second step, having the charging tour CK, it obtains a routing f K
ij by invoking the algorithm

for the routing allocation subproblem. If the new solution ( f K
ij , CK) is no better than ( f K−1

ij , CK−1),

the algorithm terminates and ( f K−1
ij , CK−1) is the final solution to the dead duration minimization

problem. Otherwise, (( f K
ij , CK) is better than ( f K−1

ij , CK−1)), we continue to the next iteration, until the
difference of the objective values of the two solutions is no greater than a small threshold ε with ε > 0,
e.g., ε = 1 min, or the number of the performed iterations achieves a given maximum iteration number
Kmax, e.g., Kmax = 100.

The algorithm for the dead duration minimization problem is presented in Algorithm 1.

Algorithm 1 Joint charging scheduling and routing allocation algorithm (CSRA).

Input: a set Vs, a set V of to-be-charged sensors, the residual energy ei of each sensor vi in Vs at some
time t0, a small threshold ε with ε > 0.

Output: routing fij, charging tour C.
1: Obtain a routing f 0

ij by assuming that each sensor uploads its data along its minimum energy path
to the base station;

2: for K ← 1 to Kmax do
3: Find a charging tour CK with the routing f K−1

ij , by invoking Algorithm 2 for the charging
scheduling subproblem;

4: Obtain a routing f K
ij with the charging tour CK, by invoking Algorithm 3 for the routing allocation

subproblem;
5: Let DK−1 and DK be the longest sensor dead durations of solutions ( f K−1

ij , CK−1) and ( f K
ij , CK),

respectively;
6: if DK > DK−1 then
7: C ← CK−1, fij ← f K−1

ij ; /*( f K
ij , CK) is no better than ( f K−1

ij , CK−1) */
8: break;
9: else

10: C ← CK, fij ← f K
ij ; /*( f K

ij , CK) is better than ( f K−1
ij , CK−1)*/

11: end if
12: if DK−1 − DK ≤ ε then
13: /* the difference of the longest sensor dead durations DK and DK−1 of solutions ( f K

ij , CK) and

( f K−1
ij , CK−1) is smaller than ε*/

14: break;
15: end if
16: end for
17: return charging tour C, and routing fij.

3.2. Algorithm for the Charging Scheduling Subproblem

Given a set V(= VF ∪Vc) of to-be-charged sensors at some time t0, and the routing f K−1
ij for each

link (vi, vj) in period [t0, t0 + T]. The charging scheduling subproblem is to find a charging tour CK,
such that the longest dead duration of sensors in V is minimized, i.e.,

P1 : min max
vi∈V
{dK

i },

subject to constraints (2), (3), (4), (5), (6), and (7).
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Assume that the charging time of each lifetime-critical off-the-shelf sensor in Vc is a constant δ [37],
e.g., δ = 1 h, since its residual energy is very low, where δ ≈ cN

ηN
, cN is the energy capacity of the sensor,

and ηN is the off-the-shelf sensor charging rate. We further assume that the traveling time among two
consecutive visited sensors can be considered as a small constant τ, e.g., τ = 1 min, as the vehicle
traveling time usually is much shorter than the charging time δ of a lifetime-critical off-the-shelf sensor
in Vc, e.g., 1 min vs. 1 h [23]. Let ∆ = δ + τ.

Since it takes only a very short time to fully charge ultra-fast sensors in VF and these sensors have
heavy data relay loads, the vehicle should charge sensors in VF before the lifetime-critical off-the-shelf
sensors in Vc. Thus, the charging tour CK consists of a sub-tour CK

F for charging ultra-fast sensors in VF
and a sub-tour CK

N for replenishing lifetime-critical off-the-shelf sensors in Vc, i.e., CK = b → CK
F →

CK
N → b. We obtain sub-tour CK

F by a brute-force search, by enumerating all charging sequences. Notice
that the number nF of ultra-fast sensors in VF usually is very small, and the brute-force search then will
not take a long time. On the other hand, we derive the sub-tour CK

N for lifetime-critical off-the-shelf
sensors in Vc in non-decreasing order of their residual lifetimes, i.e, CK

N = v1 → v2 → · · · → vn,
where l1 ≤ l2 ≤ · · · ≤ ln, li is the residual lifetime of sensor vi and n = |Vc|.

The algorithm for the charging scheduling subproblem is presented in Algorithm 2. We later
will showthat Algorithm 2 delivers an optimal solution to the charging scheduling subproblem
(see Section 4.1).

Algorithm 2 Algorithm for the charging scheduling subproblem.

Input: a set V of to-be-charged sensors, routing f K−1
ij , the residual energy ei of each sensor vi.

Output: charging tour CK.
1: Calculate the residual lifetime lK

q of each sensor vq in V;
2: Find a charging sub-tour CK

F of ultra-fast sensors in VF by a brute-force search, such that the longest
dead duration of sensors in VF is minimized;

3: Sort sensors in Vc by their residual lifetimes in non-decreasing order, i.e., lK
1 ≤ lK

2 ≤ · · · ≤ lK
n ,

where lK
j is the residual lifetime of sensor vj in Vc, and n = |Vc|;

4: Find a charging sub-tour CK
N of sensors in Vc by charging them in the order of v1, v2, . . ., vn, i.e.,

CK
N = v1 → v2 → · · · → vn;

5: Let CK = b→ CK
F → CK

N → b;
6: return charging tour CK.

3.3. Algorithm for the Routing Allocation Subproblem

Given a sensor network Gs, a set V of to-be-charged sensors, and the charging tour CK of sensors in
V, the routing allocation subproblem is to find the routing f K

ij for each link (vi, vj) in period [t0, t0 + T],
such that the longest dead duration of sensors in V is minimized, i.e.,

P2 : min
f K
ij

{DK}, (8)

subject to constraints (2), (3), (4), (7), and constraint

DK = max
vi∈V
{tK

i −
ei

ρK
i
}, (9)

where DK is the longest dead duration of sensors in V, tK
i , ei and ρK

i are the start charging time,
residual energy and energy consumption rate of sensor vi, respectively. Notice that only flow rates f K

ij s
are variables.

To obtain the optimal flow rates, we rewrite constraint (9) as:

tK
i −

ei

ρK
i
≤ DK, ∀vi ∈ V, (10)
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which is equivalent to ρK
i · tK

i − ei ≤ DKρK
i , ∀vi ∈ V. Then, subproblem P2 is equivalent to

P3 : min
fij

DK, (11)

subject to constraints (2), (3), (4), (7), and

ρK
i · tK

i − ei ≤ DKρK
i , ∀vi ∈ V. (12)

We note that the objective function in problem P3 is a linear function, and constraints (2), (3), (4),
and (7) are also linear functions. However, constraint (12) is not a linear function, where tK

i , and ei are
constants, while ρK

i and DK are variables.
To solve problem P3, we reduce it to a series of linear programming (LP) problems. Denote by

DK
opt the minimum longest dead duration of sensors in V. The basic idea behind is to guess the optimal

value DK
opt. Given a guess DK

g of DK
opt, we consider the following LP:

P4 : 1,

subject to constraints (2), (3), (4), (7), and

ρK
i · tK

i − ei ≤ DK
g ρK

i , ∀vi ∈ V. (13)

Notice that constraint (13) is a linear function, as DK
g is a given constant.

When DK
g < DK

opt, we will show that there are no feasible solutions to LP P4 (see Section 4.2).
Otherwise (DK

g ≥ DK
opt), we will prove that there is a feasible solution to LP P4. Then, we can find the

minimum longest sensor dead duration DK
opt through a binary search in interval [0, T].

The algorithm for the routing allocation subproblem is given in Algorithm 3.

Algorithm 3 Algorithm for the routing allocation subproblem.

Input: a set Vs of sensors, a set V of to-be-charged sensors, the residual energy ei of each sensor vi in
Vs at some time t0, the charging tour CK.

Output: routing f K
ij .

1: Calculate the start charging time ti of each sensor vi in V by Constraint (7);
2: Let Dl = 0 and Du = T; /* Dl and Du are the lower and upper bounds on the optimal value DK

opt,
respectively */

3: while Dl < Du do
4: Let DK

g = bDl+Du
2 c; /* a guess of DK

opt */
5: if there are no feasible solutions f K

ij to LP P4 then
6: /* the guess DK

g is smaller than DK
opt, i.e., DK

g < DK
opt*/

7: Let Dl = DK
g + 1;

8: else
9: /* the guess DK

g is no less than DK
opt, i.e., DK

g ≥ DK
opt */

10: Let Du = DK
g ;

11: end if
12: end while
13: Let DK

opt = Du(= Dl);

14: Find a feasible solution f K
ij to LP P4 with DK

opt;

15: return routing f K
ij .
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4. Algorithm Analysis

In this section, we analyze the proposed algorithms for the charging scheduling subproblem and
routing allocation subproblem in Sections 4.1 and 4.2, respectively.

4.1. Algorithm Analysis for the Charging Scheduling Subproblem

Recall that the objective of the charging scheduling subproblem is to find a charging tour CK for
sensors in V, such that the longest dead duration of sensors in V is minimized, given routing f K−1

ij ,

where tour CK consists of a sub-tour CK
F for charging ultra-fast sensors in VF and a sub-tour CK

N for
replenishing lifetime-critical off-the-shelf sensors in Vc, sub-tour CK

F is obtained by a brute-force search,
sub-tour CK

N is delivered by charging sensors in Vc in non-decreasing order of their residual lifetimes,
i.e., CK

N = v1 → v2 → · · · → vn, l1 ≤ l2 ≤ · · · ≤ ln, and n = |Vc|. In the following, we show that the
sub-tour CK

N delivered by Algorithm 2 is an optimal solution to the charging scheduling subproblem,
i.e., the longest dead duration of sensors in Vc is minimized, if they are charged in non-decreasing
order of their residual lifetimes, see Theorem 1.

Theorem 1. Given a set V of to-be-charged sensors, Algorithm 2 delivers an optimal solution to the charging
scheduling subproblem.

Proof of Theorem 1. For the sake of convenience, assume that l1 ≤ l2 ≤ · · · ≤ ln, where li is the
residual lifetime of a sensor vi ∈ Vc and n = |Vc|. Denote by TF the time that the charging vehicle
spends in the sub-tour CK

F . Then, the dead duration of vi in sub-tour CK
N is di = max{TF + (i− 1)∆−

li, 0}, where ∆ = δ + τ, δ is the charging time of each lifetime-critical off-the-shelf sensor and τ is
the traveling time among two consecutive visited sensors. Let D(CK

N) be the longest sensor dead
duration in sub-tour CK

N , i.e., D(CK
N) = maxvi∈Vc{di}. Denote by d∗i the dead duration of sensor vi in

an optimal solution, and denote by OPTK the longest sensor dead duration in the optimal solution.
Then, OPTK = max1≤i≤n{d∗i }.

In the following, we show that sub-tour CK
N is an optimal solution by an induction on the number

of sensors n in Vc.
(i) Consider n = 1, it is obvious that Algorithm 2 delivers an optimal solution .
(ii) We assume that Algorithm 2 can deliver an optimal solution C∗j , when there are n = j sensors

with j ≥ 2.
(iii) Consider that there are n = j + 1 sensors. Let CK

N = v1 → v2 → · · · → vj → vj+1 be the
sub-tour delivered by Algorithm 2, where l1 ≤ l2 ≤ · · · ≤ lj ≤ lj+1. We distinguish our discussion into
two cases: case (1) sensor vj+1 is charged at the last in the optimal solution; and case (2) sensor vj+1 is
not charged at the last in the optimal solution.

We first consider case (1) sensor vj+1 is charged at the last in the optimal solution. We show that
the longest sensor dead duration OPTK

j+1 in an optimal solution is no shorter than that in the solution
delivered by Algorithm 2, since

OPTK
j+1 = max

1≤i≤j+1
{d∗i }, by the definition of OPTK

j+1,

= max{max
1≤i≤j

{d∗i }, d∗j+1},

≥ max{OPTK
j , d∗j+1}, by the definition of OPTK

j ,

= max{OPTK
j , dj+1}, as vj+1 is charged at the last in the optimal solution,

= max{max
1≤i≤j

{di}, dj+1}, by the assumption that Algorithm 2

delivers an optimal solution when there are j sensors,

= D(CK
N), by the definition of CK

N .
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Therefore, CK
N is also an optimal solution.

We then consider case (2) sensor vj+1 is charged at the pth order in the optimal solution C∗j+1
with p 6= j + 1, while another sensor vq is charged at the (j + 1)th order, i.e., C∗j+1 = v∗1 → v∗2 → · · · →
vj+1 → · · · → vq. We obtain another charging sub-tour C

′
j+1 from C∗j+1 by swapping only the charging

orders of sensors vq and vj+1, i.e., C
′
j+1 = v∗1 → v∗2 → · · · → vq → · · · → vj+1. We will prove that the

longest sensor dead duration in C
′
j+1 is no longer than OPTK

j+1, i.e., D(C
′
j+1) ≤ OPTK

j+1. On one hand,

D(C
′
j+1) = max

1≤i≤j+1
{d′i}, by the definition of D(C

′
j+1),

= max{ max
vi∈Vc\{vq ,vg+1}

{d′i}, max{d′q, d
′
j+1}},

= max{ max
vi∈Vc\{vq ,vg+1}

{d∗i }, max{d′q, d
′
j+1}}, (14)

since the charging order of each sensor vi in set Vc \ {vq, vg+1} in tour C
′
j+1 is the same as that in the

optimal solution C∗j+1. Note that d
′
q = max{TF + (p− 1)∆− lq, 0}, d

′
j+1 = max{TF + j∆− lj+1, 0}.

On the other hand, following the definition of the optimal value OPTK
j+1, we know that

OPTK
j+1 = max

1≤i≤j+1
{d∗i },

= max{ max
vi∈Vc\{vq ,vg+1}

{d∗i }, max{d∗q , d∗j+1}}, (15)

where d∗q = max{TF + j∆− lq, 0}, and d∗j+1 = max{TF + (p− 1)∆− lj+1, 0}.
It can be seen that

d
′
q = max{TF + (p− 1)∆− lq, 0},
≤ max{TF + j∆− lq, 0}, as p ≤ j + 1,

= d∗q , (16)

and

d
′
j+1 = max{TF + j∆− lj+1, 0},

≤ max{TF + j∆− lq, 0}, as lj+1 ≥ lq,

= d∗q . (17)

Then, by combining Equations (16) and (17), we have that

max{d′q, d
′
j+1} ≤ d∗q ≤ max{d∗q , d∗j+1}. (18)

Therefore, we have D(C
′
j+1) ≤ OPT

′
j+1. Then, C

′
j+1 is also an optimal solution, where sensor vj+1

is charged at the last. The rest is to reduce to case (1), omitted.
We finally analyze the time complexity of Algorithm 2. We first obtain a sub-tour CK

F for the
ultra-fast sensors in VF with a brute-force search, which takes time O(nF × nF!), where nF = |VF|.
We then find a sub-tour CK

N for the off-the-shelf sensors, by charging them in non-decreasing order of
their residual lifetimes, which takes O(n log n) time. Therefore, the time complexity of Algorithm 2 is
O(nF × nF! + n log n), where n = |Vc|. It must be mentioned that the number of ultra-fast sensors in a
sensor network usually is very small, e.g., nF = 5. Therefore, the time complexity of Algorithm 2 is
only O(n log n). The theorem then follows.
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4.2. Algorithm Analysis for the Routing Allocation Subproblem

In this subsection, we show that Algorithm 3 delivers an optimal solution to the routing allocation
subproblem by Theorem 2.

Theorem 2. Algorithm 3 delivers an optimal solution to the routing allocation subproblem.

Proof of Theorem 2. In Section 3.3, we have shown that the routing allocation subproblem P2 is
equivalent to subproblem P3. In the following, we show that (i) there are no feasible solutions to the
Linear Programming (LP) P4 when DK

g < DK
opt; and (ii) that there is a feasible solution f K

ij to LP P4 if

DK
g ≥ DK

opt. Then, the optimal value DK
opt can be found through a binary search in interval [0, T].

We first show (i) there are no feasible solutions to LP P4 if DK
g < DK

opt. Assume that there is a
feasible solution f K

ij to LP P4 when DK
g < DK

opt. Notice that f K
ij is also a feasible solution to subproblem

P3 and the longest sensor dead duration is DK
g . However, this contradicts the assumption that DK

opt is
the minimum longest sensor dead duration. Then, the assumption that there is a feasible solution f K

ij

to LP P4 is incorrect when DK
g < DK

opt.
On the other hand, we prove (ii) there is a feasible solution f K

ij to LP P4 if DK
g ≥ DK

opt. Let f ∗Kij be

an optimal solution to LP P3, and ρ∗Ki be the energy consumption rate of sensor vi with routing f ∗Kij .
We have

ρ∗Ki · tK
i − ei ≤ DK

optρ
∗K
i ,

≤ DK
g ρ∗Ki , as DK

g ≥ DK
opt,

that is, ρ∗Ki · tK
i − ei ≤ DK

g ρ∗Ki , which indicates f ∗Kij is a feasible solution to LP P4 if DK
g ≥ DK

opt.
The theorem then follows.

5. Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm CSRA through extensive
simulations. We will also study the impact of important parameters on the algorithm performance,
including the network size, the maximum data sensing rate, the off-the-shelf sensor charging rate,
the vehicle traveling speed, and the number of ultra-fast sensors.

5.1. Simulation Environment

We consider a wireless sensor network deployed in a 500 m × 500 m two-dimensional square
area, and a base station is located at the center of the square. There are 100 to 500 off-the-shelf sensors
randomly deployed in the area, and a small number nF of ultra-fast sensors are co-located with the
most energy-consuming off-the-shelf sensors, e.g., nF = 5. Both the capacities of an off-the-shelf
battery and an ultra-fast charging battery are 10.8 kJ. A charging vehicle is initially located at the base
station, and its moving speed is s = 5 m/s. The charging rates ηN and ηF of the vehicle for charging
an off-the-shelf sensor and an ultra-fast sensor are 5 W and 300 W, respectively. Then, the durations
for charging an off-the-shelf sensor and an ultra-fast sensor to their full energy capacities are 36 min
(= 10.8 kJ

5 W ) and 36 s (= 10.8 kJ
300 W ), respectively. The data sensing rate ri of each sensor vi is randomly

selected from an interval [rmin, rmax], where rmin= 1 kbps and rmax= 10 kbps. A well-known energy
consumption model of sensors is adopted from [34]. The simulator was implemented in language C++
and all simulations were operated on a Dell server with an Intel(R) Core(TM) i7 CPU (2.5 GHz) and a
16 GB RAM (ChengDu, China). In our simulation experiments, the monitoring period of the sensor
network is one year. To evaluate the performance of the proposed algorithm CSRA, we also consider
five existing algorithms. Specifically, algorithm TSP (traveling salesman problem) finds a charging tour
such that the vehicle traveling distance in the tour is minimized, while ignoring the sensor residual
lifetimes [16]. Algorithm EDF (earliest deadline first) charges sensors in non-decreasing order of
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sensor residual lifetimes. Algorithm AA (Adaptive Algorithm) schedules the vehicle to charge some
sensors before their energy depletions, such that the difference of the energy replenished to sensors
and the energy consumed on vehicle traveling is maximized [25]. Algorithm NETWRAP (an NDN
based real time wireless recharging protocol) chooses to-be-charged sensors by considering both the
vehicle traveling time and the sensor residual lifetimes [26]. Finally, algorithm TSCA (temporal spatial
real-time charging scheduling algorithm) first obtains a charging tour in non-decreasing order of
sensor residual lifetimes, and then adjusts the sensor charging sequence, so that the number of dead
sensors is minimized and the energy efficiency of the vehicle is maximized [18]. We will apply each
of the mentioned algorithms in 20 different network topologies with the same network size and then
obtain average values.

5.2. The Convergence of Algorithm CSRA

We first study the convergence of the proposed algorithm CSRA (joint Charging Scheduling and
Routing Allocation algorithm), by increasing the number of iterations Kmax from 1 to 10. Figure 3
shows that the longest and average sensor dead durations by Algorithm CSRA decrease very quickly
with the increase of the number of iterations Kmax and the performance of Algorithm CSRA almost
does not change when Kmax ≥ 5.
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Figure 3. The convergence of Algorithm CSRA, when there are 200 off-the-shelf sensors. (a) Longest
sensor dead duration. (b) Average sensor dead duration.

5.3. Algorithm Performance

In the following, we study the impact of the network size, the maximum data sensing rate,
the off-the-shelf sensor charging rate, the vehicle traveling speed, and the number of ultra-fast sensors.

We first evaluate the performance of the proposed algorithm CSRA against existing algorithms
TSP, NETWRAP, AA, TSCA, by varying the number nN of off-the-shelf sensors from 100 to 500,
while the number nF of ultra-fast sensors is 5. Figure 4a shows that the longest sensor dead duration
by each algorithm becomes longer with the increase of the network size, as more sensors need to be
charged and their waiting times before their chargings are prolonged. Figure 4a also demonstrates
that the longest sensor dead durations delivered by the proposed algorithm CSRA are much shorter
than those by the existing five algorithms. For example, the longest sensor dead duration by algorithm
CSRA is only about 4.3%(≈ 110

2575 ), 11.3%(≈ 110
973 ), 10.9%(≈ 110

1007 ), 10.1%(≈ 110
1083 ), and 8.8%(≈ 110

1246 ) of
those by algorithms TSP, EDF, NETWRAP, AA, TSCA, respectively, when there are 500 off-the-shelf
sensors. The rationale behind is that algorithm CSRA considers both the charging scheduling and
routing allocation to shorten the longest sensor dead duration in the heterogeneous sensor networks,
while existing algorithms considered only the sensor residual lifetimes and vehicle traveling cost.
Figure 4b further indicates that the average sensor dead durations by algorithm CSRA are also
significantly shorter than those by the other five algorithms. For example, the average sensor dead
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duration by algorithm CSRA is about 2.8%, 10.3%, 8.6%, 9.3%, 11.8% of those by algorithms TSP, EDF,
NETWRAP, AA, TSCA, respectively, when there are ηN = 500 off-the-shelf sensors. Figure 4c shows
the average running times of the six mentioned algorithms, from which it can be seen that the average
running time of algorithm CSRA is longer than the five algorithms. It, however, must be mentioned
that the average running time of algorithm CSRA is acceptable in practice, as it is no more than two
seconds even when there are ηN = 500 off-the-shelf sensors. In the following, we do not compare the
running times of the algorithms, since the curves are similar.
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Figure 4. The performance of different algorithms, by varying the number of off-the-shelf sensors nN ,
while rmax = 10 kbps, ηN = 5 W, and s = 5 m/s. (a) Longest sensor dead duration. (b) Average sensor
dead duration. (c) Average running times of different algorithms.

We then investigate the performance of the algorithms, by increasing the maximum data sensing
rate rmax from 10 kbps to 20 kbps, where nN = 200, s = 5 m/s, and ηN = 5 W. Figure 5a and Figure 5b
show the longest and average sensor dead durations of the six algorithms increase with a larger
maximum data sensing rate rmax, respectively. The rationale behind is that sensors will consume
more of their energy with larger data sensing rates, and sensors then may run out of their energy
faster. Figure 5 also demonstrates that the longest and average sensor dead durations by algorithm
CSRA are much better than those by the existing algorithms, especially when the data sensing rate is
larger. For example, the longest sensor dead duration by algorithm CSRA is only 3.4%, 8.0%, 9.8%,
9.9%, and 7.2%, 6.2% of those by algorithms TSP, EDF, NETWRAP, AA, TSCA, respectively, when
rmax = 20 kbps.
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Figure 5. The performance of different algorithms, by varying the maximum data sensing rate rmax,
while nN = 200, ηN = 5 W, and s = 5 m/s. (a) Longest sensor dead duration. (b) Average sensor
dead duration.
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We also evaluate the algorithm performance, by varying the charging rate ηN of an off-the-shelf
sensor from 1 W to 5 W, while fixing the charging rate ηF of an ultra-fast sensor at 300 W. It can be seen
from Figure 6 that the longest and average sensor dead durations become shorter when the charging
rate ηN grows, as the waiting time of each sensor before its charging is shorter with a fast charging
rate. Figure 6a further plots that the longest sensor dead duration by algorithm CSRA is the shortest,
e.g., only about 5% of those by the other algorithms when the charging rate ηN of off-the-shelf sensors
is 1 W.
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Figure 6. The performance of different algorithms, by varying the charging rate ηN of off-the-shelf
sensors, while nN = 200, rmax = 10 kbps, and s = 5 m/s. (a) Longest sensor dead duration. (b) Average
sensor dead duration.

We further study the impact of the vehicle traveling speed s on the algorithm performance,
by varying the speed s from 1 m/s to 10 m/s. Figure 7 plots that the longest and average sensor
dead durations of the proposed algorithm CSRA are still the shortest ones among the six algorithms.
Figure 7 also shows that the longest dead duration by each of the six algorithms only slightly decreases
with a faster vehicle traveling speed. The improvement is only slight, since the sensor charging time is
much longer than the vehicle traveling time [23,26].
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Figure 7. The performance of different algorithms, by varying the vehicle traveling speed s. (a) Longest
sensor dead duration. (b) Average sensor dead duration.

We finally investigate the performance of different algorithms, by increasing the number of
ultra-fast sensors nF from 0 to 8, while there are 200 off-the-shelf sensors. Figure 8a demonstrates that
the longest sensor dead duration by Algorithm CSRA decreases with the increase of nF. Notice that the
longest sensor dead duration by Algorithm CSRA is only about 70% of those by the existing algorithms
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when there are no ultra-fast sensors, i.e., nF = 0, since Algorithm CSRA jointly considers charging
scheduling and routing allocation by enabling other off-the-shelf sensors that have sufficient energy to
relay more data for lifetime-critical sensors, while existing algorithms only considered the charging
scheduling of mobile charging vehicles. Figure 8 also shows that the longest and average sensor
dead durations by Algorithm CSRA only slightly decease when there are more than five ultra-fast
sensors, and the longest sensor dead duration by Algorithm CSRA is about 25% of those by the existing
algorithms when nF = 5.
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Figure 8. The performance of different algorithms, by increasing the number of ultra-fast sensors nF

from 0 to 8, while there are 200 off-the-shelf sensors. (a) Longest sensor dead duration. (b) Average
sensor dead duration.

In summary, it can be seen from the experimental results that the longest and average sensor dead
durations by the proposed algorithm CSRA are much shorter than those by existing algorithms TSP,
EDF, NETWRAP, AA and TSCA.

6. Related Work

The employment of mobile charging vehicles is a promising technique to replenish sensor
energy, and the vehicle scheduling for prolonging network lifetimes has been studied in literature.
Most of these studies assumed that every sensor is powered with a low-cost off-the-shelf
battery [17–21,23,38–40], e.g., Lithium battery, where the price of such a battery is about only a
few dollars [31]. It, however, usually takes some non-trivial time to fully charge such a battery,
e.g., 30–80 min [26].

Some studies employed only one charging vehicle to charge sensors in a sensor network [17–20,23].
He et al. [17] proposed a Nearest-Job-Next with Preemption discipline to increase the average number
of charged sensors per unit time and shorten their charging latencies. Liang et al. [20] proposed
approximation algorithms to maximize the total utility of charging sensors in a charging tour, subject to
the energy capacity of a charging vehicle. Lin et al. [18] devised a temporal-spatial charging scheduling
algorithm to minimize the number of dead sensors and maximize energy efficiency. Xu et al. [23]
maximized sensor lifetimes while minimizing the length of charging tour, by proposing a novel
charging paradigm in which each sensor can be partially replenished. Lin et al. [19] developed a
Primary and Passer-by scheduling algorithm to increase the number of charged sensors before their
energy expiration times, by charging some energy-sufficient sensors that are close to energy-critical
sensors, such that their chargings will not prolong the dead durations of latter sensors.

On the other hand, some other studies [21,38–40] employed multiple charging vehicles to maintain
sensor networks perpetually. Liang et al. [40] devised an approximation algorithm to minimize the
number of dispatched vehicles to charge energy-critical sensors, subject to the energy capacity of
each vehicle. Jiang et al. [39] considered not only the charging sequence but also the vehicle depot
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positioning, such that the number of deployed charging vehicles is minimized and the ratio of the
sensor charging time to traveling time is maximized. Dai et al. [38] scheduled multiple charging
vehicles to replenish sensor energy with an objective of maximizing the total amount of energy
charged into sensors, and further minimizing the overall charging time under the electromagnetic
radiation safety constraint. Wang et al. [21] proposed a hybrid network framework that consists of
solar-powered sensors and wireless-powered sensors. They studied the problem of minimizing vehicle
traveling energy, such that the perpetual operations of sensors are maintained.

It can be seen that, although excellent studies have been conducted for replenishing sensor energy
and shortening their dead durations, some sensors may still expire their energy, as the charging time
of a sensor is non-trivial, e.g., 30–80 min [26].

We note that other researchers [12,27–30] assumed that every sensor is powered with an ultra-fast
charging battery, and it only takes a trivial time to fully charge such a battery, e.g., within 1 min [27,28].
Therefore, they usually ignored the sensor charging time. For example, Zhao et al. [28] assumed that
a vehicle is able to not only charge sensors but also collect sensing data. In each charging round,
they first found the charging tour of lifetime-critical sensors and then allocated routing in the period
that the vehicle performs sensor charging, such that the utility of collected sensing data is maximized.
Zhang et al. [29] adopted a collaborative charging paradigm, in which any two charging vehicles
can transfer energy with each other. They investigated the problem of employing multiple vehicles
to charge sensors, such that the ratio of the energy consumed for charging sensors to the energy
consumption on vehicle traveling is maximized. Xu et al. [27] studied the problem of scheduling
multiple charging vehicles to charge sensors in a given monitoring period such that none of these
sensors depletes its energy and the total traveling cost of the vehicles is minimized, where the energy
consumption rates of different sensors vary significantly.

Different from these mentioned existing studies, in this paper, we propose a novel heterogeneous
network model by deploying a few ultra-fast sensors at some strategic locations near the base station.
The network cost is low, since we deploy only a few expensive ultra-fast sensors. On the other hand,
we show that the network performance can be significantly improved with even such a small number
of ultra-fast sensors, by enabling ultra-fast sensors to relay more data for other lifetime-critical sensors.

7. Conclusions

Unlike exiting studies that deployed only off-the-shelf sensors or ultra-fast sensors, in this paper,
we proposed a novel heterogeneous sensor network model, in which a sensor network consists of a few
ultra-fast sensors and many low-cost off-the-shelf sensors. Then, the deployment cost of the network
is low as the number of ultra-fast sensors is limited. Under the novel network model, we studied a
problem of finding a charging tour and allocating routing, such that the longest sensor dead duration
is minimized. We further devised an efficient algorithm for the problem, by enabling ultra-fast sensors
to relay more data from lifetime-critical off-the-shelf sensors. We finally evaluated the proposed
algorithm through extensive simulations. In addition, experimental results showed that the longest
sensor dead duration by the proposed algorithm is much shorter than those by existing algorithms,
e.g., 90% shorter.
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