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Abstract: A facile cuprous oxide nanoparticles functionalized electro-reduced graphene oxide
modified glassy carbon electrode (denoted as Cu2O NPs-ERGO/GCE) was fabricated via a simple
physical adsorption and electrochemical reduction approach. Cyclic voltammetry and second-order
derivative linear scan voltammetry were used to investigate the electrocatalysis oxidation of vanillin
on the Cu2O NPs-ERGO/GCE. The compound yielded a well-defined voltammetric response in 0.1 M
H2SO4 at 0.916 V (vs. saturated calomel electrode (SCE)). A linear calibration graph was obtained in
the concentration range of 0.1 µM to 10 µM and 10 µM to 100 µM, while the detection limit (S/N = 3)
is 10 nM. In addition, the Cu2O NPs-ERGO/GCE presented well anti-interference ability, stability,
and reproducibility. It was used to detect vanillin sensitively and rapidly in different commercial
food products, and the results were in agreement with the values obtained by high performance
liquid chromatography.
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1. Introduction

Vanillin is a phenolic aldehyde and the primary component of the extract of the vanilla bean
with the molecular formula C8H8O3 (4-hydroxy-3-methoxybenzaldehyde). Its natural fragrance is
attractive and pleasing. It has been widely used as an additive in the food industry. Synthetic
vanillin, as an alternative, is now used more often than the natural one as a flavoring agent in
foods, beverages, and pharmaceuticals. This compound is applied to contribute to the fragrance
of commercial foods such as ice cream, pudding, cookies, beverages, chocolate, and custard [1].
However, studies have shown that vanillin can cause headaches, vomiting, and nausea when ingesting
large amounts of this flavor enhancer, and may affect kidney and liver functions [1]. Consequently,
the development of vanillin detection methods in foods that are simple and reliable is very important
and valuable because of food safety. Until now, several methods for determining vanillin have been
described and involve the use of high-performance liquid chromatography [2], gas chromatography [3],
thin layer chromatography [4], capillary electrophoresis [5], UV-visible (vis) spectrophotometry [6],
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and chemiluminometry [7]. However, most of the above methods require highly complex instruments
and involve time consuming sample pretreatment processes. As a result of some merits of fast
response, high sensitivity, simple operation, and low cost, electrochemical methods have been tried and
developed for the detection of vanillin. However, although the molecule is electrooxidizable, there are
few studies on the voltammetric determination of vanillin. The main cause is the problem of fouling
and regeneration of the electrode surface. An effective way to overcome these obstacles is electrode
modification. Some chemically modified electrodes have been reported [1,8–16]. The performance
of these sensors is heavily dependent on the modified materials. Therefore, the exploration of new
materials for the fast and accurate detection of vanillin is greatly demanded.

Nowadays, various nanostructured materials have been developed to improve the performance
of electrochemical sensors. Graphene in particular, which is two-dimensional single-layer graphite,
has recently received great attention because of its extraordinary performance [17]. Currently, sensors
modified with graphene/metal oxides have been widely reported [18,19]. Cuprous oxide (Cu2O) is
a p-type semiconductor that is considered to be an attractive and promising material because of its
relatively narrow band gap (2.0–2.2 eV), low cost, and non-toxic nature. In previous studies, Cu2O
was successfully used to modify electrode surface to enhance the response signals of H2O2 [20,21],
glucose [21–23], dopamine [24–26], herbicide paraquat [27], L-tyrosine [28], and NO2 [29]. As far
as we know, the electrochemical detection of vanillin using a Cu2O modified electrode is still
missing. However, Cu2O nanoparticles are easy to aggregate, which greatly limits its application
in electrochemical sensors. How to reduce the aggregation of Cu2O nanoparticles has become an
urgent problem for researchers. Cu2O-reduced graphene oxide nanocomposites have been prepared
by Xu et al. [20] using physical adsorption, in situ reduction, and one-pot synthesis. The composites
were dispersed in 0.1% Nafion solution and modified on glassy carbon electrode by dropping coating
method. The non-enzymatic hydrogen peroxide sensor was constructed. Zhang et al. [24] successfully
prepared Cu2O/graphene nanocomposites by the solvothermal method. The modified electrode
showed good electrocatalytic effect on dopamine. The linear range is 0.1 to 10 µM, and the detection
limit is 10 nM. Cu2O microparticles and polyvinyl pyrrolidone functionalized graphene nanosheets
(micro-Cu2O/PVP-GNs) modified glassy carbon-rotating disk electrode (GC-RDE) were prepared
by Ye et al. [27]. The sensitive and selective detection of herbicide paraquat was carried out using
the excellent catalytic performance of Cu2O and GNs. However, the above graphene (GR) based
composites require more synthetic steps. Green synthesis of Cu2O–GR composite for electrochemical
detection of vanillin has not been reported.

In this paper, an efficient, inexpensive, and rapid technique was presented to prepare Cu2O
NPs–graphene composite via a simple physical adsorption and electrochemical reduction approach.
Generally, GR can be synthesized on a large scale by chemical reduction of graphene oxide (GO). In
the laborious process, excessive and toxic reducing agents such as hydrazine hydrate and sodium
borohydride will contaminate the resulting materials. Compared with the chemical reduction methods,
this method is simple, non-toxic, time-saving, and green. Because of its enhanced catalytic activity and
high adsorption capacity, the prepared Cu2O nanoparticles functionalized electro-reduced graphene
oxide modified glassy carbon electrode (NPs-ERGO/GCE) can be used as an effective electrochemical
sensor for sensitive determination of vanillin. For further confirmation of the feasibility of practical
application, the vanillin contents in some commercial food products were also determined.

2. Experiment

2.1. Chemical and Solutions

Graphite, hydrazine hydrate solution (80 wt%), cupric sulfate (CuSO4·5H2O), and vanillin were
supplied by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. H2O2 solution (30 wt%) and
polyvinyl pyrrolidone (PVP) was purchased from Aladdin (Shanghai, China). Vanillin was dissolved
in 5% (v/v) ethanol aqueous solution to prepare a 1.0 × 10−3 M standard stock solution, preserved at
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4 ◦C, and protected from daylight when not in use. Working solutions of lower concentrations were
prepared by appropriate dilution of the stock solution. The buffer solution and standard solution were
prepared by double distilled water. All chemicals are analytical grade and used as received.

2.2. Apparatus

All the electrochemical measurements were measured on a CHI 660E Electrochemical Workstation
(Chenhua Instrument Co. Ltd., Shanghai, China) and a Model JP-303E Polarographic Analyzer
(Chengdu Instrument Factory, Chengdu, China). A conventional three-electrode system was employed
throughout, consisting of a Cu2O NPs-ERGO/GCE (3 mm inner diameter) as working electrode, a Pt
wire counter electrode, and a saturated calomel reference electrode (SCE).

Solution pH values were measured using a digital pHs-3c Model pH meter (Shanghai Leichi
Instrument Factory, Shanghai, China). The morphology of the samples was obtained on a scanning
electron microscopy (EVO10, Carl Zeiss Jena GmbH, Jena, Germany). High performance liquid
chromatography (HPLC) was conducted on Waters model 510 system (Waters Ltd., Milford, MA,
USA) including a 250 mm × 4.6 mm Kromasil 100-5C18 column, using aqueous acetic acid
(1%, v/v)–acetonitrile (85:15, v/v) as mobile phase with a flow rate of 0.6 mL min−1, and equipped
with a Waters 2487 dual λ absorbance UV/Vis detector (Waters Ltd., Milford, MA, USA).

2.3. Synthesis of Cuprous Oxide

Cuprous oxide nanoparticles (Cu2O NPs) were prepared according to a previous method [20].
Typically, 100 mg CuSO4·5H2O and 50 mg PVP was added in 20 mL double distilled water under
stirring. Then, 0.2 M NaOH (4 mL) was added dropwise, and blue precipitate came into being. Finally,
15 µL of hydrazine hydrate solution (80 wt%) was added to the mixture and stirred at room temperature
for 20 min to form a brick-red suspension. The solid product was separated from the solution by
centrifugation, washed with absolute ethanol and water, and dried under vacuum condition of 60 ◦C.
The synthesis route for Cu2O NPs can be illustrated as Scheme 1.
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Scheme 1. The synthesis of Cuprous oxide (Cu2O) nanoparticles. PVP—polyvinyl pyrrolidone. (R.T.:
Room Temperature).

2.4. Preparation of Cu2O–GO Nanocomposite

According to our previous report [25,26,30,31], natural graphite powder is oxidized to graphite
oxide using a modified Hummers method. Then, 10 mg graphite oxide was dispersed into 10 mL
double distilled water and exfoliated to GO by ultrasonication for 2 h. The unexfoliated graphite oxide
was removed by centrifuging at 6000 rpm for 30 min. For preparation of Cu2O NPs–GO composite,
1.0 mg Cu2O NPs was dispersed into 20 mL GO colloid and then sonicated for about 2 h to give a
stable and homogeneous suspension.

2.5. Fabrication of Electrochemical Sensor

Before modification, bare GCE was polished to mirror-like by 0.3 µm alumina slurry, and then
the GCE was washed with anhydrous alcohol and water successively by ultrasonication for 3 min,
respectively, and dried in N2 blowing. Then, 5 µL of Cu2O NPs–GO was dropped on the freshly
prepared pure GCE surface. After drying under ambient condition, the GO film was reduced in a pH
6.0 phosphate buffer at a constant potential of −1.2 V for 120 s, and the Cu2O NPs-ERGO/GCE was
obtained. GO/GCE, Cu2O NPs/GCE, ERGO/GCE, and Cu2O NPs-GO/GCE were also prepared with
the similar procedures for comparison.
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2.6. Electrochemical Measurements

Voltammetric measurements were conducted in a 10 mL electrochemical cell containing a desired
concentration of vanillin in 0.1 M H2SO4. Cyclic voltammograms were measured between +0.50 V
and +1.15 V at a scan rate of 0.1 V s–1. Second-order derivative linear sweep voltammograms were
performed from +0.0 V to +1.2 V at a scan rate of 0.1 V s−1, after accumulation at 0.0 V for 90 s. When
measuring sample solution by second-order derivative linear sweep voltammetry, the background
subtraction was employed in order to avoid the distortion of the signal.

3. Results and Discussion

3.1. Characterization of the GO and Cu2O-ERGO Nanocomposites

The morphologies of GO and Cu2O-ERGO nanocomposites were investigated by scanning
electron microscopy (SEM). Figure 1A shows the SEM image of GO film. The nanosheets show
abundantly wrinkle and crumple-like surface structure, indicating successful preparation of GO.
Figure 1B shows the SEM image of Cu2O-ERGO nanocomposites produced by the physical adsorption
and electrochemical reduction approach. As can be seen, large numbers of Cu2O nanoparticles were
decorated on a thin film of ERGO, and no particles scattered out of the supports, indicating a strong
interaction between graphene support and particles. The average diameter of these particles was about
50–100 nm and most of these particles had a spherical outline. Highly dispersed Cu2O on supports
with larger surface areas enabled better catalytic activity and sensor sensitivity.
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3.2. Electrochemical Characterization of Modified Electrodes

The surface status and the barrier of different modified electrodes were monitored by cyclic
voltammetry using ferricyanide as redox probe, and the corresponding cyclic voltammograms were
shown in Figure 2. There is a pair of Fe(CN)6

3−/4− reversible redox peaks on bare GCE. The peak
potentials were Epa = 0.308 V, Epc = 0.245 V, and the peak currents were ipa = 14.01 µA and ipc = 15.22 µA
(curve a). On the Cu2O NPs/GCE, the redox peak currents of [Fe(CN)6]3−/4− declined greatly. This is
because Cu2O NPs are easily agglomerated and have poor conductivity, which hinders electron transfer
(curve b). A significant decrease in redox peak current was also observed on GO/GCE due to the weak
conductivity of GO (curve c). On the ERGO/GCE, the redox peak currents of the [Fe(CN)6]3−/4− were
improved dramatically with the ∆Ep value decreased to 42 mV (curve d). This may be a result of the
large specific surface area and high electrical conductivity of ERGO, which increases the concentration
of Fe(CN)6

3−/4− on the electrode surface and promotes the electron transfer rate. When using Cu2O
NPs-ERGO/GCE, the currents were further increased (curve e), indicating synergistic effect of both
Cu2O NPs and ERGO, which improves the electron transfer of Fe(CN)6

3−/4− at the electrode surface.
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(a) bare glassy carbon electrode (GCE), (b) Cu2O/GCE, (c) GO/GCE, (d) ERGO/GCE, and (e)
Cu2O-ERGO/GCE. Scan rate: 0.1 V s−1.

3.3. Electrocatalytic Activity of Cu2O NPs-ERGO/GCE Towards Vanillin

Second-order derivative linear sweep voltammetry is a widely used electrochemical method for
enhancing sensitivity and specificity in quantitative detection [32,33]; hence, the sensing performance
of Cu2O NPs-ERGO/GCE towards vanillin was evaluated by second-order derivative linear sweep
voltammetry. Figure 3 illustrates the second-order derivative linear sweep voltammetric curves of
10 µM vanillin in 0.1 M H2SO4 on GCE (curve a), GO/GCE (curve b), Cu2O NPs/GCE (curve c), Cu2O
NPs-GO/GCE (curve d), ERGO/GCE (curve e), and Cu2O NPs-ERGO/GCE (curve f) with a scan
rate of 0.10 V s−1. As shown in Figure 3, after 90 s accumulation at the potential of 0.0 V, a weak
oxidation peak (1.102 µA V−2) is observed at GCE with a peak potential of about 0.952 V. While the
peak current recorded at GO/GCE is much lower (0.5938 µA V−2) than that obtained at bare GCE,
the oxidation potential shifted positively to 0.986 V, suggesting the retarded electron transfer due to
the poor conductivity of GO. The peak current of vanillin increased (i = 1.242 µA V−2) at the Cu2O
NPs/GCE under the same conditions. The catalytic effect of Cu2O NPs is not obvious. The main reason
may be the easy aggregation of Cu2O NPs. Meanwhile, vanillin yielded an anodic peak at 0.946 V on
the Cu2O NPs-GO/GCE and the according peak current increased to 1.351 µA V−2. After reducing at
−1.2 V for 120 s, the peak current of vanillin increased greatly (10.62 µA V−2) at the ERGO/GCE, a shift
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towards less positive peak potential (0.920 V) can also be observed. Both the decrease in over-potential
and the enhancement in oxidation current may be the result of the unique properties of ERGO such as
high specific surface area and excellent conductivity. For Cu2O NPs-ERGO/GCE, the peak current
increases further (24.43 µA V−2) as compared with ERGO/GCE, the peak potential of vanillin shifts
more negatively to 0.912 V and its peak shape becomes sharp. These phenomena may be attributed
to the synergetic effect between Cu2O NPs and ERGO. It confirmed that Cu2O NPs-ERGO/GCE has
much higher electrocatalytic activity towards the oxidation of vanillin.
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solution obtained at different electrodes: (a) GCE, (b) GO/GCE, (c) Cu2O nanoparticles (NPs)/GCE,
(d) Cu2O NPs-GO/GCE, (e) ERGO/GCE, and (f) Cu2O NPs-ERGO/GCE. Accumulation potential:
0.0 V, accumulation time: 90 s, scan rate: 0.1 V s−1.

3.4. Cyclic Voltammetric Behaviors

Cyclic voltammetry (CV) is the most widely used technique for acquiring qualitative information
about the electrochemical reactions. Figure 4 displays the CV responses on Cu2O NPs-ERGO/GCE
in the absence and presence of 10 µM vanillin. As shown in Figure 4, no electrochemical response
was observed at the Cu2O NPs-ERGO/GCE in the blank H2SO4 solution, indicating that the modified
electrode was a non-electrochemically active species over the selected potential range. After the
addition of 10 µM vanillin, an oxidation peak (P1) was observed on Cu2O NPs-ERGO/GCE at 0.920 V
attributed to the oxidation of vanillin, and a reduction peak (P2) at 0.650 V was also observed in
the reverse scan. In addition to P1, another oxidation peak (P3) at 0.662 V was observed during
the subsequent scan, and formed a redox couple with peak P2. Simultaneously, compared with
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that of the first scan, the peak current of P1 decreased signally in the subsequent scans, while the
redox couple (P2/P3) increased at the expense of peak P1, implying that the product of vanillin by
irreversible oxidation remained on or near the surface of the modified electrode and was reduced
during the cathodic sweep. The electrochemical behavior of vanillin was consistent with some previous
reports [14–16].
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CV was utilized to study the effect of scan rate on vanillin oxidation at Cu2O NPs-ERGO/GCE.
The voltammograms were recorded at various scan rates of 0.02 to 0.2 V s–1 in the presence of 10 µM
vanillin as shown in Figure 5A. The results demonstrated that Epa changes positively with both the
ipa increase and the scanning rate increases. This phenomenon is consistent with the characteristics
of an irreversible reaction. As shown in Figure 5B, there is a good linear relationship between peak
current and scan rate over the range studied. The linear regression equation can be expressed as
ipa (A) = 103.66v (V s−1) − 0.1335 (R = 0.9983), indicating that the oxidation of vanillin follows the
electron transfer process of adsorption control. By plotting logi vs. logv, a straight line with the linear
regression equation of log ipa (µA) = 1.0182 log v (V s−1) + 2.0261 (R = 0.9984) was obtained. The slope
is very close to 1.0, which further confirms the oxidation of vanillin is an adsorption-controlled process.
Moreover, in Figure 5C, a plot of Epa versus Neperian logarithm of v (ln v) also presents a linear
relationship, and the linear regression equation is Epa (V) = 0.0208 ln v (V s−1) + 0.9594 (R = 0.9997).
According to Laviron’s theory [34], α was assumed as 0.5 for a totally irreversible electrode reaction
process [35]. In this work, RT/(αnF) is equal to 0.0208, the calculated number of electrons is about
2.0, which was in accordance with, and exactly the same as, the currently accepted electrooxidation
mechanism of vanillin [14–16].
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3.5. Chronocoulometry Study

The electrochemically effective surface areas of the bare GCE and Cu2O NPs-ERGO/GCE was
investigated and compared by chronocoulometry using 0.1 mM K3[Fe(CN)6] as model complex.
The plots of Q–t and Q–t1/2 were shown in Figure S1 (Electronic Supplementary Material (ESM)).
Equation (1) is given by Anson [36] as follows:

Q = 2nFAcD1/2π−1/2t1/2 + Qdl + Qads (1)

Based on this, the surface area of working electrode A could be calculated to be 0.07276 and
0.2362 cm2 for GCE and Cu2O NPs-ERGO/GCE by the slope of the linear relationship between Q and
t1/2 (the diffusion coefficient D of K3[Fe(CN)6] is 7.6 × 10−6 cm2 s−1 [37]). The results showed that
the effective surface area of the modified electrode was obviously increased, it would increase the
adsorption capacity of vanillin and lead to enhance the current response.

The adsorption capacity Γs of vanillin at Cu2O-ERGO/GCE can also be calculated by
chronocoulometry. As depicted in Figure 6, after point-by-point background subtraction, the charge Q
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was linear with t1/2 with a slope of 1.710 × 10−5 C s−1/2 and Qads of 1.182 × 10−5 C. The adsorption
capacity Γs was calculated to be 2.59 × 10−10 mol cm−2 according to the equation of Qads = nFAΓs.Sensors 2018, 18, x  9 of 17 
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3.6. Optimization of Analytical Parameters

3.6.1. Effect of Supporting Electrolytes

The effect of different types of supporting electrolytes on the oxidation peak current of 10 µM
vanillin at Cu2O-ERGO/GCE was studied. Phosphate buffer (pH 3.0–8.0), HAc–NaAc buffer (pH 4.0–6.0),
HAc–NH4Ac buffer (pH 4.0–6.0), (CH2)6N4–HCl buffer (pH 4.0–6.0), H2SO4, HNO3, HCl, and KCl
(each 0.1 M) were tested. It was found that the highest peak current was observed in H2SO4.
Furthermore, the effect of different acid concentrations on the oxidation of vanillin was also investigated
when the concentrations ranges from 0.01 M to 0.5 M. The results showed that the oxidation peak
current of vanillin increased gradually with increasing H2SO4 concentration from 0.01 M to 0.1 M,
further beyond the H2SO4 concentration range, the peak current conversely decreased. Consequently,
0.1 M H2SO4 was chosen for the subsequent optimizing experiments as the best supporting electrolyte.



Sensors 2018, 18, 2762 10 of 17

3.6.2. Accumulation Potential and Time

The relationship between peak current and scan rate described in Section 2.3 showed that the
rate-determining step is under adsorption control in the process of vanillin oxidation. Therefore,
accumulation can enrich the content of vanillin on the surface of the electrode, thus significantly
improving the sensitivity of the determination. The oxidation peak currents of 10 µM vanillin at
different accumulative potentials were studied and determined by linear scanning voltammetry.
Figure 7 demonstrated that when the accumulative potential changed in the range from 0.30 to 0.0 V,
the peak current increased significantly, but decreased under more negative accumulation potentials.
Therefore, the accumulative potential of 0.0 V was chosen as the best accumulative potential for the
determination of vanillin.
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The effect of accumulation time on the peak current of vanillin with a fixed accumulation potential
of 0.0 V was investigated. As shown in Figure 8, with the extension of the accumulative time,
the oxidation peak current of vanillin gradually increases in the 0−90 s range. However, when the
accumulative time exceeds 90 s, the oxidation peak current decreases slightly. This phenomenon might
be the result of the supersaturated adsorption of vanillin on the electrode surface, resulting in a certain
degree of passivation of Cu2O NPs-ERGO/GCE, thus blocking the electron transfer and reducing
the response of the modified electrode. Considering two sides of sensitivity and working efficiency,
the optimum accumulation time of 90 s was employed.
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3.7. Analytic Properties

3.7.1. Repeatability, Reproducibility, and Stability

The repeatability, reproducibility, and stability of the developed sensor were evaluated by
second-order derivative linear sweep voltammetry. The most attractive feature with the use of Cu2O
NPs-ERGO/GCE for vanillin detection is the easy renewal of electrode surface for the next use. After
each measurement, the electrode surface can be renewed by two simple successive voltammetric
sweeps from 0.0 V to 1.2 V in 0.1 M potassium biphthalate solution. Seven measurements of 10 µM
vanillin on a single electrode yielded a relative standard deviation (RSD) of 1.6% (Table S1 (ESM)).
As for the reproducibility (intersensors), six electrodes were fabricated to detect vanillin in the
above solution. The RSD was 4.8% (Table S2 (ESM)), indicating that the Cu2O NPs-ERGO/GCE
had acceptable reproducibility for analytical applications. The storage stability of the sensor was
investigated. The results found that the current response was almost the same by daily use during
seven days. After 14 days of storage, only about 7.3% of leakage was found (Table S3 (ESM)).

3.7.2. Interference Studies

To investigate the anti-interference of Cu2O NPs-ERGO/GCE, potential interfering substances
were added, such as glucose (1.0 mM), fructose (1.0 mM), sucrose (1.0 mM), ascorbic acid (1.0 mM),
citric acid (1.0 mM), oxalic acid (1.0 mM), lactic acid (1.0 mM), tartaric acid (1.0 mM), caffeine (1.0 mM),
theophylline (1.0 mM), cholesterol (1.0 mM), and uric acid (0.1 mM), and the results are summarized
in Table S4 (ESM). It can be found that no significant interference for the detection of 10 µM vanillin
was observed from those compounds. However, because of the very similar nature and chemical
structure of ethyl vanillin and vanillin, a one-fold amount of ethyl vanillin showed serious interference.
The inorganic ions commonly coexisting in real samples were also tested. The results suggest that
100-fold concentration of K+, Na+, Mg2+, Ca2+, Zn2+, Al3+, Cl−, SO4

2−, and PO4
3− has no influence on

the detection of 10 µM vanillin. The results showed that the sensor has good selectivity for analysis of
vanillin and provides feasibility for real sample analysis.

3.7.3. Calibration and Limit of Detection

Figure 9 shows the second-order derivative linear sweep voltammetric curves of various
concentrations of vanillin on the Cu2O NPs-ERGO/GCE. The peak current increased linearly with
increment of vanillin concentration in the range of 0.1 µM–10 µM and 10 µM–100 µM. The linear
regression equation was expressed as i (µA V−2) = 2.5222c (µM) + 0.0076 and i (µA V−2) = 0.6394c (µM)
+ 18.889 with correlation coefficient R = 0.9995 and 0.9953, respectively. The detection limit was 10 nM
(S/N = 3). Table 1 provides a detailed comparison of the properties of different modified electrodes
reported for the determination of vanillin. As shown in Table 1, the linear dynamic range reported in
our work is wider than most of the previous reports [1,8–11,14,15]. Although the limit of detection
in this work is higher than the Ag-Pd bimetallic nanoparticles-decorated graphene oxide modified
glassy carbon electrode (Ag-Pd/GO/GCE) [13] and manganese dioxide nanoflowers-graphene oxide
modified glassy carbon electrode [14], this method has made significant progress in simplifying
electrode preparation, saving time and reducing costs.
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Figure 9. Second-order derivative linear scan voltammograms obtained at Cu2O-ERGO/GCE in 0.1 M
H2SO4 solution containing different concentrations of vanillin. (A) From a to f: 10, 20, 40, 60, 80,
100 µM; (B) From g to l: 1, 2, 4, 6, 8, 10 µM; (C) from m to s: 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 µM; (D) plot
of the oxidation peak currents as a function of vanillin concentrations: 0.1−10 µM (E); plot of the
oxidation peak currents as a function of vanillin concentrations: 10–100 µM. Accumulation potential:
0.0 V, accumulation time: 90 s, scan rate: 0.1 V s−1.

3.7.4. Analytical Applications

In order to evaluate the potential application of this newly-developed method in actual sample
analysis, the content of vanillin was determined in different foods such as biscuit, chocolate, candy,
and custard. These samples were purchased from a local market and pretreated according to our
previous report [16]. Each pretreated sample solution was transferred to a voltammetric cell and
analyzed in the day of preparation according to the above-described procedure. Table 2 presented
the determination results for four parallel measurements, which were measured by the standard
addition method. The recoveries of vanillin standard added into the samples were in the range of
96.3–101.2%, indicating that this method has good accuracy. For comparison, high performance liquid
chromatography (HPLC) was used as a reference method to determine the content of vanillin in these
samples. As displayed in Table 2, the results obtained by this method are the same as those obtained
by HPLC method. The results proved that the modified electrode has good analytical performance
and can be a feasible sensor for detecting vanillin in commercial food samples.
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Table 1. Comparison with other electrochemical methods for the determination of vanillin.

Electrochemical Sensors Technique Supporting
Electrolyte Linear Range/µM Correlation

Coefficient
Sensitivity
(µA/µM)

Detection
Limit/µM References

a BDD electrode i SWV 0.1 M PBS, pH 2.5 3.3–98 0.999 0.5984
(µA mL µg−1) 0.16 [1]

b AuPd-graphene/GCE j DPV 0.1 M PBS, pH 7.0 0.1−7 and 10−40 0.996 and 0.999 0.113 and 0.0125 0.02 [2]
c CDA/Au–AgNPs/GCE Amperometry 0.1 M PBS, pH 2.0 0.2−50 - - 0.04 [9]

disposable screen-printed
electrode SWV 0.1 M PBS, pH 7.4 5−400 0.9994 0.0265 0.4 [10]

graphene/GCE DPV Na2HPO4−
C6H8O7 buffer, pH 5.0 0.6−48 0.9996 0.1523 0.056 [11]

d MWCNTs-TAPcCo/GCE SWV 0.1 M PBS, pH 7.2 4.2−5000 0.9993 0.04725 0.44 [12]
e Ag-Pd/GO/GCE DPV 0.1 M PBS, pH 6.0 0.02–45 0.9933 0.5733 0.005 [13]

f Ag NPs/GN/GCE SWV 0.1 M PBS, pH 6.98 2−100 0.998 0.959 0.332 [14]

g MFG/GCE DPV B–R buffer
(pH 1.81) 0.03−8 0.995 0.5733 0.0015 [15]

h GR-PVP/ABPE
Derivative

Voltammetry 0.1 M H3PO4

0.02−2.0,
2.0−40,
40−100

0.9985,
0.9959,
0.9985

0.1714;
0.0805;
0.0269

0.01 [16]

Cu2O-ERGO/GCE Derivative
Voltammetry 0.1 M H2SO4 0.1−10; 10−100 0.9995

0.9953 2.5222; 0.6394 0.01 This work

a Boron-doped diamond electrode; b Au-Pd nanoparticles−graphene composite modified glassy carbon electrode; c cellulose diacetate/Au–Ag alloy nanoparticlesmodified
glassy carbon electrode; d multi-walled carbon nanotubes chemically modified by 2,9,16,23-tetraaminophthalocyaninatocobalt modified glassy carbon electrode; e Ag-Pd
bimetallic nanoparticles–decoratedgraphene oxide modified glassy carbon electrode; f novel silver nanoplates/graphene compositemodified glassy carbon electrode; g manganese
dioxidenanoflowers–graphene oxidemodified glassy carbon electrode; h graphene–polyvinylpyrrolidone composite filmmodified glassy carbon electrode; i square-wave voltammetry;
j differential pulse voltammetry.
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Table 2. Determination of vanillin in food samples (n = 4). HPLC—high performance liquid chromatography.

Sample a Found b/µM Added/µM Total Found b/µM Recovery/% Content b/µg g−1 Content Determined by
HPLC b/µg g−1

Biscuit 0.84 (±0.04) 0.80 1.61 (±0.03) 96.3 25.56 (±1.10) 25.34 (±1.24)
Chocolate 6.18 (±0.24) 6.00 12.25 (±0.11) 101.2 188.04 (±7.17) 187.81 (±6.86)

Candy 1.27 (±0.06) 1.00 2.25 (±0.17) 98.0 38.64 (±1.72) 38.95 (±1.54)
custard 5.32 (±0.22) 5.00 10.16 (±0.47) 96.8 161.87 (±6.69) 161.52 (±5.70)

a All samples were collected from local supermarkets. b Average ± confidence interval, the confidence level is 95%.
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4. Conclusions

In this work, a homogeneous dispersion was obtained by dispersing cuprous oxide nanoparticles
into graphene oxide solution, and a uniform cast film of Cu2O NPs-ERGO was achieved via
electroreduction method. Compared with bare GCE and ERGO/GCE, the oxidation peak current
of vanillin was significantly increased and the oxidation overpotential was decreased at the
Cu2O NPs-ERGO/GCE. The electrochemical behavior of vanillin on the modified electrode is an
absorption-controlled process, involving two electrons with two proton transfers. The peak current
was linearly related to the concentration of vanillin, ranging from 0.1 µM–10 µM and 10 µM–100 µM,
and the detection limit was 10 nM (S/N = 3). The prepared Cu2O NPs-ERGO/GCE not only had
strong catalytic activity for vanillin oxidation, but also provided significant quantitatively reproducible
analytical performance. This newly developed method has some obvious advantages such as simplicity,
quick response, high sensitivity, and low cost.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/9/2762/
s1.
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