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Abstract: Machine learning has emerged with big data technologies and high-performance computing
to create new opportunities for data intensive science in the multi-disciplinary agri-technologies
domain. In this paper, we present a comprehensive review of research dedicated to applications
of machine learning in agricultural production systems. The works analyzed were categorized in
(a) crop management, including applications on yield prediction, disease detection, weed detection
crop quality, and species recognition; (b) livestock management, including applications on animal
welfare and livestock production; (c) water management; and (d) soil management. The filtering
and classification of the presented articles demonstrate how agriculture will benefit from machine
learning technologies. By applying machine learning to sensor data, farm management systems are
evolving into real time artificial intelligence enabled programs that provide rich recommendations
and insights for farmer decision support and action.

Keywords: crop management; water management; soil management; livestock management; artificial
intelligence; planning; precision agriculture

1. Introduction

Agriculture plays a critical role in the global economy. Pressure on the agricultural system will
increase with the continuing expansion of the human population. Agri-technology and precision
farming, now also termed digital agriculture, have arisen as new scientific fields that use data
intense approaches to drive agricultural productivity while minimizing its environmental impact.
The data generated in modern agricultural operations is provided by a variety of different sensors that
enable a better understanding of the operational environment (an interaction of dynamic crop, soil,
and weather conditions) and the operation itself (machinery data), leading to more accurate and faster
decision making.

Machine learning (ML) has emerged together with big data technologies and high-performance
computing to create new opportunities to unravel, quantify, and understand data intensive processes
in agricultural operational environments. Among other definitions, ML is defined as the scientific field
that gives machines the ability to learn without being strictly programmed [1]. Year by year, ML applies
in more and more scientific fields including, for example, bioinformatics [2,3], biochemistry [4,5],
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medicine [6–8], meteorology [9–11], economic sciences [12–14], robotics [15,16], aquaculture [17,18],
and food security [19,20], and climatology [21].

In this paper, we present a comprehensive review of the application of ML in agriculture.
A number of relevant papers are presented that emphasise key and unique features of popular
ML models. The structure of the present work is as follows: the ML terminology, definition, learning
tasks, and analysis are initially given in Section 2, along with the most popular learning models and
algorithms. Section 3 presents the implemented methodology for the collection and categorization of
the presented works. Finally, in Section 4, the advantages derived from the implementation of ML in
agri-technology are listed, as well as the future expectations in the domain.

Because of the large number of abbreviations used in the relative scientific works, Tables 1–4 list
the abbreviations that appear in this work, categorized to ML models, algorithms, statistical measures,
and general abbreviations, respectively.

Table 1. Abbreviations for machine learning models.

Abbreviation Model

ANNs artificial neural networks
BM bayesian models
DL deep learning
DR dimensionality reduction
DT decision trees
EL ensemble learning

IBM instance based models
SVMs support vector machines

Table 2. Abbreviations for machine learning algorithms.

Abbreviation Algorithm

ANFIS adaptive-neuro fuzzy inference systems
Bagging bootstrap aggregating

BBN bayesian belief network
BN bayesian network

BPN back-propagation network
CART classification and regression trees

CHAID chi-square automatic interaction detector
CNNs convolutional neural networks

CP counter propagation
DBM deep boltzmann machine
DBN deep belief network
DNN deep neural networks
ELMs extreme learning machines

EM expectation maximisation
ENNs ensemble neural networks
GNB gaussian naive bayes

GRNN generalized regression neural network
KNN k-nearest neighbor
LDA linear discriminant analysis

LS-SVM least squares-support vector machine
LVQ learning vector quantization
LWL locally weighted learning

MARS multivariate adaptive regression splines
MLP multi-layer perceptron
MLR multiple linear regression
MOG mixture of gaussians
OLSR ordinary least squares regression
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Table 2. Cont.

Abbreviation Algorithm

PCA principal component analysis
PLSR partial least squares regression
RBFN radial basis function networks

RF random forest
SaE-ELM self adaptive evolutionary-extreme learning machine

SKNs supervised kohonen networks
SOMs self-organising maps

SPA-SVM successive projection algorithm-support vector machine
SVR support vector regression

Table 3. Abbreviations for statistical measures for the validation of machine learning algorithms.

Abbreviation Measure

APE average prediction error
MABE mean absolute bias error
MAE mean absolute error

MAPE mean absolute percentage error
MPE mean percentage error
NS nash-sutcliffe coefficient
R radius
R2 coefficient of determination

RMSE root mean squared error
RMSEP root mean square error of prediction

RPD relative percentage difference
RRMSE average relative root mean square error

Table 4. General abbreviations.

Abbreviation

AUS aircraft unmanned system
Cd cadmium

FBG fiber bragg grating
HSV hue saturation value color space

K potassium
MC moisture content
Mg magnesium
ML machine learning

NDVI normalized difference vegetation index
NIR near infrared
OC organic carbon
Rb rubidium

RGB red green blue
TN total nitrogen

UAV unmanned aerial vehicle
VIS-NIR visible-near infrared

2. An Overview on Machine Learning

2.1. Machine Learning Terminology and Definitions

Typically, ML methodologies involves a learning process with the objective to learn from
“experience” (training data) to perform a task. Data in ML consists of a set of examples. Usually,
an individual example is described by a set of attributes, also known as features or variables. A feature
can be nominal (enumeration), binary (i.e., 0 or 1), ordinal (e.g., A+ or B−), or numeric (integer, real
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number, etc.). The performance of the ML model in a specific task is measured by a performance
metric that is improved with experience over time. To calculate the performance of ML models and
algorithms, various statistical and mathematical models are used. After the end of the learning process,
the trained model can be used to classify, predict, or cluster new examples (testing data) using the
experience obtained during the training process. Figure 1 shows a typical ML approach.
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ML tasks are typically classified into different broad categories depending on the learning type
(supervised/unsupervised), learning models (classification, regression, clustering, and dimensionality
reduction), or the learning models employed to implement the selected task.

2.2. Tasks of Learning

ML tasks are classified into two main categories, that is, supervised and unsupervised learning,
depending on the learning signal of the learning system. In supervised learning, data are presented
with example inputs and the corresponding outputs, and the objective is to construct a general rule that
maps inputs to outputs. In some cases, inputs can be only partially available with some of the target
outputs missing or given only as feedback to the actions in a dynamic environment (reinforcement
learning). In the supervised setting, the acquired expertise (trained model) is used to predict the
missing outputs (labels) for the test data. In unsupervised learning, however, there is no distinction
between training and test sets with data being unlabeled. The learner processes input data with the
goal of discovering hidden patterns.

2.3. Analysis of Learning

Dimensionality reduction (DR) is an analysis that is executed in both families of supervised
and unsupervised learning types, with the aim of providing a more compact, lower-dimensional
representation of a dataset to preserve as much information as possible from the original data. It is
usually performed prior to applying a classification or regression model in order to avoid the effects of
dimensionality. Some of the most common DR algorithms are the following: (i) principal component
analysis [22], (ii) partial least squares regression [23], and (iii) linear discriminant analysis [24].

2.4. Learning Models

The presentation of the learning models in ML is limited to the ones that have been implemented
in works presented in this review.

2.4.1. Regression

Regression constitutes a supervised learning model, which aims to provide the prediction of an
output variable according to the input variables, which are known. Most known algorithms include
linear regression and logistic regression [25], as well as stepwise regression [26]. Also, more complex
regression algorithms have been developed, such as ordinary least squares regression [27], multivariate
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adaptive regression splines [28], multiple linear regression, cubist [29], and locally estimated scatterplot
smoothing [30].

2.4.2. Clustering

Clustering [31] is a typical application of unsupervised learning model, typically used to
find natural groupings of data (clusters). Well established clustering techniques are the k-means
technique [32], the hierarchical technique [33], and the expectation maximisation technique [34].

2.4.3. Bayesian Models

Bayesian models (BM) are a family of probabilistic graphical models in which the analysis is
undertaken within the context of Bayesian inference. This type of model belongs to the supervised
learning category and can be employed for solving either classification or regression problems.
Naive bayes [35], gaussian naive bayes, multinomial naive bayes, bayesian network [36], mixture
of gaussians [37], and bayesian belief network [38] are some of the most prominent algorithms in
the literature.

2.4.4. Instance Based Models

Instance based models (IBM) are memory-based models that learn by comparing new examples
with instances in the training database. They construct hypotheses directly from the data available,
while they do not maintain a set of abstractions, and generate classification or regression predictions
using only specific instances. The disadvantage of these models is that their complexity grows with
data. The most common learning algorithms in this category are the k-nearest neighbor [39], locally
weighted learning [40], and learning vector quantization [41].

2.4.5. Decision Trees

Decision trees (DT) are classification or regression models formulated in a tree-like
architecture [42]. With DT, the dataset is progressively organized in smaller homogeneous subsets
(sub-populations), while at the same time, an associated tree graph is generated. Each internal node
of the tree structure represents a different pairwise comparison on a selected feature, whereas each
branch represents the outcome of this comparison. Leaf nodes represent the final decision or prediction
taken after following the path from root to leaf (expressed as a classification rule). The most common
learning algorithms in this category are the classification and regression trees [43], the chi-square
automatic interaction detector [44], and the iterative dichotomiser [45].

2.4.6. Artificial Neural Networks

Artificial neural networks (ANNs) are divided into two categories; “Traditional ANNs” and
“Deep ANNs”.

ANNs are inspired by the human brain functionality, emulating complex functions such as
pattern generation, cognition, learning, and decision making [46]. The human brain consists of billions
of neurons that inter-communicate and process any information provided. Similarly, an ANN as a
simplified model of the structure of the biological neural network, consists of interconnected processing
units organized in a specific topology. A number of nodes are arranged in multiple layers including
the following:

1. An input layer where the data is fed into the system,
2. One or more hidden layers where the learning takes place, and
3. An output layer where the decision/prediction is given.
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ANNs are supervised models that are typically used for regression and classification problems.
The learning algorithms commonly used in ANNs include the radial basis function networks [47],
perceptron algorithms [48], back-propagation [49], and resilient back-propagation [50]. Also, a large
number of ANN-based learning algorithms have been reported, such as counter propagation
algorithms [51], adaptive-neuro fuzzy inference systems [52], autoencoder, XY-Fusion, and supervised
Kohonen networks [53], as well as Hopfield networks [54], multilayer perceptron [55], self-organising
maps [56], extreme learning machines [57], generalized regression neural network [58], ensemble neural
networks or ensemble averaging, and self-adaptive evolutionary extreme learning machines [59].

Deep ANNs are most widely referred to as deep learning (DL) or deep neural networks
(DNNs) [60]. They are a relatively new area of ML research allowing computational models that
are composed of multiple processing layers to learn complex data representations using multiple
levels of abstraction. One of the main advantages of DL is that in some cases, the step of feature
extraction is performed by the model itself. DL models have dramatically improved the state-of-the-art
in many different sectors and industries, including agriculture. DNN’s are simply an ANN with
multiple hidden layers between the input and output layers and can be either supervised, partially
supervised, or even unsupervised. A common DL model is the convolutional neural network (CNN),
where feature maps are extracted by performing convolutions in the image domain. A comprehensive
introduction on CNNs is given in the literature [61]. Other typical DL architectures include deep
Boltzmann machine, deep belief network [62], and auto-encoders [63].

2.4.7. Support Vector Machines

Support vector machines (SVMs) were first introduced in the work of [64] on the foundation of
statistical learning theory. SVM is intrinsically a binary classifier that constructs a linear separating
hyperplane to classify data instances. The classification capabilities of traditional SVMs can be
substantially enhanced through transformation of the original feature space into a feature space of
a higher dimension by using the “kernel trick”. SVMs have been used for classification, regression,
and clustering. Based on global optimization, SVMs deal with overfitting problems, which appear
in high-dimensional spaces, making them appealing in various applications [65,66]. Most used SVM
algorithms include the support vector regression [67], least squares support vector machine [68],
and successive projection algorithm-support vector machine [69].

2.4.8. Ensemble Learning

Ensemble learning (EL) models aim at improving the predictive performance of a given statistical
learning or model fitting technique by constructing a linear combination of simpler base learner.
Considering that each trained ensemble represents a single hypothesis, these multiple-classifier systems
enable hybridization of hypotheses not induced by the same base learner, thus yielding better results in
the case of significant diversity among the single models. Decision trees have been typically used as the
base learner in EL models, for example, random forest [70], whereas a large number of boosting and
bagging implementations have been also proposed, for example, boosting technique [71], adaboost [72],
and bootstrap aggregating or bagging algorithm [73].

3. Review

The reviewed articles have been, on a first level, classified in four generic categories; namely, crop
management, livestock management, water management, and soil management. The applications of
ML in the crop section were divided into sub-categories including yield prediction, disease detection,
weed detection crop quality, and species recognition. The applications of ML in the livestock section
were divided into two sub-categories; animal welfare and livestock production.
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The search engines implemented were Scopus, ScienceDirect and PubMed. The selected articles
regard works presented solely in journal papers. Climate prediction, although very important for
agricultural production, has not been included in the presented review, considering the fact that ML
applications for climate prediction is a complete area by itself. Finally, all articles presented here regard
the period from 2004 up to the present.

3.1. Crop Management

3.1.1. Yield Prediction

Yield prediction, one of the most significant topics in precision agriculture, is of high importance
for yield mapping, yield estimation, matching of crop supply with demand, and crop management to
increase productivity. Examples of ML applications include in those in the works of [74]; an efficient,
low-cost, and non-destructive method that automatically counted coffee fruits on a branch. The method
calculates the coffee fruits in three categories: harvestable, not harvestable, and fruits with disregarded
maturation stage. In addition, the method estimated the weight and the maturation percentage of the
coffee fruits. The aim of this work was to provide information to coffee growers to optimise economic
benefits and plan their agricultural work. Another study that used for yield prediction is that by
the authors of [75], in which they developed a machine vision system for automating shaking and
catching cherries during harvest. The system segments and detects occluded cherry branches with
full foliage even when these are inconspicuous. The main aim of the system was to reduce labor
requirements in manual harvesting and handling operations. In another study [76], authors developed
an early yield mapping system for the identification of immature green citrus in a citrus grove under
outdoor conditions. As all other relative studies, the aim of the study was to provide growers with
yield-specific information to assist them to optimise their grove in terms of profit and increased yield.
In another study [77], the authors developed a model for the estimation of grassland biomass (kg dry
matter/ha/day) based on ANNs and multitemporal remote sensing data. Another study dedicated
to yield prediction, and specifically to wheat yield prediction, was presented in another study [78].
The developed method used satellite imagery and received crop growth characteristics fused with
soil data for a more accurate prediction. The authors of [79] presented a method for the detection of
tomatoes based on EM and remotely sensed red green blue (RGB) images, which were captured by an
unmanned aerial vehicle (UAV). Also, in the work of [80], authors developed a method for the rice
development stage prediction based on SVM and basic geographic information obtained from weather
stations in China. Finally, a generalized method for agricultural yield predictions, was presented in
another study [81]. The method is based on an ENN application on long-period generated agronomical
data (1997–2014). The study regards regional predictions (specifically in in Taiwan) focused on the
supporting farmers to avoid imbalances in market supply and demand caused or hastened by harvest
crop quality.

Table 5 summarizes the above papers for the case of yield prediction sub-category.
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Table 5. Crop: yield prediction table.

Article Crop Observed Features Functionality Models/Algorithms Results

[74] Coffee Forty-two (42) color features in digital
images illustrating coffee fruits

Automatic count of coffee
fruits on a coffee branch SVM

Harvestable:

(1) Ripe/overripe: 82.54–87.83%
visibility percentage

(2) Semi-ripe: 68.25–85.36%
visibility percentage

Not harvestable:

(1) Unripe: 76.91–81.39%
visibility percentage

[75] Cherry Colored digital images depicting leaves,
branches, cherry fruits, and the background

Detection of cherry
branches with full foliage BM/GNB 89.6% accuracy

[76] Green citrus

Image features (form 20 × 20 pixels digital
images of unripe green citrus fruits)
such as coarseness, contrast, directionality,
line-likeness, regularity, roughness,
granularity, irregularity, brightness,
smoothness, and fineness

Identification of the number
of immature green citrus
fruit under natural
outdoor conditions

SVM 80.4% accuracy

[77] Grass Vegetation indices, spectral bands of red
and NIR

Estimation of grassland
biomass (kg dry
matter/ha/day) for two
managed grassland farms
in Ireland; Moorepark
and Grange

ANN/ANFIS

Moorepark:
R2 = 0.85
RMSE = 11.07
Grange:
R2 = 0.76
RMSE = 15.35

[78] Wheat Normalized values of on-line predicted soil
parameters and the satellite NDVI

Wheat yield prediction
within field variation ANN/SNKs 81.65% accuracy

[79] Tomato High spatial resolution RGB images
Detection of tomatoes via
RGB images captured
by UAV

Clustering/EM
Recall: 0.6066
Precision: 0.9191
F-Measure: 0.7308
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Table 5. Cont.

Article Crop Observed Features Functionality Models/Algorithms Results

[80] Rice
Agricultural, surface weather, and soil
physico-chemical data with yield or
development records

Rice development stage
prediction and yield
prediction

SVM

Middle-season rice:
Tillering stage:
RMSE (kg h−1 m2) = 126.8
Heading stage:
RMSE (kg h−1 m2) = 96.4
Milk stage:
RMSE (kg h−1 m2) = 109.4
Early rice:
Tillering stage:
RMSE (kg h−1 m2) = 88.3
Heading stage:
RMSE (kg h−1 m2) = 68.0
Milk stage:
RMSE (kg h−1 m2) = 36.4
Late rice:
Tillering stage:
RMSE (kg h−1 m2) = 89.2
Heading stage:
RMSE (kg h−1 m2) = 69.7
Milk stage:
RMSE (kg h−1 m2) = 46.5

[81] General Agriculture data: meteorological,
environmental, economic, and harvest

Method for the accurate
analysis for agricultural
yield predictions

ANN/ENN and
BPN based 1.3% error rate
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3.1.2. Disease Detection

Disease detection and yield prediction are the sub-categories with the higher number of articles
presented in this review. One of the most significant concerns in agriculture is pest and disease
control in open-air (arable farming) and greenhouse conditions. The most widely used practice
in pest and disease control is to uniformly spray pesticides over the cropping area. This practice,
although effective, has a high financial and significant environmental cost. Environmental impacts
can be residues in crop products, side effects on ground water contamination, impacts on local
wildlife and eco-systems, and so on. ML is an integrated part of precision agriculture management,
where agro-chemicals input is targeted in terms of time and place. In the literature [82], a tool
is presented for the detection and discrimination of healthy Silybum marianum plants and those
infected by smut fungus Microbotyum silybum during vegetative growth. In the work of [83], authors
developed a new method based on image processing procedure for the classification of parasites
and the automatic detection of thrips in strawberry greenhouse environment, for real-time control.
The authos of [84] presented a method for detection and screening of Bakanae disease in rice seedlings.
More specifically, the aim of the study was the accurate detection of pathogen Fusarium fujikuroi for
two rice cultivars. The automated detection of infected plants increased grain yield and was less
time-consuming compared with naked eye examination.

Wheat is one of the most economically significant crops worldwide. The last five studies presented
in this sub-category are dedicated to the detection and discrimination between diseased and healthy
wheat crops. The authors of [85] developed a new system for the detection of nitrogen stressed,
and yellow rust infected and healthy winter wheat canopies based on hierarchical self-organizing
classifier and hyperspectral reflectance imaging data. The study aimed at the accurate detection of these
categories for a more effective usage of fungicides and fertilizers according to the plant’s needs. In the
next case study [86], the development of a system was presented that automatically discriminated
between water stressed Septoria tritici infected and healthy winter wheat canopies. The approach used
an least squares (LS)-SVM classifier with optical multisensor fusion. The authors of [87] presented a
method to detect either yellow rust infected or healthy wheat, based on ANN models and spectral
reflectance features. The accurate detection of either infected or healthy plants enables the precise
targeting of pesticides in the field. In the work of [88], a real time remote sensing system is presented
for the detection of yellow rust infected and healthy wheat. The system is based on a self-organising
map (SOM) neural network and data fusion of hyper-spectral reflection and multi-spectral fluorescence
imaging. The goal of the study was the accurate detection, before it can visibly detected, of yellow
rust infected winter wheat cultivar “Madrigal”. Finally, the authors of [89] presented a method for
the simultaneous identification and discrimination of yellow rust infected, and nitrogen stressed and
healthy wheat plants of cultivar “Madrigal”. The approach is based on an SOM neural network and
hyperspectral reflectance imaging. The aim of the study was the accurate discrimination between
the plant stress, which is caused by disease and nutrient deficiency stress under field conditions.
Finally, the author of [90] presented a CNN-based method for the disease detection diagnosis based
on simple leaves images with sufficient accuracy to classify between healthy and diseased leaves in
various plants.

Table 6 summarizes the above papers for the case of the disease detection sub-category.
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Table 6. Crop: disease detection table.

Author Crop Observed Features Functionality Models/Algorithms Results

[82] Silybum marianum
Images with leaf spectra
using a handheld visible
and NIR spectrometer

Detection and
discrimination between
healthy Silybum marianum
plants and those that are
infected by smut fungus
Microbotyum silybum

ANN/XY-Fusion 95.16% accuracy

[83] Strawberry

Region index: ratio of
major diameter to minor
diameter; and color
indexes: hue, saturation,
and intensify

Classification of parasites
and automatic detection
of thrips

SVM MPE = 2.25%

[84] Rice

Morphological and color
traits from healthy and
infected from Bakanae
disease, rice seedlings,
for cultivars Tainan 11
and Toyonishiki

Detection of Bakanae
disease, Fusarium fujikuroi,
in rice seedlings

SVM 87.9% accuracy

[85] Wheat Hyperspectral reflectance
imaging data

Detection of nitrogen
stressed, yellow rust
infected and healthy
winter wheat canopies

ANN/XY-Fusion
Nitrogen stressed: 99.63% accuracy
Yellow rust: 99.83% accuracy
Healthy: 97.27% accuracy

[86] Wheat Spectral reflectance and
fluorescence features

Detection of water
stressed, Septoria tritici
infected, and healthy
winter wheat canopies

SVM/LS-SVM

Four scenarios:

(1) Control treatment, healthy and well
supplied with water: 100% accuracy

(2) Inoculated treatment, with Septoria
tritici and well supplied with water:
98.75% accuracy

(3) Healthy treatment and deficient water
supply: 100% accuracy

(4) Inoculated treatment and deficient
water supply: 98.7% accuracy
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Table 6. Cont.

Author Crop Observed Features Functionality Models/Algorithms Results

[87] Wheat Spectral reflectance
features

Detection of yellow rust
infected and healthy
winter wheat canopies

ANN/MLP Yellow rust infected wheat: 99.4% accuracy
Healthy: 98.9% accuracy

[88] Wheat

Data fusion of
hyper-spectral reflection
and multi-spectral
fluorescence imaging

Detection of yellow rust
infected and healthy
winter wheat under field
circumstances

ANN/SOM Yellow rust infected wheat: 99.4% accuracy
Healthy: 98.7% accuracy

[89] Wheat Hyperspectral
reflectance images

Identification and
discrimination of yellow
rust infected, nitrogen
stressed, and healthy
winter wheat in
field conditions

ANN/SOM
Yellow rust infected wheat: 99.92% accuracy
Nitrogen stressed: 100% accuracy
Healthy: 99.39% accuracy

[90]
Generilized
approach for various
crops (25 in total)

Simple leaves images
of healthy and
diseased plants

Detection and diagnosis
of plant diseases DNN/CNN 99.53% accuracy
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3.1.3. Weed Detection

Weed detection and management is another significant problem in agriculture. Many producers
indicate weeds as the most important threat to crop production. The accurate detection of weeds is
of high importance to sustainable agriculture, because weeds are difficult to detect and discriminate
from crops. Again, ML algorithms in conjunction with sensors can lead to accurate detection and
discrimination of weeds with low cost and with no environmental issues and side effects. ML for
weed detection can enable the development of tools and robots to destroy weeds, which minimise
the need for herbicides. Two studies on ML applications for weed detection issues in agriculture
have been presented. In the first study [91], authors presented a new method based on counter
propagation (CP)-ANN and multispectral images captured by unmanned aircraft systems (UAS) for
the identification of Silybum marianum, a weed that is hard to eradicate and causes major loss on
crop yield. In the second study [92], the authors developed a new method based on ML techniques
and hyperspectral imaging, for crop and weed species recognition. More specifically, the authors
created an active learning system for the recognition of Maize (Zea mayas), as crop plant species
and Ranunculus repens, Cirsium arvense, Sinapis arvensis, Stellaria media, Tarraxacum officinale,
Poa annua, Polygonum persicaria, Urtica dioica, Oxalis europaea, and Medicago lupulina as weed
species. The main goal was the accurate recognition and discrimination of these species for economic
and environmental purposes. In another study [93], the authors developed a weed detection method
based on SVN in grassland cropping.

Table 7 summarizes the above papers for the case of weed detection sub-category.

Table 7. Crop: Weed detection table.

Author Observed Features Functionality Models/Algorithms Results

[91]
Spectral bands of
red, green, and NIR
and texture layer

Detection and
mapping of
Silybum marianum

ANN/CP 98.87% accuracy

[92]
Spectral features
from hyperspectral
imaging

Recognition and
discrimination of
Zea mays and
weed species

ANN/one-class
SOM and
Clustering/one-class
MOG

Zea mays: SOM = 100%
accuracy MOG = 100%
accuracy
Weed species: SOM =
53–94% accuracy
MOG = 31–98% accuracy

[93]
Camera images of
grass and various
weeds types

Reporting on
performance of
classification
methods for grass
vs. weed detection

SVN

97.9% Again Rumex
classification6
94.65% Urtica
classification
95.1% for mixed
weed and mixed
weather conditions

3.1.4. Crop Quality

The penultimate sub-category for the crop category is studies developed for the identification
of features connected with the crop quality. The accurate detection and classification of crop quality
characteristics can increase product price and reduce waste. In the first study [94], the authors presented
and developed a new method for the detection and classification of botanical and non-botanical
foreign matter embedded inside cotton lint during harvesting. The aim of the study was quality
improvement while the minimising fiber damage. Another study [95] regards pears production and,
more specifically, a method was presented for the identification and differentiation of Korla fragrant
pears into deciduous-calyx or persistent-calyx categories. The approach applied ML methods with
hyperspectral reflectance imaging. The final study for this sub-category was by the authors of [96],
in which a method was presented for the prediction and classification of the geographical origin for
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rice samples. The method was based on ML techniques applied on chemical components of samples.
More specifically, the main goal was the classification of the geographical origin of rice, for two
different climate regions in Brazil; Goias and Rio Grande do Sul. The results showed that Cd, Rb, Mg,
and K are the four most relevant chemical components for the classification of samples.

Table 8 summarizes the above presented articles.

Table 8. Crop: crop quality table.

Author Crop Observed Features Functionality Models/Algorithms Results

[94] Cotton

Short wave infrared
hyperspectral
transmittance images
depicting cotton along
with botanical and
non-botanical types of
foreign matter

Detection and
classification of common
types of botanical and
non-botanical foreign
matter that are embedded
inside the cotton lint

SVM

According to the
optimal selected
wavelengths,
the classification
accuracies are over
95% for the spectra
and the images.

[95] Pears Hyperspectral
reflectance imaging

Identification and
differentiation of Korla
fragrant pears into
deciduous-calyx or
persistent-calyx categories

SVM/SPA-SVM

Deciduous-calyx pears:
93.3% accuracy
Persistent-calyx pears:
96.7% accuracy

[96] Rice

Twenty (20) chemical
components that were
found in composition of
rice samples with
inductively coupled
plasma mass spectrometry

Prediction and
classification of
geographical origin of a
rice sample

EL/RF 93.83% accuracy

3.1.5. Species Recognition

The last sub-category of crop category is the species recognition. The main goal is the automatic
identification and classification of plant species in order to avoid the use of human experts, as well as
to reduce the classification time. A method for the identification and classification of three legume
species, namely, white beans, red beans, and soybean, via leaf vein patterns has been presented in [97].
Vein morphology carries accurate information about the properties of the leaf. It is an ideal tool for
plant identification in comparison with color and shape.

Table 9 summarizes the above study for the case of species recognition sub-category.

Table 9. Crop: Species recognition.

Author Crop Observed
Features Functionality Models/Algorithms Results

[97] Legume

Vein leaf
images of white
and red beans
as well as and
soybean

Identification and
classification of three
legume species:
soybean, and white
and red bean

DL/CNN

White bean: 90.2%
accuracy
Red bean: 98.3%
accuracy
Soybean: 98.8%
accuracy for five
CNN layers

3.2. Livestock Management

The livestock category consists of two sub-categories, namely, animal welfare and livestock
production. Animal welfare deals with the health and wellbeing of animals, with the main application
of ML in monitoring animal behaviour for the early detection of diseases. On the other hand, livestock
production deals with issues in the production system, where the main scope of ML applications is the
accurate estimation of economic balances for the producers based on production line monitoring.
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3.2.1. Animal Welfare

Several articles are reported to belong to the animal welfare sub-category. In the first article [98],
a method is presented for the classification of cattle behaviour based on ML models using data collected
by collar sensors with magnetometers and three-axis accelerometers. The aim of the study was the
prediction of events such as the oestrus and the recognition of dietary changes on cattle. In the second
article [99], a system was presented for the automatic identification and classification of chewing
patterns in calves. The authors created a system based on ML applying data from chewing signals of
dietary supplements, such as hay and ryegrass, combined with behaviour data, such as rumination
and idleness. Data was collected by optical FBG sensors. In another study [100], an automated
monitoring system based on ML was presented for animal behavior tracking, including tracking of
animal movements by depth video cameras, for monitoring various activities of the animal (standing,
moving, feeding, and drinking).

Table 10 summarizes the features of the above presented articles.

3.2.2. Livestock Production

The sub-category of livestock production regards studies developed for the accurate prediction
and estimation of farming parameters to optimize the economic efficiency of the production system.
This sub-category consists of the presentation of four articles, three with cattle production and one for
hens’ eggs production. In the work of [101], a method for the prediction of the rumen fermentation
pattern from milk fatty acids was presented. The main aim of the study was to achieve the most
accurate prediction of rumen fermentations, which play a significant role for the evaluation of diets for
milk production. In addition, this work showed that milk fatty acids have ideal features to predict
the molar proportions of volatile fatty acids in the rumen. The next study [102] was related to hen
production. Specifically, a method based on SVM model was presented for the early detection and
warning of problems in the commercial production of eggs. Based on SVM methods [103], a method for
the accurate estimation of bovine weight trajectories over time was presented. The accurate estimation
of cattle weights is very important for breeders. The last article of the section [104] deals with the
development of a function for the prediction of carcass weight for beef cattle of the Asturiana de los
Valles breed based on SVR models and zoometric measurements features. The results show that the
presented method can predict carcass weights 150 days prior to the slaughter day. The authors of [105]
presented a method based on convolutional neural networks (CNNs) applied in digital images for
pig face recognition. The main aim of the research was the identification of animals without the need
for radio frequency identification (RFID) tags, which involve a distressing activity for the animal, are
limited in their range, and are a time-consuming method.

Table 11 summarizes the features of the above presented works.

3.3. Water Management

Water management in agricultural production requires significant efforts and plays a significant
role in hydrological, climatological, and agronomical balance.
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Table 10. Livestock: animal welfare.

Author Animal Species Observed Features Functionality Models/Algorithms Results

[98] Cattle

Features like grazing,
ruminating, resting,
and walking, which were
recorded using collar
systems with three-axis
accelerometer and
magnetometer

Classification of
cattle behaviour

EL/Bagging with
tree learner 96% accuracy

[99] Calf

Data: chewing signals
from dietary supplement,
Tifton hay, ryegrass,
rumination, and idleness.
Signals were collected
from optical FBG sensors

Identification and
classification of chewing
patterns in calves

DT/C4.5 94% accuracy

[100] Pigs 3D motion data by using
two depth cameras

Animal tracking and
behavior annotation of the
pigs to measure
behavioral changes in
pigs for welfare and
health monitoring

BM: Gaussian Mixture
Models (GMMs)

Animal tracking: mean multi-object tracking
precision (MOTP) = 0.89 accuracy behavior
annotation: standing: control R2 = 0.94,
treatment R2 = 0.97 feeding: control
R2 = 0.86, treatment R2 = 0.49
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Table 11. Livestock: livestock production table.

Author Animal Species Observed Features Functionality Models/Algorithms Results

[101] Cattle Milk fatty acids
Prediction of rumen
fermentation pattern from
milk fatty acids

ANN/BPN

Acetate:
RMSE = 2.65%
Propionate: RMSE = 7.67%
Butyrate: RMSE = 7.61%

[102] Hens

Six (6) features, which
were created from
mathematical models
related to farm’s egg
production line and
collected over a period
of seven (7) years.

Early detection and
warning of problems in
production curves of
commercial hens eggs

SVM 98% accuracy

[103] Bovine
Geometrical relationships
of the trajectories of
weights along the time

Estimation of cattle
weight trajectories for
future evolution with only
one or a few weights.

SVM

Angus bulls from Indiana Beef Evaluation Program:
weights 1, MAPE = 3.9 + −3.0%
Bulls from Association of Breeder of Asturiana de
los Valles: weights 1, MAPE = 5.3 + −4.4%
Cow from Wokalup Selection Experiment in
Western Australia: weights 1, MAPE = 9.3 + −6.7%

[104] Cattle
Zoometric measurements
of the animals 2 to 222
days before the slaughter

Prediction of carcass
weight for beef cattle 150
days before the slaughter
day

SVM/SVR Average MAPE = 4.27%

[105] Pigs 1553 color images with
pigs faces Pigs face recognition DNNs: Convolutional

Neural Networks (CNNs) 96.7% Accuracy
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This section consists of four studies that were mostly developed for the estimation of daily, weekly,
or monthly evapotranspiration. The accurate estimation of evapotranspiration is a complex process
and is of a high importance for resource management in crop production, as well as for the design
and the operation management of irrigation systems. In another study [106], the authors developed a
computational method for the estimation of monthly mean evapotranspiration for arid and semi-arid
regions. It used monthly mean climatic data of 44 meteorological stations for the period 1951–2010.
In another study dedicated to ML applications on agricultural water management [107], two scenarios
were presented for the estimation of the daily evapotranspiration from temperature data collected
from six meteorological stations of a region during the long period (i.e., 1961–2014). Finally, in another
study [108], authors developed a method based on ELM model fed with temperature data for the
weekly estimation of evapotranspiration for two meteorological weather stations. The purpose was
the accurate estimation of weekly evapotranspiration in arid regions of India based on limited data
scenario for crop water management.

Daily dew point temperature, on the other hand, is a significant element for the identification of
expected weather phenomena, as well as for the estimation of evapotranspiration and evaporation.
In another article [109], a model is presented for the prediction of daily dew point temperature, based
on ML. The weather data were collected from two different weather stations.

Table 12 summarizes the above papers for the case of the water management sub-category.

3.4. Soil Management

The final category of this review concerns ML application on prediction-identification of
agricultural soil properties, such as the estimation of soil drying, condition, temperature, and moisture
content. Soil is a heterogeneous natural resource, with complex processes and mechanisms that are
difficult to understand. Soil properties allow researchers to understand the dynamics of ecosystems
and the impingement in agriculture. The accurate estimation of soil conditions can lead to improved
soil management. Soil temperature alone plays a significant role for the accurate analysis of the
climate change effects of a region and eco-environmental conditions. It is a significant meteorological
parameter controlling the interactive processes between ground and atmosphere. In addition, soil
moisture has an important role for crop yield variability. However, soil measurements are generally
time-consuming and expensive, so a low cost and reliable solution for the accurate estimation of soil
can be achieved with the usage of computational analysis based on ML techniques. The first study for
this last sub-category is the work of [110]. More specifically, this study presented a method for the
evaluation of soil drying for agricultural planning. The method accurately evaluates the soil drying,
with evapotranspiration and precipitation data, in a region located in Urbana, IL of the United States.
The goal of this method was the provision of remote agricultural management decisions. The second
study [111] was developed for the prediction of soil condition. In particular, the study presented the
comparison of four regression models for the prediction of soil organic carbon (OC), moisture content
(MC), and total nitrogen (TN). More specifically, the authors used a visible-near infrared (VIS-NIR)
spectrophotometer to collect soil spectra from 140 unprocessed and wet samples of the top layer of
Luvisol soil types. The samples were collected from an arable field in Premslin, Germany in August
2013, after the harvest of wheat crops. They concluded that the accurate prediction of soil properties
can optimize soil management. In a third study [112], the authors developed a new method based on a
self adaptive evolutionary-extreme learning machine (SaE-ELM) model and daily weather data for
the estimation of daily soil temperature at six different depths of 5, 10, 20, 30, 50, and 100 cm in two
different in climate conditions regions of Iran; Bandar Abbas and Kerman. The aim was the accurate
estimation of soil temperature for agricultural management. The last study [113] presented a novel
method for the estimation of soil moisture, based on ANN models using data from force sensors on a
no-till chisel opener.

Table 13 summarizes the above papers for the case of soil management sub-category.
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Table 12. Water: Water management table.

Author Property Observed Features Functionality Models/Algorithms Results

[106] Evapotranspiration

Data such as maximum,
minimum, and mean
temperature; relative
humidity; solar radiation;
and wind speed

Estimation of monthly
mean reference
evapotranspiration arid
and semi-arid regions

Regression/MARS
MAE = 0.05
RMSE = 0.07
R = 0.9999

[107] Evapotranspiration

Temperature data:
maximum and minimum
temperature, air
temperature at 2 m height,
mean relative humidity,
wind speed at 10 m height,
and sunshine duration

Estimation of daily
evapotranspiration for
two scenarios (six regional
meteorological stations).
Scenario A: Models
trained and tested from
local data of each Station
(2). Scenario B: Models
trained from pooled data
from all stations

(1) Scenario
ANN/ELM

(2) Scenario
ANN/GRNN

(1) Scenario A: RRMSE = 0.198 MAE =
0.267 mm d−1 NS = 0.891

(2) Scenario B: RRMSE = 0.194 MAE =
0.263 mm d−1 NS = 0.895

[108] Evapotranspiration

Locally maximum and
minimum air temperature,
extraterrestrial radiation,
and extrinsic
evapotranspiration

Estimation of weekly
evapotranspiration based
on data from two
meteorological
weather stations

ANN/ELM Station A: RMSE = 0.43 mm d−1

Station B: RMSE = 0.33 mm d−1

[109] Daily dew point
temperature

Weather data such as
average air temperature,
relative humidity,
atmospheric pressure,
vapor pressure,
and horizontal global
solar radiation

Prediction of daily dew
point temperature ANN/ELM

Region case A:
MABE = 0.3240 ◦C
RMSE = 0.5662 ◦C
R = 0.9933
Region case B:
MABE = 0.5203 ◦C
RMSE = 0.6709 ◦C
R = 0.9877
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Table 13. Soil management table.

Author Property Observed Features Functionality Models/Algorithms Results

[110] Soil drying
Precipitation and
potential
evapotranspiration data

Evaluation of soil drying
for agricultural planning IBM/KNN and ANN/BP Both performed with 91–94% accuracy

[111] Soil condition 140 soil samples from top
soil layer of an arable field

Prediction of soil OC, MC,
and TN

SVM/LS-SVM and
Regression/Cubist

OC: RMSEP = 0.062% & RPD = 2.20 (LS-SVM)
MC: RMSEP = 0.457% & RPD = 2.24 (LS-SVM)
TN: RMSEP = 0.071% & RPD = 1.96 (Cubist)

[112] Soil temperature

Daily weather data:
maximum, minimum,
and average air
temperature; global solar
radiation; and
atmospheric pressure.
Data were collected for
the period of 1996–2005
for Bandar Abbas and for
the period of 1998–2004
for Kerman

Estimation of soil
temperature for six (6)
different depths 5, 10, 20,
30, 50, and 100 cm, in two
different in climate
conditions Iranian regions;
Bandar Abbas and
Kerman

ANN/SaE-ELM

Bandar Abbas station:
MABE = 0.8046 to 1.5338 ◦C
RMSE = 1.0958 to 1.9029 ◦C
R = 0.9084 to 0.9893
Kerman station:
MABE = 1.5415 to 2.3422 ◦C
RMSE = 2.0017 to 2.9018 ◦C
R = 0.8736 to 0.9831 depending on the depth

[113] Soil moisture Dataset of forces acting on
a chisel and speed

Estimation of soil
moisture ANN/MLP and RBF

MLP:
RMSE = 1.27%
R2 = 0.79
APE = 3.77%
RBF:
RMSE = 1.30%
R2 = 0.80
APE = 3.75%
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4. Discussion and Conclusions

The number of articles included in this review was 40 in total. Twenty-five (25) of the presented
articles were published in the journal «Computer and Electronics in Agriculture», six were published
in the journal of «Biosystems Engineering», and the rest of the articles were published to the
following journals: «Sensors», «Sustainability», «Real-Time Imagining», «Precision Agriculture»,
«Earth Observations and Remote Sensing», «Saudi Journal of Biological Sciences», «Scientific Reports»,
and «Computers in Industry». Among the articles, eight of them are related to applications of ML
in livestock management, four articles are related to applications of ML in water management, four
are related to soil management, while the largest number of them (i.e., 24 articles) are related to
applications of ML in crop management. Figure 2 presents the distribution of the articles according to
these application domains and to the defined sub-categories.
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Figure 2. Pie chart presenting the papers according to the application domains.

From the analysis of these articles, it was found that eight ML models have been implemented in
total. More specifically, five ML models were implemented in the approaches on crop management,
where the most popular models were ANNs (with most frequent crop at hand—wheat). In livestock
management category, four ML models were implemented, with most popular models being SVMs
(most frequent livestock type at hand—cattle). For water management in particular evapotranspiration
estimation, two ML models were implemented and the most frequently implemented were ANNs.
Finally, in the soil management category, four ML models were implemented, with the most popular
one again being the ANN model. In Figure 3, the eight ML models with their total rates are presented,
and in Figure 4 and Table 14, the ML models for all studies according to the sub-category are
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presented. Finally, in Figure 5 and Table 15, the future techniques that were used according to
each sub-category are presented (it is noting that the figure and table provide the same information in
different demonstration purposes).Sensors 2018, 18, x FOR PEER REVIEW    24 of 31 
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Table 14. The total number of ML models according to each sub-category of the four main categories.

ML Models Per Section
Crop Livestock Water Soil

Model Yield
Prediction

Disease
Detection

Weed
Detection

Crop
Quality

Species
Recognition

Animal
Welfare

Livestock
Production

Water
Management

Soil
Management

Bayesian
models 1 1

Support
vector

machines
3 3 1 3 3 1

Ensemble
learning 1 1

Artificial &
Deep

neural
networks

3 6 2 1 2 4 4

Regression 1 1
Instance

based
models

1

Decision
trees 1

Clustering 1 1
Total 8 9 4 4 1 3 5 5 7

Sensors 2018, 18, x FOR PEER REVIEW    25 of 31 

 

Table 14. The total number of ML models according to each sub‐category of the four main categories. 

ML Models Per Section 

Model 

Crop  Livestock  Water  Soil   

Yield 

Prediction 

Disease 

Detection 

Weed 

Detection 

Crop 

Quality 

Species 

Recognition 

Animal 

Welfare 

Livestock 

Production 

Water 

Management 

Soil 

Management 

Bayesian 

models 
1              1          

Support vector 

machines 
3  3  1  3        3     1 

Ensemble 

learning 
         1     1          

Artificial & 

Deep neural 

networks 

3  6  2     1     2  4  4 

Regression                       1  1 

Instance based 

models 
                        1 

Decision trees                 1          

Clustering  1     1                   

Total  8  9  4  4  1  3  5  5  7 

 

Figure  5.  Data  resources  usage  according  to  each  sub‐category.  NDVI—normalized  difference 

vegetation index; NIR—near infrared. 

Table 15. Data resources usage according to each sub‐category. 

Feature Collection 

Feature 

Technique 

Crop  Livestock  Water  Soil 

Yield 

Prediction 

Disease 

Detection 

Weed 

Detection 

Crop 

Quality 

Species 

recognition 

Animal 

Welfare 

Livestock 

Production 

Water 

Management 

Soil 

Management 

Digital images 

and color 

indexes 

4  3  1     1  1  1       

NIR  1  1  1                   

NDVI  1                         

Data records  2  2     1     2  4  4  4 

Spectral     2  2                   

Hyperspectral     4  1  2                

Fluoresence     2                      

  

Figure 5. Data resources usage according to each sub-category. NDVI—normalized difference
vegetation index; NIR—near infrared.

Table 15. Data resources usage according to each sub-category.

Feature Collection
Crop Livestock Water SoilFeature

Technique Yield
Prediction

Disease
Detection

Weed
Detection

Crop
Quality

Species
recognition

Animal
Welfare

Livestock
Production

Water
Management

Soil
Management

Digital
images and

color
indexes

4 3 1 1 1 1

NIR 1 1 1
NDVI 1

Data records 2 2 1 2 4 4 4
Spectral 2 2

Hyperspectral 4 1 2
Fluoresence 2
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From the above figures and tables, we show that ML models have been applied in multiple
applications for crop management (61%); mostly yield prediction (20%) and disease detection (22%).
This trend in the applications distribution reflects the data intense applications within crop and
high use of images (spectral, hyperspectral, NIR, etc.). Data analysis, as a mature scientific field,
provides the ground for the development of numerous applications related to crop management
because, in most cases, ML-based predictions can be extracted without the need for fusion of data from
other resources. In contrast, when data recordings are involved, occasionally at the level of big data,
the implementations of ML are less in number, mainly because of the increased efforts required for
the data analysis task and not for the ML models per se. This fact partially explains the almost equal
distribution of ML applications in livestock management (19%), water management (10%), and soil
management (10%). It is also evident from the analysis that most of the studies used ANN and SVM
ML models. More specifically, ANNs were used mostly for implementations in crop, water, and soil
management, while SVMs were used mostly for livestock management.

By applying machine learning to sensor data, farm management systems are evolving into real
artificial intelligence systems, providing richer recommendations and insights for the subsequent
decisions and actions with the ultimate scope of production improvement. For this scope, in the future,
it is expected that the usage of ML models will be even more widespread, allowing for the possibility
of integrated and applicable tools. At the moment, all of the approaches regard individual approaches
and solutions and are not adequately connected with the decision-making process, as seen in other
application domains. This integration of automated data recording, data analysis, ML implementation,
and decision-making or support will provide practical tolls that come in line with the so-called
knowledge-based agriculture for increasing production levels and bio-products quality.
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