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Abstract: In this paper, we propose an automated calibration system for an eye-tracked autostereoscopic
display (ETAD). Instead of calibrating each device sequentially and individually, our method calibrates
all parameters of the devices at the same time in a fixed environment. To achieve this, we first identify
and classify all parameters by establishing a physical model of the ETAD and describe a rendering
method based on a viewer’s eye position. Then, we propose a calibration method that estimates all
parameters at the same time using two images. To automate the proposed method, we use a calibration
module of our own design. Consequently, the calibration process is performed by analyzing two
images captured by onboard camera of the ETAD and the external camera of the calibration module.
For validation, we conducted two types of experiments, one with simulation for quantitative evaluation,
and the other with a real prototype ETAD device for qualitative assessment. Experimental results
demonstrate the crosstalk of the ETAD was improved to 8.32%. The visual quality was also improved to
30.44% in the peak-signal-to-noise ratio (PSNR) and 40.14% in the structural similarity (SSIM) indexes
when the proposed calibration method is applied. The whole calibration process was carried out within
1.5 s without any external manipulation.

Keywords: autostereoscopic display; automated calibration; camera calibration; eye-tracking

1. Introduction

An autostereoscopic display is a device that allows three-dimensional (3D) perception by
providing different images to each one of a person’s eyes. The biggest advantage of the autostereoscopic
display is that users do not need to wear special equipment such as glasses. During the past
decade, various methods have been studied to implement autostereoscopic display [1,2]. Among
them, an autostereoscopic display with a conventional two-dimensional (2D) flat panel display and an
additional optical layer, which is located in front or at the back of the display panel, has gained the most
commercial success due to its low cost and ease of fabrication [3]. A typical method of stereoscopic
display, which employs an additional optical layer, endows directionality to each pixel by blocking
light paths (for parallax barriers) or by refracting light rays (for lenticular lenses). This method limits
the visibility of pixels to only a specific range of view positions or angles. Located at different view
positions, the left and the right eye see different sets of pixels.

Despite these advantages, several drawbacks prevent the autostereoscopic display from becoming
more prevalent [4,5]. A typical method of stereoscopic display, in which the left and the right views
are repeated alternately, is restricted to a specific viewing area. In the case of two views, the margin
of the correct viewing area is approximately the distance between the eyes. Even if a viewer moves
slightly from the fixed location, the view will transform into a depth-reversed image, referred to as
a pseudoscopic image [6]. Increasing the angular resolution, i.e., the number of views, has been a
promising method to overcome this problem [7]. The concept of the multiview method is based on
showing the user two of several consecutive views, which have disparity over each other, instead of
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the left and the right views. In this case, however, the spatial resolution of each view is inevitably
lowered due to the finite number of pixels. Hence, a tradeoff arises between the angular resolution
and the spatial resolution. In addition, complete separation between all views is challenging, so there
is a crosstalk where several views overlap with each other.

To solve these problems, an eye-tracked autostereoscopic display (ETAD) has been proposed [8–11].
Instead of increasing the number of views, the ETAD uses the left and right views only. To prevent
the user’s eyes from moving out of the correct viewing area, the ETAD employs an additional device,
e.g., a camera or a depth sensor, for detecting and tracking the eye position of a viewer. Using the eye
tracking device, the ETAD ensures that the user’s eyes are always in the correct viewing zones by moving
the optical element mechanically [12], by moving slits on an additional LC display [13,14], or by merging
viewing zones into two views around the viewer’s eyes [6].

To date, there has been various studies to improve the visual quality of the ETAD, which mainly
focus on minimizing crosstalk [4], reducing visual fatigue [15], or estimating the accurate position of a
viewer [16]. These studies implicitly assumed that all parameters of the ETAD are known accurately
or are the same as the designed parameters. In practice, however, parameters of the ETAD are likely
to differ from the designed values for many reasons, especially due to inaccuracy in the production
and the assembly processes. Moreover, the ETAD system, which employs additional devices and
processes, requires parameters that are more accurate because the accumulation of errors from each
device significantly degrades the visual quality. Therefore, parameters of the ETAD must be calibrated
prior to the operation.

Several studies have investigated the calibration of the ETAD. Sandin et al. [17] described a
calibration method of VarrierTM, which consists of multiple autostereoscopic displays with a stereo
camera for user’s head tracking. To calibrate each optical element of the displays, they used external
stereo cameras. However, they did not describe the method for calibrating the pose between the
head tracking camera and the coordinates of each device. Bailer et al. [18] proposed a calibration
method for a moving barrier type ETAD system. In the calibration process, they mapped each pixel
on a captured camera image to the pixels of a display panel. This method is simple to implement;
however, the calibration process should be conducted in a dark room. Moreover, the mapping pixels
between the image and the panel are only valid when the viewer is at a certain distance. In the case
of NintendoTM 3DS, which is commercially available, the calibration is carried out by the user [19].
A user continuously changes parameters while looking at the screen until the optimum visual quality
is achieved.

Thus far, there has been no method to calibrate all parameters of the devices consisting the
ETAD. In calibrating the ETAD, therefore, the most suitable method to date is to calibrate each device
individually and sequentially. Below, we present a calibration example for an ETAD consisting of an
onboard camera for eye tracking, a 2D display panel, and an optical element such as lenticular lenses or
parallax barriers. First, we calibrated an onboard camera by analyzing several images, which capture
patterns of various postures in front of the camera [20]. Then, we calibrated the optical element by
the visual pattern analysis method [21]. This method uses two images of the display, thus requiring
an external camera setup. Finally, the extrinsic pose between the onboard camera and the display
panel should be calibrated. There are few studies on calibrating the extrinsic pose of these two devices.
The second-best method is to apply a similar approach as in [22], in which the extrinsic pose of the
camera and the pattern on a robot are calibrated. Even though we employed this method, problems
still exist. To calibrate the pose of the camera and the pattern looking in the same direction, a mirror
is needed. Furthermore, several movements of the device are required to capture images at various
angles. Applying this approach to the ETAD can lead to a serious problem: parameters of the device
may be changed by repeated movements of the device. In addition, individual calibration methods
have a serious problem. The calibration errors of each device are accumulated and finally affect to the
visual quality. The sequential approach described above is also not suitable for automated calibration.
For automated calibration, an auxiliary manipulator is needed to move calibration patterns or the
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ETAD itself. In terms of mass production, this method increases both cost and processing time of the
device calibration.

For automated calibration of the ETAD, several problems should be solved. It has not been clearly
established which parameters of the ETAD need to be calibrated. A novel methodology would be to
calibrate all of these parameters not individually but simultaneously for cost reduction. To alleviate
parameter change during the calibration process, the method should minimize manipulation or even
calibrate in a fixed environment. In this paper, we introduce an automated calibration method for the
ETAD. The main contributions of this study are as follows:

• We establish the parameters that require calibration. To achieve this, we firstly address the process
of the ETAD from eye tracking to 3D image rendering. To the best of our knowledge, the whole
process of the ETAD has never been explored before.

• We propose a novel methodology, which calibrates all devices of the ETAD. Our calibration
approach is mainly focused on both the automated and the simultaneous calibration. This method
calibrates all parameters at the same time, not sequentially. The proposed method also does not
require the movement of the ETAD or the calibration device, but instead is performed in a fixed
environment. To achieve this goal, we designed and implemented a calibration module that
consists of a 3D pattern and an external camera. The module enabled us to calibrate an ETAD by
simply setting it in front of the calibration module.

The rest of the paper is organized as follows. In Section 2, we establish the parameters of the
ETAD by addressing its physical model and rendering process. Section 3 presents a calibration method,
which estimates all parameters automatically and simultaneously. Then, we experimentally validate
the proposed method in Section 4. Finally, Section 5 concludes the paper.

2. Parameters Establishment

In this section, we establish the parameters of the ETAD that need to be calibrated in two
stages. First, we describe the parameters of the devices that comprise a conventional ETAD.
Here, the conventional ETAD refers to an autostereoscopic device having a camera for eye tracking
and an additional optical layer, e.g., lenticular lenses or parallax barriers, on a 2D flat panel. Note that
parameters are common even though the types of optical layers are different. Then, we describe the
rendering process of the ETAD in order to identify the parameters.

2.1. Physical Model of the ETAD

The parameters of the conventional ETAD devices are represented in Figure 1. The conventional
ETAD consists of three modules: a two-dimensional flat panel, an optical layer, and an eye-tracking
sensor. The two-dimensional flat panel is a collection of pixels and each pixel has a width µw and
height µh. Most of optical layers are lenticular lenses or parallax barriers [23]. In addition, these two
optical layers have common parameters. A pitch p represents the distance between the lens in the case
of lenticular lenses and between the slits in the case of parallax barriers. The slanted angle θ represents
the degree of tilting of the optical layer. The gap τ is the distance of the slit of the barrier or the focal
plane of the lens from the flat panel. The offset parameter η represents the horizontal translation of
the optical layer from the origin of the display coordinate system. An onboard camera is attached
at the top of the display panel for tracking a viewer’s eyes. To reconstruct the three-dimensional
position from a point on an image, intrinsic parameters and distortion parameters of the camera are
used. The intrinsic parameters include focal lengths fx, fy and principal points cx, cy. The parameters
k1, k2, k3, and k4 denote distortion coefficients. There are two coordinate systems: the onboard camera
coordinate system and the display panel coordinate system.
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Figure 1. Parameters of an Eye-Tracked Autostereoscopic Display (ETAD).

2.2. Rendering Process

Basically, the rendering process for the ETAD is considered as an iterative process comprising two
steps: the eye position estimation step and the image-multiplexing step. In the eye position estimation
step, the system estimates the 3D position of the eyes from the image captured by the onboard camera.
Note that the eye detection method is beyond the scope of this study. In the image-multiplexing step,
the system generates a multiplexing image according to the eye positions. Let us describe the iterative
process systematically.

Eye Position Estimation Step: Given the eye positions on a captured image from the onboard
camera, they are derived in the camera coordinate system as[

xµ

yµ

]
=

 sµ−cx
fx

tµ−cy
fy

 , (1)

where sµ and tµ are eye positions on the captured image and xµ, yµ are the corresponding positions
on the onboard camera coordinate system. Note that the subscript µ is either left or right (µ ∈ {l, r})
and the equation containing µ is the same in the left and right cases. The parameters fx, fy are
focal lengths in the x and y directions, respectively, and cx, cy are principal points of the onboard
camera. Commercial camera lenses conventionally have distortion, known as radial and tangential
distortion [24]. We define k1, k2 as the parameters for radial distortion, and k3, k4 as the parameters for
tangential distortion of the camera lens. Using these distortion parameters, the undistorted position of
each eye x′µ, y′µ is derived as[

x′µ
y′µ

]
= (1 + k1r2 + k2r4)

[
xµ

yµ

]
+

[
k3(2xµyµ) + k4(r2 + 2xµ

2)

k3(r2 + 2yµ
2) + k4(2xµyµ)

]
, (2)
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where rµ =
√

x2
µ + y2

µ. Then, we can obtain the ray vectors, which have direction information of both

eyes from the origin of the camera coordinate system. The ray vector vµ which passes through x′µ, y′µ
from the origin of the camera coordinate system Oc can be represented in homogeneous coordinates as

vµ =

x′µ
y′µ
1

 . (3)

Given these back-projected vectors, we finally obtain the three dimensional eye positions ec
l , ec

r as

ec
l =

ψ

‖vl − vr/α‖vl , (4)

ec
r =

ψ

‖αvl − vr‖
vr, (5)

where α is defined as

α =
vT

r φ

vT
l φ

, (6)

Here, we assume that interpupillary distance (IPD) ψ is known and the direction of the face
normal vector φ faces the onboard camera. The proof for Equations (4) and (5) are given in Appendix A
at the end of the paper.

Image Multiplexing Step: In our rendering approach, we can simplify the method of generating
a multiplex image as a problem of assigning labels (left or right) to each pixel. Note, a pixel generally
consists of several sub-pixels. However, here we define the pixels in the smallest unit, i.e., sub-pixels,
as “pixels”. The multiplexed image is generated from the number of viewpoint images, e.g., a two-view
display requires two images: the left and the right image. As described above, all pixels have
directionality by the additional optical layer. Pixels are assigned the “left” label to show the same
intensity value of the left source image if their direction is toward the left eye of the viewer; the same
condition is applicable to the “right” case. On the contrary, we can assign a label to each pixel by
determining whether the pixel’s position is close to the visible pixels of the left eye or those of the right
eye. The slits of the barrier or principle points of a lenticular lens can be expressed as a set of lines;
therefore, the pixels passing through the slit and directed to the left or right eye are also represented
by lines. Here, we would like to define these sets of lines as the visible pixels of the left eyes and those
of the right eyes. Then, we assign a label value that corresponds to the nearest visible line for the all
pixels, not visible directly.

The 3D eye position ec
µ obtained from the captured image is based on the camera coordinate

system; we can convert it into the display coordinate system as[
ed

µ

1

]
= Td

c

[
ec

µ

1

]
(7)

where Td
c is a homogeneous transform matrix from an onboard camera coordinate system to a display

coordinate system. The transform matrix can be represented as

Td
c =

[
Rd

c td
c

0 1

]
, (8)
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which consisting of the transform matrix td
c =

[
tx ty tz

]T
and the rotation matrix Rd

c . The rotation
matrix is defined as

Rd
c =

cos rz cos ry cos rz sin ry sin rx − sin rz cos rx cos ry sin ry cos rx + sin rz sin rx

sin rz cos ry sin rz sin ry sin rx + cos rz cos rx sin rx sin ry cos rz − cos rz cos rx

− sin ry cos ry sin rx cos ry cos rx

 , (9)

where rx, ry, rz are Euler angles in radians.
We define the nth line of the slits of an optical element as Sn; the vector equation is represented as

Sn =

ε + p
cos θ n
0
τ

+ δ

tan θ

1
0

 , (10)

where ε is the offset, θ is the slanted angle, p/ cos θ is the horizontal pitch, and τ is the gap of the
optical layer. The left term of this equation represents the origins of slits, and the right term the
directional vector with an arbitrary real number δ. We obtain the positions of the visible pixel s′n,µ
which is represented as the projected vectors on the panel using the eye positions and the slit vectors as

S′n,µ =
1

zµ − τ

zµ

ε + p
cos θ n
0
τ

− τed
µ

+ δ

tan θ

1
0

 , (11)

where zµ(µ ∈ l, r) is the distance to the left or the right eye. Then, we also express a pixel position of
u, v on the display panel as

Pu,v =

uλw

vλh
0

 , (12)

where λw, λh are the width and height of a pixel, respectively.
We obtain the distances between a pixel P and all visible pixels s′n,µ by the function D, which is

given by

D(Pu,v, S′n,µ) =

Pu,v − 1
zµ−τ

zµ

ε + p
cos θ n
0
τ

− τed
µ


×

tan θ

1
0


∥∥∥∥∥∥∥
tan θ

1
0


∥∥∥∥∥∥∥

, (13)

where × represents the cross product and ‖·‖ denotes the two-norm.
Finally, we determine the label of the pixel by comparing it with the minimum distances to the

left and the right visible pixels as

L(u, v) =

{
“left”, min(D(Pu,v, S′n,l)) < min(D(Pu,v, S′n,r))

“right”, otherwise
. (14)

The pixels with labels “left” have the pixel intensity of those positions on the left source image; the
same applies for the “right” label case. An overview of the calibration process is presented in Figure 2.
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Figure 2. Overview of calibration process using the calibration module. The calibration module consists
of a three-dimensional calibration pattern and an external camera.

2.3. Parameter Classification

As described above, various parameters are required to generate a correct multiplex image
for a certain viewing position. This means that accumulation of small parameter errors can cause
visual quality degradation; therefore, accurate calibration is needed for the ETAD. The parameters are
listed in Table 1. We classify these parameters into two categories: constant and variable parameters.
Constant parameters have absolute values, determined when manufacturing the devices and there is
little variation between the devices. These constant parameters also hardly change with movement.
Therefore, it is sufficient to use designed parameters directly for the constant parameters. The width
and height of the pixel µw, µh, and the pitch of an optical layer p belong to this category.

Table 1. Device parameters for the ETAD rendering process.

Device Parameters Symbols Category

onboard camera
focal length fx, fy variable

principal point cx,cy variable
distortion coefficient k1,k2,k3,k4 variable

display panel pixel width µw constant
pixel height µh constant

optical element

pitch p constant
slanted angle θ variable

gap (thickness) τ variable
offset ε variable

onboard camera pose rotation rx, ry, rz variable
translation tx, ty, tz variable

On the other hand, some parameters, classified as variable parameters, are not only different from
the design value, but even have different values for each ETAD. These errors mainly occur during the
production process of each device. These errors can even increase if the device is not fixed during the
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calibration process. For onboard cameras, focal lengths and principal points, which are dependent
on the pose of the image sensor and the lens, vary from device to device. The radial distortions of
cameras also have different values between each other. Some parameters of the additional optical
layers, such as the slanted angle, the gap, and the offset, are determined in the assembly process with
the display panel, because those parameters are relative to the display coordinates. The relative pose
between the onboard camera coordinate system and the display coordinate system also depends on
how the onboard camera is attached to the display. In our study, therefore, we focus on the calibration
of those “variable parameters”. Based on the classification of parameters, we describe the calibration
method in the next section.

3. Calibration

3.1. Calibration Process

The proposed method uses two images to calibrate all the parameters of the ETAD. One image
is for estimating the parameters of the onboard camera and the other image is for parameters of the
optical layer. To estimate camera parameters, i.e., intrinsic parameters and distortion coefficients,
the onboard camera takes a picture of the calibration pattern. The same applies to calibrating the
optical layer. In this case, the optical layer is a kind of pattern to be captured. Because the viewing angle
of the onboard camera does not include the optical layer, an additional camera is required to capture
the optical layer. In summary, we use two different cameras: the onboard camera and the external
camera; hence, we can capture two images at the same time. To estimate the pose between the onboard
camera and the display panel, we introduce an indirect pose estimation method. As mentioned above,
it is not possible to directly capture the display panel or the optical layer with only the onboard camera.
Some methods use equipment, e.g., mirrors, to capture objects to estimate the pose. These methods
require several images, so a robot or a manipulator that can move the mirror is needed. Alternatively,
the object in front of the mirror should be moved, which would cause parameter changes. Our method
estimates the final pose by combining three poses. Two poses are estimated from two captured images
and have different values for each calibration. The other pose is estimated once and is fixed.

With the proposed calibration method, we can calibrate the ETAD automatically and simultaneously;
however, additional elements are needed: the calibration pattern for the onboard camera and the external
camera to capture the display panel. We designed a calibration module that consists of these two
devices: the calibration pattern and the additional camera, which has a common structure with the
ETAD (see Figure 3). As with the ETAD, the calibration pattern is not included in the viewing angle
of the external camera of the calibration module. Therefore, we placed the ETAD in front of the
calibration module for the calibration process. The onboard camera of the ETAD captures an image of
the calibration pattern of the calibration module. Oppositely, the external camera of the calibration
pattern captures an image of the optical layer with the display pattern. Here, we can estimate the
parameters of the ETAD devices, i.e., the onboard camera and the optical layer, because we know in
advance the parameters of the devices constituting the calibration module.

The block diagram of the calibration process with two images is represented in Figure 4.
When the calibration begins, the onboard camera and the external camera simultaneously capture the
patterns on the opposite side. Using the onboard camera image, the system calibrates the onboard
camera parameters, i.e., fx, fy, cx, cy, k1, k2, k3, k4. At this time, it also estimates the transformation
matrix Tp

c from the calibration pattern coordinate system to the onboard camera coordinate system.
Simultaneously, the system calibrates the optical element parameters, i.e., θ, τ, ε, using the external
camera image. The onboard camera pose, i.e., rx, ry, rz, tx, ty, tz, which also can be represented as the
transformation matrix Td

c is finally calibrated using two estimated transformation matrix Tp
c , Tx

d and
Tp

x calibrated in advance. The details of the calibration method are presented in the following section.
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Figure 3. Overview of the calibration process using the calibration module. The calibration module
consists of a 3D calibration pattern and an external camera.

Figure 4. Block diagram of the calibration process.

3.2. Calibration Method

Onboard camera calibration: The onboard camera parameters are calculated by analyzing the
pattern image of the 3D calibration pattern of the calibration module. We employ Zhang’s camera
calibration method [20] to estimate both intrinsic parameters and distortion parameters of the onboard
camera. The calibration pattern of the calibration module is built such that the three 2D patterns
are orthogonal to each other. Hence, once an image is captured, the system detects a 3D pattern
on the image and split it into three 2D patterns. However, three images are not enough to estimate
accurate parameters using [20]; therefore, we add an orthogonal constraint among the estimated poses
of the three planes. Using the known 3D points and the corresponding points in the captured image,
we estimate the onboard camera parameters and the poses of the plane patterns by minimizing the
following functional:

3

∑
i=1

m

∑
j=1

∥∥mij − m̆
(

fx, fy, cx, cy, k1, k2, k3, k4, Ri, ti, Mj
)∥∥2 − λ

∥∥∥R̂TR̂− I
∥∥∥ (15)
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where the left term denotes reprojection error and the right term denotes the orthogonal constraint
term. In the left term, j represents the index of the points and i represents the index of the 2D patterns.
The function m̆ projects the 3D point Mj of the ith pattern, and mij corresponds to the points on the
image. In the right term, λ is a weight factor; we set this term to 0.01. The matrix R̂ is defined by a
composition of vectors, which are the basis vectors of R1, R2, R3 and can be represented as

R̂ = R1

1 0 0
0 0 0
0 0 0

+ R2

0 0 0
0 1 0
0 0 0

+ R3

0 0 0
0 0 −1
0 0 0

 . (16)

Because the three planes of the calibration pattern are orthogonal, the matrix R̂ also has to
satisfy orthogonality. This means that the product of R̂ and the transpose of R̂ is the identity
matrix I. The optimization is solved using Levenberg–Marquardt nonlinear optimization [25].
The transformation matrix Tc

x can be estimated as

Tc
x =

[
R2 t2

0 1

]
, (17)

because the coordinate system of the second pattern is the same as the 3D calibration pattern coordinate
system (see Figure 5).

(a) (b) (c) (d)

Figure 5. Onboard camera parameter calibration using a 3D calibration pattern of the calibration
module: (a) onboard camera image; (b) the first 2D calibration pattern; (c) the second 2D calibration
pattern; and (d) the third 2D calibration pattern. The red, green, and blue arrows represent the x-, y-,
and z-axis, respectively.

Optical layer calibration: The system calibrates the parameters of the optical layer such as the
pitch, the slanted angle, the gap, and the offset. Our method is mainly based on the visual pattern
analysis method [21], which uses two captured images by an external camera. First, a pattern is
displayed on the panel. This pattern is composed of two vertically striped patterns to avoid ambiguity
between the slanted angle and the pitch. The two vertical stripe patterns have different distances
and different colors, e.g., blue and green, to separate them later. However, the ambiguity between
the gap and the pitch remains. To solve this problem, Hwang et al. [21] captured the pattern images
twice at different distances. They first capture the pattern image at a close distance, then move the
camera and capture the image from a long distance. It is not suitable to apply this method directly
to our system because of the movement of the camera. We propose a revised method to calibrate the
parameters of the optical layer in a fixed environment. The key idea of our method is that we only take
into account three parameters of the optical layer, excluding the pitch because it was classified as a
constant parameter. With the revised method, ambiguities are solved and only one capture image of
the pattern is required to calibrate parameters.

We first displayed the pattern image on the display panel and capture the image using the
external camera. We employed a state-of-the-art method to estimate camera pose called homography
decomposition [26]. We detected positions of the four corners of the display in the captured image
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and found homography between the external camera coordinates and the image coordinates.
The homography can be decomposed into the intrinsic parameters of the external camera and the
camera pose matrix, which is denoted as Td

x in this paper. We assumed the intrinsic parameters of
the extrinsic camera are calibrated in advanced to this process, thus the camera pose matrix Td

x can
be computed by multiplying the inverse of the intrinsic matrix to the homography. Even if we found
the four corners of the pattern area, it is necessary to restore the pattern to its original shape because
the shape of the pattern in the captured image may appear distorted due to the camera rotation.
To calibrate the system with the captured image, a rectification process is needed. We used a simpler
scheme that warps the four corners to the vertices of a rectangle of the display pattern [24].

In the captured image, the original stripe pattern is shown as a lattice pattern (see Figure 6a).
This lattice pattern is generated by the intersection of the two stripes: the stripes of the display pattern
and the stripes of the optical layers. The lattice pattern L can be represented as

L(x, y) =
∞

∑
m=−∞

∞

∑
n=−∞

{
δ(x−mβ) · δ

(
y− 1

tan θ

(
mβ− n

dp
(d− τ) cos θ

))}
, (18)

where δ denotes Dirac’s delta function. In Equation (18), x, y represent the positions on the lattice
pattern, and β denotes the horizontal space of the display pattern. The distance of the external camera
from the display pattern is represented as d. Note, the parameter beta is fixed and the distance d
was obtained when estimating the external camera pose. Therefore, we can estimate parameters of
the optical layer p, τ by analyzing the positions of x, y and then determining optimal values of m, n.
Generally, a 2D lattice in a spatial domain is mapped to another 2D lattice in the frequency domain [27].
In the frequency domain, Equation (18) is transformed into

L̂( fx, fy) = C
∞

∑
m=−∞

∞

∑
n=−∞

{
δ

(
fx −m

1
β
+ n

(d− τ) cos θ

dp

)
· δ
(

fy − n tan θ
(d− τ) cos θ

dp

)}
, (19)

where C denotes a constant scale factor. Estimating a peak point ( fx, fy) of the lattice in the frequency
domain instead of (x, y) in the spatial domain has several advantages. The signal-to-noise ratio (SNR)
around the peak is quite high in the frequency domain; therefore, the position of the peak point is
estimated more accurately. Moreover, noise is well suppressed in the frequency domain [21].

(a) (b)

Figure 6. The captured lattice pattern is represented in: (a) spatial domain; and (b) frequency domain.
( f ∗x , f ∗y ) on the frequency domain is the peak point.
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For estimating the parameters of the optical layers, we first transformed the warped pattern image
I(x, y), which is in the form of a 2D lattice in a spatial domain to a frequency domain image Î( fx, fy)

using the discrete Fourier transform. Then, we estimated a peak point of the lattices in the frequency
domain. To estimate the accurate peak position, the paraboloid fitting was exploited. The parameters
concerned with the display pattern are already known, thus the parameters of the optical layer can
be estimated by decoding the lattice pattern. After detecting the peak point f ∗x , f ∗y in the frequency
domain, the number of stripes m and the number of slits n are estimated as

(m∗, n∗) = arg min
m,n

∣∣∣∣∣p0 −
d− τ0

d

(
n

m/β− f ∗x

)
cos

(
arctan

f ∗y
m/β− f ∗x

)∣∣∣∣∣, (20)

where p0 and τ0 mean the designed pitch and gap, respectively. The selected m and n bring the
estimated pitch closer to the designed one. We determined m∗, n∗ by exhaustive search within the
range 1–20. The slanted angle θ and the gap τ are then derived using the peak points fx, fy and the
selected numbers of m∗, n∗ as

θ = arctan
f ∗y

m∗/β− f ∗x
, (21)

τ = z
(

1− p
cos θ

m∗/β− f ∗x
n∗

)
. (22)

Finally, we generated a lattice pattern using these parameters with zero offset. The offset ε of the
optical element was estimated by measuring the vertical shift between the generated lattice pattern
and the captured pattern.

Onboard camera pose calibration: The onboard camera pose plays an important role because it
converts the three-dimensional position of the viewer’s eyes from the camera coordinate system to
the display coordinate system. For calibrating the onboard camera pose, we propose an indirect pose
estimation method instead of direct pose estimation. As mentioned earlier, the direct pose estimation
has several problems and is not suitable for our method, which aims toward an automated and
simultaneous calibration process. With the indirect pose estimation method, we estimated the pose of
the onboard camera Td

c by multiplying several poses as

Td
c = Td

xTx
pTp

c , (23)

where Td
x and Tp

c are the inverse matrix of Tx
d and Tc

p. Tx
p denotes the pose between the external camera

and the calibration pattern on the calibration module (see Figure 7). Therefore, once the Tx
p is estimated

in advanced to the calibration process, it can be used as a fixed value each time the ETAD is calibrated.
The other poses, such as Td

x and xpTp
c , have different values for each calibration process of the ETAD.

Note, however, that the estimation of these poses is not needed because they are already estimated in
the process of calibrating other devices. Tp

c , which denotes the pose between the onboard camera and
the calibration pattern, is estimated in the process of the onboard camera calibration. Likewise, the pose
between the display coordinate system and the calibration pattern coordinate system Td

x is estimated
in the optical layer calibration process. Therefore, there are no additional processes for estimating the
onboard camera pose without multiplying the already known pose matrix.

The proposed indirect method has two advantages. First, the calibration process performed in
this method is carried out under a fixed environment. Second, no additional devices or processes are
required for estimating the onboard camera calibration, which significantly reduces the calibration
time of the ETAD.
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Figure 7. Coordinate systems with respect to each device of the ETAD. The arrow with solid line is the
direct pose estimation. The arrows with dashed lines are paths of indirect pose estimation.

4. Experiments and Discussion

We conducted two types of experiments to evaluate the performance of the proposed calibration
scheme. First, we evaluated our method on a synthetic dataset by using a simulation tool. The simulation
provides a controlled environment, i.e., we set up the system and obtained images with various parameters.
In this case, the ground-truth parameters are available for the synthetic dataset; therefore, we could
quantitatively measure the estimation error. We also conducted the experiment in the same manner by
adding noise to the original dataset and evaluated the robustness of the proposed method.

Next, we applied the calibration scheme to real-life displays. We used the calibration module that
we designed and built as described in the previous section (see Figure 8).

Figure 8. Calibration module.
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The calibration module contains not only a calibration pattern and an external camera but also
a workstation and a Wi-Fi module. Through Wi-Fi, the ETAD transmits the image of the onboard
camera to the workstation and receives the calibration results. The proposed calibration algorithms
were implemented on a workstation equipped with an Intel Core(TM) i7-4960 processor and 64 GB
of memory. In the case of the real-life ETAD, the actual parameters were relatively different from
the designed ones. However, we could not measure the errors directly because the ground-truth
parameters were unknown. We evaluated the performance in the visual aspect of the observed images.
We prepared a measuring device that mimics a person: a fake face was attached on the stereo cameras.
The ETAD continuously rendered 3D images according to the position of the viewer’s eyes. The stereo
camera captured the left image and the right image. With the captured images, we assessed the visual
quality with two types of evaluation: the first was the measurement of the crosstalk using red-blue
images and the second was the image quality measurement using PSNR and SSIM index [28].

4.1. Simulation Environment

For the synthetic dataset, we built a simulation environment based on a ray-tracing tool
(POV-RAY [29]). The first system was built using the designed parameters listed in Table 2.
We generated 100 datasets by adding or subtracting random values from the designed ones, except
for the pixel width, pixel height, and pitch parameters, which are classified as constant. We also used
constant values for principal points and distortion coefficients for the onboard camera because they
cannot be handled with the simulation tool. In the calibration evaluation, however, few attempts
were made to measure errors of parameters directly instead of measuring the standard deviation
or reprojection error. Thus, we used fixed values for the principal points of the onboard camera
(cx = 960, cy = 480) and set all of the distortion coefficients (k1–k4) to zero. We defined the resolution
of the display panel as 1920 × 1.080 and both pixel sizes µx, µy as 0.0846 mm. For each case of the
datasets, we captured two images, one from the position of the onboard camera and the other from
positions of the external camera of the calibration module. Given the two captured images, we first
simultaneously estimated the onboard camera parameters and pose of the onboard camera, as well as
the optical layer parameters and the pose of the display panel. Then, we finally estimated the onboard
camera pose parameters from the origin of the display panel. The total processing time was 0.8 s.
The estimation results are presented in Table 2. The accuracy of the focal length is comparable to that
of the existing camera calibration method [30], by comparing the standard deviation.

Table 2. Designed parameters and experimental results in the simulation environment.

Device Parameter (Unit)
Designed Estimation Errors

Designed Value Variation Mean of Absolute Error Standard Deviation

onboard camera

fx (pixel/mm) 1506.9 ±40.0 0.9167 0.7122
fy (pixel/mm) 1506.9 ±40.0 0.6045 0.4178

cx (pixel) 960 - - -
cy (pixel) 480 - - -

optical layer

p (mm) 0.01237 - - -
θ (◦) 12.5288 ±1.0 0.0041 0.0031

τ (mm) 0.5 ±0.1 0.0252 0.0175
ε (mm) 0.2 ±0.1 0.0135 0.0087

onboard camera pose

rx (◦) 0 ±1.0 0.9362 0.5986
ry (◦) 0 ±1.0 0.8596 0.6038
rz (◦) 0 ±1.0 0.0160 0.0124

tx (mm) 204.48 ±5.0 0.4171 0.3226
ty (mm) −15.0 ±5.0 0.1804 0.1364
tz (mm) 2.0 ±5.0 0.6030 0.3814

We also evaluated the same dataset with additional noise to verify the robustness of the proposed
algorithm in a noisy environment. We added Gaussian noise from signal-noise-ratio (SNR) 0–10 to
all the generated datasets. Given the 2200 images, we also evaluated the errors of the parameters.
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The result of parameter estimation errors is described in Figure 9. Note, error magnitudes of the
parameters related to the optical element are quite low even with a significant amount of noise. On the
other hand, the translation error of the pose tends to be affected by noise levels up to values greater
than 5 dB of the SNR.
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Figure 9. Mean absolute error for parameter estimation in noisy settings: (a) focal length fx, fy of the
onboard camera; (b) rotational error rx, ry, rz; (c) translational error tx, ty, tz of the pose; (d) angle error
θ; (e) gap error τ; and (f) offset error ε of the optical layer.

4.2. Real System

We also applied the proposed method to a real-life ETAD. The proposed method was applied to a
prototype of the ETAD system that included an 18.5-inch LCD panel with a resolution of 1920 × 1080.
We inserted an additional parallax barrier in front of the display panel. The parameters concerned
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with the calibration module, i.e., external camera parameters and the pose Tp
x were obtained before

beginning the calibration process. Because our calibration process is fully automated, all we had to
do was place the ETAD in front of the calibration module (see Figure 10a). The ETAD was connected
to the calibration module through Wi-Fi. Then, the images were simultaneously captured from the
onboard camera and the external camera. The image of the onboard camera was transmitted to the
workstation in the calibration module. Using the PC in the module, all parameters were estimated and
the results were finally transmitted to the prototype. The overall processing time from connection to
writing parameters onto the tablet was less than 1.46 s. The reason behind the overall processing time
being longer than the simulation processing time is that it takes into consideration the waiting time
after command and image transmission.

(a) (b)

Figure 10. Calibration process: (a) calibration process using the calibration module; and (b) verification
process using a stereo camera with a fake facial image.

After completing the calibration, we performed the visual quality evaluation using the calibrated
parameters. To measure the view of the user, we set up stereo cameras, approximately 65 mm apart,
and attach a printed image of a human face onto the lens shown in Figure 10b. The onboard camera
continuously detected the eyes from the face-mimicking image, and a multiplex image was generated
from a set of left and right images. We set the stereo camera system at different positions with z-axis
values ranging 300–600 mm and performed the above-mentioned process. For every captured image,
we adjusted the color to compensate for the difference of RGB spectra between the display and the
camera.

For the measurement of the crosstalk, we encoded the views based on color, assigning red to the
left, and blue to the right. Ideally, only red pixels are visible on the left image and blue pixels are visible
on the right images. However, if errors of parameters are large, the views are not sufficiently separated,
and a mix of both images is displayed. This effect is referred to as extrinsic crosstalk. We measured the
extrinsic crosstalk according to the scheme described in [31]:

Extrinsic crosstalk(%) =
Incorrect view luminance
Correct view luminance

× 100. (24)

We set four positions of different distances between 300 mm and 600 mm. Then, we captured
100 images at each position and analyzed the crosstalk. Figure 11 shows the left and right captured
images at different camera positions. In the case of no calibration, the left view (red) and the right
view (blue) appear mixed. On the other hand, the left and right views are sufficiently separated when
using the parameters from the proposed method. The results are summarized in Table 3. The average
external crosstalk value was 8.32%, which is within an acceptable range for a two-view autostereoscopic
display [32]. Note, the crosstalks of the no-calibration case are so large that it may be difficult for users
to perceive scenes in 3D.
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(a) (b) (c)

Figure 11. Examples of the two-view image captured at different distances: (a) captured positions of
the stereo camera with a fake facial image; (b) captured images of no-calibration; and (c) captured
images using the proposed method. The images in Rows 1–4 were captured in the positions at the test
positions #1–#4, which are colored in red, green, blue, and magenta in (a), respectively.

Table 3. Crosstalk evaluation of the ETAD using red-blue images.

Distance No Calibration Proposed Method

test position #1 77.5889 7.9029
test position #2 85.7855 8.0671
test position #3 91.0957 8.5187
test position #4 88.1954 8.7885

mean 85.6664 8.3193

We also evaluated the visual quality in terms of PSNR and SSIM index. In this case, the two views
of red–blue are no longer suitable because both metrics need a reference image, which has various
colors and structure. We employed de facto standard datasets to evaluate stereo and multi-view image
quality such as Middlebury stereo dataset [33,34], The Stanford Light Field Archive [35], MIT Synthetic
Light Field Archive [36], and Disney Light Field Archive [37]. From the datasets, we selected eight
images, i.e., Lego Knights, Fish, Flower, Aloe, Motorcycle, Baby3, Couch, and Bicycle1. To obtain
the reference images of the selected ones, we followed the same method proposed in [21]: We first
identified the view corresponding to the camera position. We then displayed the viewpoint image,
which was one of the left or the right image, on the panel. This means that a 2D image was displayed
on the ETAD. Then, we captured the image, which was free from artifacts caused by the other view
image. The evaluation was performed in the same manner, except that we used a multiplexed image
rather than a 2D image.

The results of the visual quality assessment are listed in Table 4. The gains of using the proposed
method over no calibration are large (5.62 dB in PSNR, 0.2 in SSIM index on average). Figure 12 also
shows more details of the results. Similar to the crosstalk evaluation results, two views are mixed in a
view when rendering without calibration. In the images of the no-calibration cases, the edges in the
wall bricks, the fish’s tail, the flower’s petal, the leaf of aloe, the front wheel of the motorcycle, the edge
of ball, the hippo’s eye, and the front wheel of the bicycle are exposed in duplicate. However, we can
verify that those artifacts almost disappear when the proposed method is used.
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Table 4. Visual quality assessment. The shown numbers are the mean and maximum deviations
(in parenthesis) of the PSNR and the SSIM index over four display instances.

Name

PSNR SSIM
(Standard Deviation) (Standard Deviation)

No Calibration Proposed No Calibration Proposed

Lego Knights 18.51 (2.46) 26.25 (0.46) 0.44 (0.02) 0.65 (0.03)

Fish 17.83 (0.64) 22.75 (0.10) 0.56 (0.02) 0.80 (0.03)

Flower 23.62 (0.36) 30.18 (0.30) 0.68 (0.01) 0.92 (0.04)

Aloe 20.55 (1.05) 29.39 (0.59) 0.48 (0.04) 0.80 (0.03)

Motorcycle 19.67 (0.19) 26.05 (0.25) 0.72 (0.01) 0.82 (0.06)

Baby3 24.06 (0.08) 27.61 (0.49) 0.47 (0.03) 0.73 (0.12)

Couch 23.34 (0.15) 29.45 (1.02) 0.67 (0.03) 0.91 (0.17)

Bicycle1 20.07 (0.25) 28.76 (0.89) 0.34 (0.12) 0.88 (0.10)

Figure 12. Cont.
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(a) (b) (c)

Figure 12. Example images observed on a real-life ETAD display. The images Lego Knights,
Fish, Flower, Aloe, Motorcycle, Baby3, Couch, and Bicycle1 (from top to bottom) were rendered
using the parameters from our designed method and the calibration results: (a) reference; (b) no
calibration; and (c) calibration using the proposed method.

5. Conclusions

Despite the ability of the ETAD to fix issues faced by the autostereoscopic displays, the parameters
of the ETAD become more complex and need higher levels of accuracy. In terms of mass production,
the calibration process is essential for devices whose parameters deviate from designed ones. In this
paper, we propose an efficient calibration method to estimate all variable parameters of the ETAD.

First, we determined the required parameters of the ETAD system and classified the parameters
based on their ability to be misaligned during the assembly process. To fix the parameter errors,
we proposed a simultaneous estimation algorithm using two images. For the automated process,
we designed a calibration module comprising a pattern and an external camera. By using the module,
the entire calibration process can be carried out in fixed environments, thus avoiding the need of any
external manipulation. Experimental results obtained by evaluating the proposed method using a
synthesis dataset show that the proposed method minimized the estimated parameter errors to within
1 s. Using a real ETAD prototype, rendering with the calibrated parameters limited the crosstalk to
under 8.5%. The visual quality was also improved to 30.44% in PSNR and 40.14% in SSIM index by
using the proposed method.
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Appendix A.

Appendix A.1. Eye Position Estimation

Given the unit vectors vl = [x′l , y′l , 1]T and vr = [x′r, y′r, 1]T, we can define the 3D positions of the
left and right eye ec

l , ec
r as

ec
l = κlvl , (A1)
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ec
r = κrvr, (A2)

where κ is distance to each eye. The distance of two eyes is equal to IPD ψ and defined as

ψ = ‖κlvl − κrvr‖ . (A3)

The vector passing through the two eyes is orthogonal to face normal vector φ and is represented as

(κlvl − κrvr) · φ = 0, (A4)

where · represents the inner product. We assumed that the viewer is watching at the center of the
camera, therefore, the face normal vector has the inverse direction of the vl , vr as

φ =
vl + vr

‖vl + vr‖
. (A5)

From Equation (A6), we obtain

κl =
vrΦ
vlΦ

κr. (A6)

By replacing with α, which is defined in Equation (6), Equation (A6) can be rewritten as

κl = ακr, (A7)

κr = κl/α. (A8)

We insert this into Equation (A3) to obtain the distance parameter as

κl =
Ψ

‖vl − vr/α‖ , (A9)

κr =
Ψ

‖αvl − vr‖
. (A10)

finally, we can rewrite the eye positions (A1) and (A3) as follows,

ec
l =

Ψ
‖vl − vr/α‖vl , (A11)

ec
r =

Ψ
‖αvl − vr‖

vr. (A12)
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