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Abstract: In the last few years, estimating ground reaction forces by means of wearable sensors has
come to be a challenging research topic paving the way to kinetic analysis and sport performance
testing outside of labs. One possible approach involves estimating the ground reaction forces from
kinematic data obtained by inertial measurement units (IMUs) worn by the subject. As estimating
kinetic quantities from kinematic data is not an easy task, several models and protocols have been
developed over the years. Non-wearable sensors, such as optoelectronic systems along with force
platforms, remain the most accurate systems to record motion. In this review, we identified, selected
and categorized the methodologies for estimating the ground reaction forces from IMUs as proposed
across the years. Scopus, Google Scholar, IEEE Xplore, and PubMed databases were interrogated
on the topic of Ground Reaction Forces estimation based on kinematic data obtained by IMUs.
The identified papers were classified according to the methodology proposed: (i) methods based on
direct modelling; (ii) methods based on machine learning. The methods based on direct modelling
were further classified according to the task studied (walking, running, jumping, etc.). Finally,
we comparatively examined the methods in order to identify the most reliable approaches for the
implementation of a ground reaction force estimator based on IMU data.

Keywords: biomechanical modelling; ground reaction forces; inertial measurements; inertial
measurement units (IMU); kinetics; machine learning; wearable sensors

1. Introduction

Measuring three-dimensional ground reaction forces (GRF), moments (GRM) and centre of
pressure (CoP), as well as other biomechanical parameters, is a topic of great interest for the
functional evaluation and biomechanics studies. The most common clinical exam, the Gait Analysis,
requires the measurement of the walking kinematics and its boundary conditions represented by GRF,
GRM and CoP [1]. Studying the GRF during sportive tasks, such as running, is important as many
lower limb injuries have been associated with “overuse phenomena” resulting from the repeated
impact loading of the foot [2,3]. The running or sportive performance may also be influenced by the
type of surface on which it takes place, as it affects the load distribution. E.g. higher peak pressures
were observed on asphalt at the central and lateral rearfoot while in the case of natural grass contact
time and contact area were significantly greater at the central rearfoot [4]. Measuring GRF in sportive
trials such as jumping or running is not an easy task, as the absolute value of recorded force may be as
great as ~3–5-times the body weight (BW) [2,5]. Therefore, measurement protocols and sensors should
be carefully designed to respect such ranges.

The state of the art method to measure biomechanical parameters in common activities,
like walking or running, is by using an optoelectronic system (OS) in conjunction with two or more floor
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mounted force plates (FP). Such systems can be easily integrated with other acquisition devices such
as electromyography, video recording or force sensors, providing reliable sets of data for an integrated,
multifactorial functional evaluation [1]. Such systems were successfully applied to gait analysis [6],
jumping analysis [7], upper limb evaluation and other physical tasks [8,9]. When repeated cyclic trials
are required, e.g., to record several steps in walking or running, an instrumented treadmill can be used
in conjunction with the OS [10,11]. The instrumented treadmill is equipped with force and pressure
sensors that are able to accurately and directly measure the GRF and GRM, as well as the CoP, while the
subject performs a cyclic task i.e., walking or running. In the most recent applications, the instrumented
treadmill was integrated with virtual reality environment, involving a scenery dynamically evolving
according to the pace and speed of the subject [11].

Despite its high accuracy, reliability, repeatability and its excellent metrological properties, the use
of an instrumented treadmill in conjunction with an OS and a motion analysis laboratory has several
drawbacks:

• It is inherently cumbersome and requires dedicated spaces and controlled environment,
i.e., a motion analysis laboratory.

• It does not allow the measurement of tasks in open-field or requiring large spaces.
• It is expensive.
• It requires highly skilled operators.
• It was observed that subjects may change their walking strategy when walking on a treadmill

instead of overground or open field [12,13].

In order to overcome the need for a laboratory environment, several techniques were developed
to measure GRF, GRM and CoP by means of wearable sensors [14]. Some examples include shoe
insoles made of a thin layer of strain gauge transducer [15], piezoelectric copolymer film [16],
or an instrumented shoe equipped with force sensors beneath the forefoot and rear foot [17,18].
The instrumented shoe was proved able to measure the complete shear and vertical ground reaction
force but the thickness of the sensor separated the shoe from the ground having an effect on:
(i) the walking conditions; (ii) the friction between the walking surfaces; (iii) the height and weight of
the effective sole [19].

Methods based on wearable sensors can be classified according to these categories:

• Methods based on matrix and/or pressure sensors used as insoles.
• Methods based on wearable load cells that directly measure three-dimensional GRF.
• Methods based on the kinematic data obtained by OS.
• Methods based on IMUs that measure motion of body segments and estimate GRF by means of

a biomechanical model and/or machine learning methods.

The first three classes of methods were thoroughly discussed in the works of
Abdul Razak et al. [14] and Shahabpoor & Pavic [20], therefore those topics go beyond the
scope of the present review and the reader should refer to those papers [14,20]. To the best of author’s
knowledge, no accurate review on the last class of methods currently exist in the literature. As the
demand of wearable and minimally invasive sensors has dramatically grown in the last few years as
they may provide valuable information for the functional evaluation of athletes in the sport fields.
Therefore a comprehensive review of the methods for estimating ground reaction forces from inertial
measurements represents a useful and needed support to both engineering and clinical research in the
field. IMU based methods to estimate GRF are discussed in the present review.

The use of IMU experienced tremendous advances and became prominent in the last years thanks
to the development of small and wearable sensors capable of recording accelerations, angular velocity
and magnetic field [21]. Current hardware technology allows the capture and storage of a large volume
of raw data and has inspired new paradigms of movement data interpretation [22]. Examples are the
activity trackers that can be worn as bracelets and were proved able to track and identify the most
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common day’s activities and exercise levels [23]. Trackers were also used for the long term monitoring
of physical activity in elderly population allowing to compute some health indicators such as energy
expenditure, posture transitions, fall detection and balance analysis [24]. Most of the proposed methods
require modelling of the biomechanical system to a certain extent. Such modelling in turn requires
extensive knowledge of subject-specific parameters such as masses, dimensions, moment of inertia,
etc. This inevitably introduces inaccuracies and uncertainty; therefore, these methods are currently the
subject of much research. Nevertheless, there are several benefits in using IMUs to compute GRF as
they are cost effective, easy to use and accessible to the general population.

This review is focussed on the methods designed in such a way to take advantage of wearable
IMUs to indirectly estimate GRF, GRM and CoP during common activities such as walking or running.

2. Data Analysis

The systematic review was conducted on the basis of the PRISMA statement for conducting
and reporting reviews [25]. This includes a pre-planned data analysis and pre-defined inclusion and
exclusion criteria.

2.1. Search Strategy

Scopus, IEEE Xplore, MEDLINE and PubMed databases were interrogated on the topic of Ground
Reaction Forces and Moments estimation based on kinematic data obtained by IMUs. Research keys
included: ground reaction force and moment, vertical ground reaction force, inertial motion capture,
accelerometers, IMU, inverse dynamics, gait analysis, running analysis, jump analysis, and similar.
The latest database search was conducted in May 2018. Further references were identified by means
of citations within the examined papers. Duplicate findings were removed. The records were then
screened for potential inclusion.

2.2. Inclusion/Exclusion Criteria

The articles found through searches were first evaluated by title, keywords and abstract.
Only English language peer-reviewed papers were included in the study. Conference abstracts
and short articles were included only if they were found to provide relevant contribution. Eligibility
criteria included: (i) articles proposing and/or validating methods for the estimation of GRF by means
of inertial sensors; (ii) a well stated research question; (iii) appropriate statistical analysis; (iv) robust
and repeatable data processing methods. Studies proposing measurement methods that cannot be
used outside a laboratory or that relies on not-wearable technology, such as optoelectronic systems,
treadmills etc. were excluded. Studies involving wearable instruments other than IMUs, such as
insole pressure sensing, force sensors, etc. used as principal measurement device were excluded
from the present review. Instead, the studies involving optoelectronic systems, pressure insoles or
other devices for validation purposes were included. At the end of the screening process 24 papers
were included in this study. Information from each article were organized in a pre-designed table,
containing information on: type of sensor used, sensor placement, subjects involved, method used and
general remarks/findings. The paper selection workflow is depicted in Figure 1.

The collected papers were organized in groups depending on the principal motor tasks that
was discussed. We operated this division since the estimation of GRF may be significantly different
depending on the task and support conditions required by that task (single support, double support,
repeated contacts, etc.). Furthermore, papers were discussed according to the year of publication.
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Figure 1. Study selection through the different phases using PRISMA framework [25].

3. Discussion

3.1. Methods Based on Biomechanical Modelling

In order to estimate GRF from inertial data, some data modelling is needed. Most of the methods
proposed in the earliest literature are based on inverse dynamics approaches that require biomechanical
modelling. The methods examined were divided according to the task target of analysis.

3.1.1. Walking and Running

A first attempt to record kinematics and kinetics of human locomotion outside of a laboratory is
the one by Ohtaki et al. [26]. They used three inertial units attached to distal position of shank and
thigh with velcro straps (Figure 2) for long-term ambulatory monitoring. The adopted configuration
allowed to study only the kinematics on the sagittal plane. Moreover, only the motion of the left leg
was measured and the kinematics of the right leg was obtained under the assumption of left-right
symmetry in normal gait. Measuring the single leg motion allowed to: (i) eliminate sensors on the
other leg improving mobility; (ii) reduce power consumption. Each inertial unit was composed of
a uni-axial accelerometer (range ±5 g) and uni-axial gyroscope (range ±300 deg/s). The data was
logged on a notebook computer carried in a backpack while subjects walked on a straight line at a pace
defined by a metronome. The estimated results were compared to the data collected by an OS and FP.

The temporal gait parameters and the kinematics could be derived by means of some dedicated
algorithm based on the frequency components of acceleration. High frequency values were associated
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to heel strike (HS) events while lower frequencies were associated to voluntary body movements or
inclination with respect to the gravity direction. Signals were low-pass-filtered at 10 Hz and high-pass
filtered at 30 Hz. Heel strike events were identified by spikes in high frequency components while the
derivative of the angular velocity was used to identify false detections, as the derivative of velocity is
always negative around the true heel contact instance [26].
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Figure 2. Accelerometer positioning and biomechanical model as designed by [26].

The algorithm was also capable of identifying mid-stance and terminal stance of single support
phase, by detecting recurrent patterns in the radial acceleration of the shank. The detection of those
phases is illustrated in Figure 3.
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Figure 3. Detection of walking phases from the radial acceleration of the shank according to the
algorithm proposed by [26]. A: heel strike, B: beginning of mid stance, C: rising of heel, D: toe off.

Joint angles were calculated by integrating angular velocities of the five-segments composing the
body model and taking advantage of standard anthropometric data [27]. The model is depicted in
Figure 2 and it is composed of five segments: pelvis, thighs and shanks. The total ground reaction force
on each leg was determined by an inverse dynamic analysis based on the recursive formulation of
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force and moment balance equations. During single support stance phase the total GRF was estimated
as the sum of forces on each of the five segments of the model (Equation (1)). The acceleration of the
left leg was estimated assuming bilateral symmetry (Equation (2)).

Fstance =
5

∑
i=1

mi ∗ ai(t), t ∈ mid stance (1)

ale f t(t) = aright(t + T/2) (2)

where mi and ai are the mass and acceleration of the i-th segment of the model. T is the stance time.
The acceleration was computed at the centre of mass of each segment by rotating and translating the
acceleration measured.

Joint moment τi was computed by solving the equations of motion and the power was computed
by multiplying moment and angular velocity ωi as in Equation (3):

Pi = |τi ∗ωi| (3)

This method proved able to detect temporal parameters according to foot movement, kinematic
data and ground reaction forces [26] although some deviation was observed when compared to the
OS. Maximum RMSE was 11.2◦ for angles and 0.31 N/BW for GRF (the GRF were normalized to
bodyweight). However, several limitations were observed. First of all, it used a much simplified
model of the human body and standard anatomical parameters. Only one-dimensional sensors were
used and the analysis was limited to the sagittal plane. This introduced inaccuracies in the estimation
of kinematic parameters that propagated to the computation of forces. Moreover the analysis was
limited to the single support phase. In double support phase, when both feet are touching the ground,
the kinematic chain is indeterminate and the equations of motion cannot be solved [20]. Other sources
of error were attributed to the soft-tissue artefacts due to sensor fixation [26]. While proposing
a valid approach to the estimation of GRF, this method had some serious limitation that were partially
overcome by the subsequent studies.

A different approach was the one proposed by Neugebauer et al. [28] that used a statistically
based model to estimate the peak of the vertical component of GRF during walking and running.
Data were recorded by means of a low-cost bi-axial accelerometer, allowing a sampling frequency
of 40 Hz and measurement range of ±7 g. The sensor was fixed over the most lateral aspect of the
iliac crest of the right hip and it measured the maximum acceleration recorded on the two axes. The
estimation of the peak ground reaction force during the support phases was based on a statistical
model based on repeated measures and a mixed effects regression. Such model looks for a linear
or logarithmic relation between two variables by taking into account the effects of several different
factors expressed in a hierarchical form [29]. In this case, the model was based on the assumption
that sex, body mass and type of locomotion were good predicting factors of the relationship between
acceleration and GRF. This assumption was based on the fundamental equations of motion where the
GRF is function of mass, inertial properties of body segments and acceleration of body parts [28]. Data
analysis demonstrated that the body mass was indeed a good predictor factor and the logarithmically
transformed peak GRF was well predicted using the mixed effect model. The average absolute
difference between predicted GRF and the one directly measured by the force plate was 9% while the
maximum observed error was 17.5% [28]. However, this approach had several limitations, mainly
due to the sensor used. The type of sensor and its positioning did not allow the measurement of
spatio-temporal parameters as well as the temporal profiles of the GRF. Furthermore, the method used
a statistical approach rather than a more detailed biomechanical model, therefore many anatomical
features of the subjects were not taken into account. Thus, the method may not be suitable for activities
involving concentrated and repeated loads, such as in jumping or during a training session. The same
authors further explored this method in a subsequent work [30]. They recorded accelerations using a
3-axis accelerometer located, again, at the most lateral aspect of the waist, over the right iliac crest. This
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new device was able to record data at a sampling frequency of 100 Hz, and the maximum range was
±6 g. The aim of the work was to compute peak GRF from the acceleration recorded at the hip by using
a mathematical model based on linear regression [30]. The authors found that acceleration measured
using a hip-mounted accelerometer may not provide an accurate representation of the load sustained
by the body. In fact the developed model was found to underestimate the peak GRF, especially in
those tasks associated to higher peak GRF, such as running. Moreover, the authors observed that in
some cases the peak acceleration at the hip, while running, could be higher than ±11 g [30] which
saturated the accelerometer range of ±6 g. Thus, this approach should be used cautiously and other
accelerometer configurations have to be preferred.

Another method to estimate peak GRF in running is the one by Wundersitz et al. [31] that used
only a tri-axial accelerometer fixed on the upper body. The fundamental hypothesis was that peak
GRF in running is caused by the collision of the foot with the ground [32] and, being the mass constant,
the measured acceleration is proportional to force [33]. The sensor was placed on upper body as in
previous studies it was stressed that the sensor should be placed in such a way to interfere as little as
possible with an athlete’s performance [34,35]. The use of a 3-axis accelerometer, instead of a 1-axis one,
provided increased sensitivity to the impact acceleration due to increased cross-axis sensitivity [31].
The IMU used in [31] was composed by a 3-axis accelerometer, range ±8 g, sampling frequency 100 Hz.
The sensor was fixed in the centre of the upper back at the level of the second thoracic vertebrae as
in previous studies [36]. The main axis of the accelerometer was along the crania-caudal direction
and close to equivalent with the global vertical axis [31]. The peak GRF estimated by this method
was compared to the output of a force plate while the subjects performed several running tasks
and direction changing tasks [31]. Smoothing the acceleration signal was proved essential to obtain
reliable data and suggested that the optimal low-pass frequency was 10 Hz. With low-pass, the peak
GRF estimated by the accelerometer was comparable to the one directly measured by the force plate.
Over multiple trials, accelerometers may provide an acceptable measure of impact force. The absolute
error for a single measurement was ~24%. Thus data smoothing was recommended.

A similar approach was proposed by Charry et al. [37] that used a three-axis accelerometer fixed
on the medial tibia of each leg. The tibial acceleration was measured while running. This approach was
based on a previous work where tibial shock was quantified by taking advance of a linear relationship
between the tibial axial acceleration and the peak GRF [38]. The two commercial accelerometers
had range ±24 g, sampling frequency 100 Hz, and were fixed on both tibias, along the tibial axis in
the midpoint between the lower edge of the medial malleolus and the medial joint line of the knee.
The direct measurement of the GRF by a force platform was used for comparison.

From the recorded tibial acceleration profile, it was possible to identify four events: (i) heel strike;
(ii) Initial Peak Acceleration; (iii) Maximum Peak and (iv) Peak to Peak acceleration. The authors
found that a logarithmic fitting would best approximate the correlation between acceleration and
peak GRF. This method could then be exploited to identify walking phases from the acceleration
signal. The RMSE error in the logarithmic estimation of GRF from acceleration, compared to the direct
measurement from the force plate, reached an average of ~150 N across different running speeds [37].

Meyer et al. [39] studied the validity of the accelerometer based method to measure GRF in
children. The tasks performed were walking, jogging, running, landing from boxes with heights
of 10, 20 and 30 cm, rope skipping and dancing some breakdance moves. Ground reaction forces
were simultaneously recorded by force plates. During the tests, the children wore two different
commercially available tri-axial accelerometers at their right hip. Sampling frequency was 100 Hz and
maximum range ±8 g and ±6 g, respectively. The GRF measured by means of the FP were: 1.3 times
the BW for walking, 2.2 BW for jogging, 2.8 BW for running. In case of landing from different heights,
the measured forces were: 4.2 BW for 10 cm, 5.2 BW for 20 cm, 5.9 BW for 30 cm. The correlation
between the FP and the measured accelerations was very high (R = 0.90). Sex, age, weight, height and
leg length of the children did not have a significant influence on the correlation coefficients. Despite
the high correlation between the applied methods, both accelerometers systematically overestimated
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the GRF and the measurement bias increased with loading [39]. Although accelerometer data had
a good correlation with measured GRF, the authors recommended caution in using accelerometers
when an absolute measurement of force is required. The authors also stressed the importance of using
an adequate sampling frequency that should be at least twice the speed of the fastest movement [40].
The frequencies for normal non-impact physical activities in humans are generally below 8 Hz [41] but
during peak contacts (e.g., in running) frequencies may be higher [39]. Maximum ranges of ±8 g and
±6 g may also be limiting for very high impact loadings, while values ranging from 2 g to 4 g were
observed in common tasks. Such values of acceleration were proved sufficient to induce beneficial
structural changes in bone strength [42,43].

A more complex approach is the one proposed by Yang et al. [44] that designed a method
to estimate lower limb forces and moments while walking by using a kinematic tracking device.
This method was aimed to be used for the clinical analysis of walking in clinical environments without
the need of a dedicated laboratory or expensive instrumentation. The study targeted a walking
task as it is the most common activity being object of clinical studies in people with motor injuries.
The authors placed gyroscopes at the mass centres of the trunk, thighs, shanks and feet in order to
measure the corresponding angular velocities, while accelerometers were placed on the feet to measure
their linear acceleration. As an advancement from previous methods, this one aimed to measure
three-dimensional walking motion, meaning that kinematics in frontal and transverse planes were
considered in addition to the sagittal plane. Since the aim of the work was to estimate not only the
GRF but also the intersegmental forces on the lower limb, a detailed biomechanical model was needed.
Mechanical properties (mass and inertial moment) were assigned to each segment of the model based
on standard values reported in the literature [44]. The angular positions and acceleration of the hips,
knees, and ankles were obtained by integrating and differentiating the measured angular velocities.
The walking cycle was identified and segmented from the angular position of the feet (Figure 4).
This analysis allowed the identification of leg support conditions: (i) early double support; (ii) single
support; (iii) late double support. These phases were identified from the instants of initial contact and
toe-off which in turn were identified directly from the IMU [44].
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By taking advantage of the IMUs placed on body segments and knowing the mass of each
segment, the force of each intersegmental joint was computed. Starting from the hip, the forces on
each lower limb joint were subsequently computed by summing the load found on the upper segment
as shown in Equations (4)–(8). The last forces to be computed were the one on the heel and the one on
the phalange. The force on the other hip, namely fL−hip , was estimated by means of an exponential
transfer function [44].

fR−hip = mtrunk(atrunk − g)− fL−hip (4)

fR−knee = fR−hip + mthigh

(
athigh − g

)
(5)

fR−ankle = fR−knee + mshank(ashank − g) (6)

fR−foot = fR−heel + fR−ph = fR−ankle + mfoot(afoot − g) (7)

fR−ph = sfR−foot an fR−heel = (1− s)fR−foot where s =
lPC

lfoot
(8)

where lPC is the distance between the pressure centre and the heel, lfoot is the length of the foot.
The forces on heel and phalange estimated by this method were compared to the forces measured

by means of load cells placed under the shoe. The biomechanical model is shown in Figure 5. Estimated
forces were found in good agreement with the measured ones (Figure 6), a good correlation was
observed between the two signals (R > 0.95) and a relatively low maximum RMSE of ~66 N.
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The method proposed by [44] was more complex than previous ones as it used seven IMUs and an
enhanced three-dimensional biomechanical model, but it enabled the maximum GRF to be evaluated
without the need of force plates and the intersegmental forces to be estimated without having to use
invasive sensors. However, the weakness of this approach was in the estimation of forces during
the double-support phase as the distribution of the force across the two legs was evaluated through
a statistical approach.

Karatsidis et al. [45] also designed a method to predict both GRF and GRM during walking using
only kinematic data from IMUs and they tried to overcome the indeterminacy problem in double
support phase by using a distribution algorithm based on a smooth transition assumption. The authors
used an inertial system composed of 17 IMUs mounted on a fitting suit whose sensor landmarks are
shown in Figure 7. Sampling frequency was 240 Hz. The output of the IMUs was comparatively
examined to the output of an OS and FP. The kinematics of the 23 anatomical segments composing
the model was reconstructed by taking advantage of the acceleration signals acquired by the IMUs.
From the kinematics and inertial properties of each segment, the total external force was estimated from
Newton’s equation of motion, Equation (9), [46]. Similarly, the total external moment was computed
from Euler’s equation, (Equation (10)).

Fext =
N

∑
i=1

mi(ai − g) (9)

Mext =
N

∑
i=1

[
Ji

.
ωi + ωi × (Jiωi)

]
−

N

∑
i=1

Ki

∑
j=1

(
rij × Fij

)
(10)

where Ki is the number of endpoints in each segment, ωi is the angular velocity of the i-th segment,
Ji is the inertia tensor around the centre of mass of the i-th segment, rij is the lever arm between the
centre of mass and the applied force Fij.
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Figure 7. Biomechanical model and landmarks for IMUs as proposed by [45].

The inertial parameters of each segment were computed through scaled anthropometric data as
suggested in [27]. During the single support phase the GRF was computed as in previous methods,
while GRM was computed assuming the lever arm of the applied GRF as the projection of the ankle
to the ground. During double support, the solution to Newton’s equation is indeterminate, thus the
authors implemented a distribution algorithm based on a smooth transition assumption function built
on empirical data [45]. The function, illustrated in Figure 8, depends on the timings of gait events and
was used to distribute force and moments among the two feet during the double support phase.

The phases of single and double support were identified by means of a gait event detection
algorithm. The procedure was based on a threshold level applied to the norm of the velocities of heel
and toe [45]. The estimated GRF and GRM were compared to the ones measured by means of OS
and FP throughout three sub-phases of the walking cycle: (i) first double support; (ii) second double
support; (iii) single support of each foot.
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Figure 8. Curves for smooth transition assumption used to distribute external forces and moments
among the two feet [45]. Curves were built from empirical data. Dashed lines represents the curves as
obtained in a previous study [47].

It was found that inertial motion capture and optical motion capture systems had similar
performance in estimating GRF and GRM when compared to the gold standard force plates. The highest
RMSE errors for GRF were observed for the lateral component of force. Worst results were the
estimation of lateral force in a “fast walking” task to which corresponded a RMSE of 14.6%.
The maximum RMSE for GRM was 30.6% and it was observed for the frontal force in a “fast walking”
task [45]. Regarding the stride phases, the highest errors were observed in the double support phases.

In general, the anterior and vertical GRF, as well as the sagittal GRM estimates performed better
than the lateral GRF and frontal and transverse GRM. This was explained by the smaller magnitude of
the lateral measures that have a relatively large impact on the final estimates.

This method had some limitations. First, the estimation of GRF during double support had poor
accuracy due to the fact that the smooth transition assumption was based on empirically derived curves
obtained from healthy subjects, thus this method is not suitable for people with movement disorders.
Second, this method may not be accurate for slower or faster walking speeds, running or abnormal
walking where a more sophisticated force distribution model is required. Third, the mechanical
properties of each segment were based on average anthropometric data that may not represent
correctly elderly or obese populations [48,49]. Finally, there are some intrinsic issues in the use of
inertial sensors mainly due to magnetic interferences and soft tissue artifacts. This method was based
on a 17 IMUs full body protocol and reducing the number of sensors may make the system more
practical for clinical and use in sports.

Estimating GRF during double support represents the most critical challenge when one can rely
only on kinematic data. In fact, during double support the lower limbs form a closed loop mechanical
chain, making it impossible to uniquely determine GRF at each foot by relying only on Newton-Euler
equations. The method proposed to work around this was the “smooth transition assumption” [45]
as well as other previously developed mathematical models to predict the transition of the load
from the trailing to the leading leg [50–52]. Such methods use statistical models, mainly based on
empirical data, to predict the amount of load to be assigned to each foot across the double support
phases. Another method is the one proposed by Dijkstra et al. [53] that exploited the “Zero Moment
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Point” i.e., the point on the ground at which the horizontal moments due to external loads are null.
In stability conditions, this point coincides with the centre of pressure. This method is computationally
inexpensive and it is commonly used to stabilize the bipedal walking of robots [54]. The “Zero Moment
Point” method was tested on kinematics data obtained from an optoelectronic system, force platforms
and an OpenSim [55] body model. It was proved that that the estimated GRF were accurate in the
vertical and lateral directions while the forces on the anterior posterior direction were underestimated,
spreading also inaccuracies to the estimation of joint moments [53].

Gurchiek et al. [56] conducted a feasibility study regarding the use of a single IMU placed on the
sacrum. The IMU was placed close to the centre of mass in order to measure translational acceleration
at this point. As in previous studies, the total force was estimated by means of a simple model based
on Newton’s law [31,57]. In addition to this, the authors used the information from the gyroscope
and magnetometer to estimate the orientation of the body segment, allowing the expression of the
sensor referenced vectors in an inertial referenced frame. The three-dimensional force estimated in
this way was compared to the measurements of a force plate. The subjects performed acceleration
and change of direction tasks [56]. Two static calibration trials were needed in order to reconstruct the
position of IMU with respect of the ground reference system. Information from the IMU magnetometer
and accelerometer were used to estimate the initial heading. Then, the measured quantities were
referenced to the ground reference system by means of quaternion math [58]. A good agreement was
obtained between the vertical component of force estimated by the IMU and the one measured by
the FP (Figures 9 and 10). However, a poor agreement was observed in the case of medio-lateral and
antero-posterior components (Figures 9 and 10). Thus, this method could be recommended only for
the estimation of the vertical component of GRF and its magnitude. In terms of three-dimensional
force vectors, the maximum angular error observed between the vectors estimated by the IMU and the
FP was 10◦ [56].
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Figure 9. Graphical representation of the GRF vector estimated by the IMU (red) and by the force
platform (blue) as found by [56]. (A) sprint start task, (B,C) change of direction tasks. Angular error
between the vectors is represented.
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Figure 10. Graphical representation of the GRF curves along the gait cycle for IMU (red) and FP (blue)
as found by [56]. (SS) sprint start task, (COD) change of direction tasks. Fz is the vertical component.

This approach is very interesting as the use of a single IMU sensor dramatically simplifies clinical
measurements by means of wearable sensors. However, according to [56], it was reliable only for
the estimation of GRF in the sagittal plane. There are two other major limitations: firstly, the actual
center of mass changes its position, with respect of the IMU on the sacrum, during activities such
as walking or running. Pelvic displacements and rotations may therefore induce artifacts in the
estimation of forces [56]. Secondly, the use of magnetometers to estimate IMU orientation is affected
by ferromagnetic disturbances that can lead to reduced accuracy of results.

Raper et al. [59] designed a protocol to measure GRF by means of a single IMU mounted on the
mid portion of the medial tibia and conducted a reliability analysis of this protocol by comparing
the result to a force platform. The IMU was composed of a tri-axial accelerometer with sampling
frequency of 100 Hz. Analysis was conducted by means of the software provided by the manufacturer
that provides the calculation of the peak GRF from the vertical component of tibial acceleration.
The subjects were professional athletes that were asked to run indoor on a track equipped with
piezoelectric FPs. Each foot contact was identified and computed GRF was matched to the one directly
measured by the FP. The absolute value of the GRF as measured by the IMU was different from the
one recorded by the FP. It was observed that the IMU could underestimate the force up to 400 N [59].
This error was supposed due to a delay between the peak in acceleration and the peak of exerted force.
The authors recommended that the IMU measurement should not be interchanged with the Newton
unit of measurement, but it is yet capable of measuring lower limb load in running tasks. The accuracy
was estimated as high as 83.96% and the reliability was very high with an ICC of 0.97, thus the IMU
could be considered an useful tool for measuring lower limb load in athletes performing sportive
tasks [59].

A more advanced anatomical model is the one used by Aurbach et al. [60] that implemented
a musculoskeletal model (Figure 11) taking advantage of the software AnyBody™ (AnyBody
Technology A/S, Aalborg, Denmark). The model could rely on a detailed anatomical representation
of the skeleton and on an inverse kinetic engine to reconstruct forces from the measured kinematics.
The model could compute the GRF as well as the forces acting on the ankle, knee and hip. Kinematic
data was collected by means of 15 IMUs mounted on: the top side of the feet, the anterior side of the
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shanks, the anterior side of the thighs, one at the sacrum, one between the shoulder blades on the back
and one at the forehead. Calibration data, obtained during the initial stance phase, was needed to
align the magnetometers and accelerometers to the local reference system. The standing humanoid
model was translationally fixed at the hip segment, as the IMU system may only provide rotational
information. The model was solved two times by taking advantage of the kinematics concurrently
recorded by: (i) an OS; (ii) the IMUs. Results were then compared. The comparison is shown in
Figure 12. The OS data displayed a longer period of one sided loading of the feet and a difference in
curve progression [60].

This study showed that the IMU based model yields the possibility to estimate the GRF
independently of gait labs, however IMU performance was poor when compared to the OS [60].
The main sources of errors were attributed to the fluctuations within the magnetic field that could
not completely be removed by calibration procedure. In fact, the IMUs used made extensive use
of internal magnetometers to fully estimate their orientation in space and magnetometers are easily
affected by electromagnetic disturbance or ferromagnetic objects nearby [61]. Another limitation of
this approach lies within the configuration of the humanoid model that should match exactly the
physical characteristics of the subject. Thus, an accurate subject calibration is required and further
work is necessary to minimize the issues with the IMU model.
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first row: forces estimated by the OS, on the second row: forces estimated by IMUs.
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Thiel et al. [62] tested the GRF during sprint running by means of IMUs. They used two IMUs
composed of 3D accelerometer, gyroscope and magnetometer. Sampling frequency was 250 Hz
and data was logged locally. The IMUs were placed on the shank above the medial malleolus.
The accelerometer data was aligned and compared to a force platform used as comparison, while the
athletes were asked to run on an instrumented running track. The vertical component of GRF was
assumed related to the shank acceleration by the following linear equation:

Fv = c1ax + c2ay + c3az (11)

where ax,y,z are the components of measured acceleration and c1,2,3, are empirical coefficients.
The coefficients were determined for each foot by taking advantage of the force recorded in the

first steps [62]. This kind of modelling was proved suitable for the first stages of the sprint where
a constant GRF is expected and therefore a linear modelling is suitable [62]. In addition, the shank
angular velocity was used to identify stance and swing phases and, as a consequence, to identify
timings of the peak GRF. The authors found that this method was not reliable for every participant
even though it could accurately predict the peak GRF for one subject (Figure 13). The potential sources
of error were identified in the force attenuation at the ankle due to the musculoskeletal structure and
the absorption of the running shoe. This effect may be attenuated by means of a calibration procedure.
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Figure 13. The vertical GRF measured by the force plate (red) compared to the one predicted by the
IMUs (blue) for one subject, according to the method by [62].

The task of running was further explored by Kiernan et al. [63]. The aim of their study was to study
micro traumas and injury mechanisms due to repeated loads occurring in runners. The magnitude of
peak vertical GRF was estimated by means of a three-dimensional accelerometer worn on the right
hip. Recording range was ±8 g and sampling frequency 48 Hz. Hip acceleration was recorded over an
entire training session. The use of antero-posterior components of acceleration allowed to identify right
and left foot strikes by means of a dedicated algorithm [64]. Only the right strides were considered and
the peak GRF during stance was estimated by means of a linear regression model as in [30]. Then the
mean of peak GRF was calculated among the considered strides. The number of strides was counted
as well. The participants were separated into two groups: injured and non-injured. The comparison of
those groups demonstrated that the injured subjects had higher peak vertical GRF values as well as
cumulative loads. Thus, such a method is capable of predicting injuries and capture loading profiles of
participants [63]. However further study is necessary to better assess the effects of repetitive loads,
when the maximum load occurs during the training and most important, the effects of asymmetry in
loading left and right legs. The method proposed by [63] was not able to assess such quantities, thus
further studies and more advanced protocols are needed. The use of wearable IMU seems a promising
method to measure such quantities in running.
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3.1.2. Jumping and Other Tasks

Jumping, squat and bending tasks are different from walking and running. First the GRF are
always distributed among the two feet and single support rarely occurs, second the motion occurs
mainly along the vertical axis and it is not cyclical. The indirect estimation of the GRF on each foot is
difficult as well as the detection of asymmetry in foot loading.

An early work on the estimation of GRF in vertical jumping was the one by Elvin et al. [65]
that supposed a correlation between the peak vertical GRF and the peak tibial vertical acceleration.
The subjects were asked to jump at different heights while the shank acceleration was recorded.
The acceleration was measured by means of two uniaxial accelerometers worn on a support sleeve
placed close to the vestibular heads on both legs, while the GRF was measured by means of a FP. The
landmarks for placing the accelerometers where chosen because, according to the authors: (i) it is easy
to locate the landmark through palpation; (ii) the risk of the sensor causing an injury to the subject
was low; and (iii) it has been previously used as an accelerometer attachment site [65]. The range of
measurement was ±70 g and sampling frequency 1 kHz. The authors found that the peak GRF in
landing could reach up to 8.2 times the body weight while the peak tibial acceleration could reach
up to 42.3 g. A strong correlation was observed between peak GRF and peak acceleration (average
R2 = 0.812, p ≤ 0.01), thus the authors concluded that the peak GRF may be computed from Newton’s
second law by knowing subject’s mass. This study helped identifying several inaccuracies in the
procedure such as: (i) the relative movement of the accelerometer with respect to the body; (ii) noise
and non-removable instrumental errors; (iii) unmeasured angle between tibia and ground during
impact; (iv) possible non-linearity in the relationship between acceleration and GRF [65]. Moreover,
a clear correlation was not identified between the height of the jump and peak impact forces while it
was demonstrated by other studies [7]. Interestingly, the authors were able to compute the flying time
for the jump and hence the vertical height from the temporal profile of vertical acceleration by using
a previously validated algorithm [66].

The task of vertical jump was further investigated by Howard et al. [67] by means of a tri-axial
accelerometer placed close to the centre of mass. GRF were simultaneously measured by means of a FP
while the subjects were performing some countermovement and drop jumps. Minimum eccentric force
and peak concentric force were calculated concurrently for countermovement jumps and peak landing
forces were calculated concurrently for drop jumps. The authors found a good agreement between
the accelerometer and FP during the eccentric phase of the countermovement jump but a consistent
systematic bias between the results from the force platform and accelerometer was observed. Therefore
the force obtained from the measurement of acceleration could not be used interchangeably with
the force measured by the FP. Thus, it was recommended to use gyroscopes to increase accuracy of
datasets [67].

Pouliot-Laforte et al. [68] assessed the validity of GRF in vertical jumping tasks when estimated
only by an accelerometer. The analysis was conducted on both healthy children and children diagnosed
with Osteogenesis Imperfecta type I, a pathology that commonly gives rise to several functional
limitations and muscular weakness [69,70]. In such cases, having a simple and portable measurement
system would be highly valuable for the assessment of GRFs and thereof the mechanical loading of the
bones. The estimation of the GRF was obtained by applying Newton’s law of motion, i.e., multiplying
the mass of the subject times the measured vertical acceleration, as in previous studies. High intensity
actions like jumps are known to generate high peak forces at a high rate. The subjects were asked to
perform five different jump and some rise manoeuvres on a portable force platform while wearing
an accelerometer on the right hip. The accelerometer recorded data at a sampling frequency of
60 Hz and had range of ±6 g. The estimated GRF was compared to the one recorded by a FP.
The accelerometer was placed on the patient’s right waist slightly behind the anterior iliac crest and
held in place by an elastic band. As in previous studies, the results showed a high correlation and
good agreement between the GRF measured by the accelerometer and by the FP. Thus, measuring
GRFs with an accelerometer is a potentially valuable tool to estimate ground reaction forces in children
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and adolescents, both healthy and with pathology [68]. The small over/underestimation of averaged
GRFs by the accelerometer’s derived forces suggested that over long recordings force measurements
are quite accurate. The authors concluded that, while placing the accelerometer on the right hip was
extensively validated in the literature, it would be preferable to place the sensor near the centre of
mass, i.e., the lower back.

The GRF during a squat motion was measured by Min et al. [71] that comparatively examined the
IMU performance against a FP and OS measurements. Squat motion was modelled on the sagittal plane
as a 3-segments linkage and motion was recorded by means of three IMUs placed on the lower back,
thigh and shank. The local x-axes of the IMUs were aligned as normal to the sagittal plane. IMU sensors
recorded 3-dimensional accelerations, angular velocities and magnetic fields. Sampling frequency was
100 Hz. The IMUs captured the kinematics of each segment of the model and reconstruct GRF through
inverse kinetics. The computed GRF showed high accuracy when compared to FP (RMSE < 0.02 BW).
However, the analysis and the biomechanical model were limited to the squat movement and other
approaches may be necessary to investigate other tasks, such as running.

A posture similar to a squat is the one assumed when performing Ski Jumping. A detailed
analysis of GRF and joint forces when performing this sport was conducted by Logar and Munih [72].
They developed a procedure to estimate GRF and joint forces by exploiting kinematics information
from body-worn IMUs. The tests were performed in a lab environment with a force platform installed
in proximity to the jump area that allowed for the direct measurement of GRF during the take-off
(pushing) phase. Ten IMUs were placed on the body of the subject as shown in Figure 14. The IMUs
were composed of a tri-axial accelerometer and tri-axial gyroscope with range±8 g, sampling frequency
400 Hz. Data was logged on-board on each IMU and synced by means of a wireless signal. The human
body was modelled as a link segment model composed of four segments as shown in Figure 15.
Each segment was assumed as a rigid body with constant mechanical properties. A subject calibration
procedure was needed to make the measurements independent of IMU fixation point and position.
The procedure involved: (i) Measuring the initial orientation of each segment; (ii) Measuring and
integrating the angular velocity of the segment during motion; (iii) summing initial orientation and
integrated angular velocity. The initial orientation was estimated during the in-run phase where all
the body segments were assumed to have comparable accelerations, the subject kept a squat-like
posture and the orientation of feet/skis was assumed as the reference orientation for all the other
segments of the model. The anthropometric parameters (mass, size, moment of inertia) were obtained
from statistical tables. The inverse dynamics of the proposed model can be solved according to
two approaches: bottom-up and top-down. In both cases it is supposed that the only external
forces acting on the body are the GRF. In the bottom-up, GRF measured by the force plate are
needed. By taking advantage of external GRF, the forces and moments on each body segment can be
computed according to Newton-Euler equilibrium equations. In the top-down, the GRF are unknown.
The internal forces acting on the upper part of the body are estimated from the acceleration and
Newton’s equation. Then the internal forces on the other body segments are progressively computed
according to Newton-Euler equilibrium equations. At the foot, the GRF is the quantity needed
to balance the last equation. In top-down approach, once the GRF is known, the equation can be
re-applied in bottom-up direction in order to compute the internal moments acting on the joints.

The validation of this method showed an average RMS error between the estimated GRF and
the ones measured by the force plate of 62.5 ± 259 N corresponding to a 9.7 ± 14% deviation [72].
A comparison of the calculated and measured GRF profiles is shown in Figure 16. A portion of the
observed differences was attributed to the dimension of the skis with respect to the force platform.
The FP reading does not provide the entire GRF but the reading depends on the portion of the skis that
is effectively in contact with the FP [72].

The conclusion of the study was that a good similarity between measured and calculated GRF
was observed. Thus, the proposed IMU protocol may be considered a promising and easy to use tool
for estimating GRF in ski jumping.
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The clinical need to measure internal forces and moments acting on the spine and joints, as well
as the GRF, during trunk bending led to the protocol proposed by Faber et al. [73]. This protocol
was meant to be used in ambulatory environments, relying only on wearable sensors and removing
the need of a motion analysis laboratory. The authors used a X-Sens® IMUs in combination with
the built-in X-Sens® full body segment model [74,75]. The model used 17 IMUs composed of
tri-axial accelerometers, gyroscopes and magnetometers, remotely controlled and triggered. Sampling
frequency was 120 Hz. The full body configuration allowed the estimation of the three dimensional
GRF acting on the feet segments. The protocol needed a calibration obtained by recording an upright
posture and then the acceleration of each body segment during the bending exercise was measured.
The moments and the GRF were estimated by means of a top-down approach, using Newton’s second
law. The results were compared to the GRF simultaneously measured by a FP and to the internal
forces/moments computed taking advantage of the information from the FP and an OS. As observed in
previous studies [72], a good agreement between the FP and the IMUs was observed for the profile of
vertical component of GRF with a RMS error below 20 N corresponding to the 2% of maximum vertical
force [73]. A good agreement was also observed between the peak values of GRF. Instead, the forces
on antero-posterior and medio-lateral directions were overestimated by the IMU method. Regarding
the internal moments on L5/C1, the maximum RMS error was below 10 Nm corresponding to the 5%
of the peak extension moment [73]. The main inaccuracies observed were attributed to the rigid body
assumption and to the mass of each body segment that was assigned according to a statistical model
based on percentages of the total body mass [73]. Thus, the masses used for computation at may not
well represent the masses of the actual body segments of each subject. In agreement with previous
studies, the authors concluded that inertial motion capture is a good candidate for GRF and internal
moment estimation in ambulatory settings but its validity is limited to the task analysed, i.e., the trunk
bending. Further study is required for the analysis of other tasks.

The sit to stand and squat tasks were investigated by Kodama and Watanabe [76]. Their goal was
to estimate internal joint moment, GRF and CoP relying on IMU kinematic recordings. They tested
three body models: a five-links model, a four links model and a three links model. The difference was
in the number of segments representing the trunk [76]. The five links model is depicted in Figure 17.
The other models were obtained by merging the segments composing the trunk. Inertial parameters of
each segment were assigned according to direct measurements on the subjects, statistical distribution
methods reported in the literature [77,78] and Human Body Database [79]. The joint moments were
estimated by solving the equations of motion of each segment whose free body diagram is depicted in
Figure 17 and the GRF were estimated as the sum of products of the acceleration of each segment and
the mass of that segment, as in previous methods. The CoP was calculated by using the equation of
rotational motion of the foot segment and the forces and moments acting on that segment [76]. Seven
inertial sensors were mounted on the trunk, thighs and shanks, as shown in Figure 18. The IMU were
custom made wireless sensors with a sampling frequency of 100 Hz. The motion was simultaneously
recorded by an OS and two FPs. The subjects then performed the squat and sit-to-stand tasks under
investigation. The results showed no significant differences between the 5-link and 4-link models while
the worst results were observed for the 3-link model. The reason of the poor results was attributed
to the approximation in computing the lever arm for the trunk segment. Therefore, the authors
recommended the 4-links model. Regarding the estimation of GRF via the top-down method, no
differences were observed between inertial motion capture and OS. Average RMS errors in horizontal,
vertical GRF and CoP were respectively 10 N, 15 N and 2 cm. Thus, the method could be useful for
practical applications when FPs are not available.

As the model proposed by [76] was based on multiple body segments, it needed an extensive use
of standard tables to compute the mechanical parameters of each segment. Such statistical values may
introduce inaccuracies in the estimation of the quantities of interest as they may not well represent
certain population. This is a common problem for all those methods that require knowledge of inertial
properties of body segments.
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(b) Landmarks and sensors worn by the subject.

Setuain and colleagues [80] also evaluated vertical jumping by means of a single IMU placed on
the lumbar spine. The aim of their work was to determine the reliability of such method and to its
validity in comparison to force plate measurements. The GRF was computed from the acceleration
by means of Newton’s law as in previous studies and the measurement of vertical velocity profile
allowed the identification of the jump phases. As in previous studies, a good correlation was observed
between the estimated vertical GRF and the GRF directly measured by means of a force platform, and
a bias between the measured values was also observed. The greater the force magnitude, the greater
the disagreement between the IMU and the FP.

3.2. Methods Based on Machine Learning

Using machine learning methods was explored as a modern approach for the estimation of GRF.
These methods run on the hypothesis that a relationship exists between the acceleration measured
somewhere on the human body and the ground reaction forces. In the case of a biomechanical model,
this relationship is represented by the model itself. Machine learning methods do not need an a priori
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knowledge of the model but they build up their model on the go by using training data acquired in
previous experiments. Such models based on artificial neural network (ANN) algorithms need to be
trained by a large amount of known output data in order to establish a robust relationship between
input and output variables. In literature, there are many studies about the estimation of GRF by means
of ANN. Most of them are based on kinematic data acquired by OS or other devices than IMUs [81–85].
These are not discussed in the present work as it is focussed on the use of IMUs.

One of the first works involving the use of ANNs is the one by Leporace et al. [86]. They compared
two models based on ANN in order to estimate GRF while walking. Both models were based on
three-dimensional accelerometer data. Training and control data was provided by a force platform.
The healthy subjects were instructed to walk at a self-selected speed while wearing a three-dimensional
accelerometer attached to the distal and anterior part of the shank. Range of the accelerometer was
±6 g and the sampling frequency was 1 kHz.

The error analysis suggested that both the models adequately predicted the GRF on vertical,
medio-lateral and antero-posterior projections. However, the size of the sample used to train the model
is crucial in order to reach accurate results [86].

Guo and colleagues [87] adopted a different approach to estimate the vertical component of
the GRF by using the acceleration, directly measured by wearable IMUs, and used it as a proxy
variable. The aim of the study was to find a relationship between the acceleration, used as a proxy
variable, and the forces measured by means of pressure insoles without regard to a biomechanical
modelling. The relationship was assumed as non-linear. To achieve this goal, the authors used
an orthogonal forward regression algorithm, i.e., a machine learning approach. The vertical GRF
measured by pressure insoles were used to train the model that was subsequently used to predict
forces from the accelerations. The IMU used were composed of tri-axial accelerometers, gyroscopes
and magnetometers, with a sampling frequency of 128 Hz and range ±6 g. Only the acceleration
information was used to train the model. In the same study the authors also tested different placements
for the measuring IMU on the subjects’ back: L5, C7 and forehead. Data synchronization was obtained
by a vertical jump before trials and, since the acquisitions were relatively long, the time series were
re-aligned every two minutes [87]. This proposed approach is in contrast with approaches based on
detailed biomechanical models and it is claimed to simplify modelling and data acquisition strategies.
Furthermore, relying only on acceleration signals makes the model free from disturbances due to
gyroscope drifts and magnetic distortion. The identification of stride phases relied on pressure insoles
and the exact knowledge of stride events and their sequence helped to determine which foot was
in contact with the ground. Thus, the recorded acceleration a could be easily decomposed into its
left and right components. During double support, the vertical GRF was approximated by linear
interpolation and a membership function, w, as described in Equations (12) and (13). The left and
right components of the acceleration a were obtained according to Equations (14) and (15). The final
membership function is depicted in Figure 19.

wle f t =
GRFle f t

GRFle f t + GRFright
(12)

wright =
GRFright

GRFle f t + GRFright
(13)

ale f t = a·wle f t (14)

aright = a·wright (15)
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Figure 19. Membership function for the distribution of vertical GRF among the two feet as determined
by [87]. The upper line is the left membership function, representing the left single support phases.
The bottom line represents the right membership function. The transients represent the double support.

The method was tested for walking tasks in outdoor settings. The optimum sensor placement
was found to be the L5 which corresponded to the minimum model prediction error and the GRF
could be predicted with an accuracy of 3.8%. In the case of cervical (C7) and forehead placements,
the prediction error was higher (>4.0%) [87]. In general, the prediction accuracy of the proposed
method was comparable to the direct measurement of the vertical GRF by means of pressure insoles,
as shown in Figure 20. The results were strongly dependent on the identification of stride phases
that was achieved by using pressure insoles. The gait events may also be obtained by an IMU placed
at the pelvis level [88], but this approach may increase the inaccuracy in the estimation of GRF [87].
Furthermore, in this study, the analysis was limited to the vertical component of GRF and the method
should be tested for the prediction of medio-lateral and antero-posterior components. Other common
daily activities should be tested.
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by pressure insoles.

A modern work is the one by Wouda et al. [89] that estimated the vertical GRF during running
using only three inertial sensors placed on the lower legs and pelvis. The approach was based on two
concatenated neural networks opportunely trained. The first one mapped the measured accelerations
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to lower body joint angles (kinematics). The data were subsequently passed to a second neural
network whose aim was to estimate the vertical GRF. This architecture, depicted in Figure 21, allowed
for the independent training of the two networks and the selective re-training of each network in case
of changes in external conditions. Running test trials were recorded by an instrumented treadmill
equipped with a one-dimensional force plate. The GRF measured by the force plate was used for
model training and reference. Reference kinematic data was simultaneously recorded by: (i) an OS
and (ii) a full body (17 IMUs) inertial motion capture system. The Xsens MVN link model [75] was
used to solve the whole body kinematics. Sampling frequency was 240 Hz for the recording and it
was resampled to 120 Hz for further processing. The two stages reconstruction was implemented
in MATLAB (Mathworks, USA), using the “Neural Network Toolbox” and the outcomes of the
model were compared to the complete kinematic and kinetic data obtained by the OS and the
instrumented treadmill.
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Figure 21. Model based on the two artificial neural networks (ANN) and its training from IMU data.
The two ANNs sequentially estimated kinematics and kinetics [89].

When trained with subject-specific data, the model produced excellent results in matching the
actual force profiles measured by the treadmill. In this case, the knee flexion/extension angles were
estimated with an accuracy <5◦ while, ground reaction forces were estimated with an accuracy
<0.27 BW. The test was repeated at different speeds and the best results were observed at a running
speed of 12 Km/h (Figure 22).
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The major issue observed in this approach was the need of a training phase for each subject,
as the best results were observed when using training data from the same subject. Training data
from other subjects may be used, but in this case a decreased performance of the model has to be
expected [89]. Figure 23 shows the force profiles of a subject estimated using training data from the
other subjects. Furthermore, the estimation of GRF was limited to its the vertical component, due to the
one-component force platform used to collect training data. In general, the estimation of medio-lateral
and antero-posterior components of GRF from kinematic data has poor accuracy [47] but the method
proposed by [89] may be trained with multi-component data and implemented to estimate lateral
components of GRF.

Sensors 2018, 18, x FOR PEER REVIEW  25 of 35 

 

The major issue observed in this approach was the need of a training phase for each subject, as the 

best results were observed when using training data from the same subject. Training data from other 

subjects may be used, but in this case a decreased performance of the model has to be expected [89]. 

Figure 23 shows the force profiles of a subject estimated using training data from the other subjects. 

Furthermore, the estimation of GRF was limited to its the vertical component, due to the  

one-component force platform used to collect training data. In general, the estimation of  

medio-lateral and antero-posterior components of GRF from kinematic data has poor accuracy [47] 

but the method proposed by [89] may be trained with multi-component data and implemented to 

estimate lateral components of GRF. 

 

Figure 23. The estimated GRF profiles are compared to the respective reference profiles. Reference 

profiles were classified according to the respective reference kinematics (IMU and Plug In Gait joint 

angle output) [89]. These estimates were obtained using training datasets from different subjects. Left 

forces are depicted on the first row, while right stances are on the bottom row. At the top of each 

graph it is reported the comparison between the curves in terms of: the Pearson correlation coefficient, 

the RMSE and its standard deviation [89]. 

4. Summary 

The papers reviewed and discussed in the present work are summarized within Table 1. The 

most important information of each experiment are reported as well as the most important remarks 

and discoveries highlighted in each paper. Accuracy information, in terms of RMSE, correlation or 

other measures reported in the original papers were listed as well. 

Figure 23. The estimated GRF profiles are compared to the respective reference profiles. Reference
profiles were classified according to the respective reference kinematics (IMU and Plug In Gait joint
angle output) [89]. These estimates were obtained using training datasets from different subjects.
Left forces are depicted on the first row, while right stances are on the bottom row. At the top of each
graph it is reported the comparison between the curves in terms of: the Pearson correlation coefficient,
the RMSE and its standard deviation [89].

4. Summary

The papers reviewed and discussed in the present work are summarized within Table 1. The most
important information of each experiment are reported as well as the most important remarks and
discoveries highlighted in each paper. Accuracy information, in terms of RMSE, correlation or other
measures reported in the original papers were listed as well.
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Table 1. List of the papers discussed.

Reference Year Task No. of Segments Sensor
Type/IMU

Sensor
Positioning Subjects Studied Method

Reported RMSE or
Other Inaccuracy

Measures (Worst Case)
Outcomes and Remarks

Ohtaki et al. [26] 2001 Gait 5 1D Acc, 1D Gyro Distal shank and
thigh Healthy adults Newton’s Law

of motion

Vertical: 0.31 ± 0.012
N/BW

Horizontal: 0.076 ± 0.031
N/BW

Gait phase identification. Spectral analysis
of acceleration.

Elvin et al. [65] 2007 Vertical jump 2 1D Acc. Shank Male athletes Correlation Correlation R2 = 0.748
Correlation between peak GRF and peak
tibial acceleration. Computation of the
flying time.

Neugebauer et al. [28] 2012 Walking, running 1 2D Acc. Iliac crest of the
right hip Healthy teenagers Statistical

Model. 9.0 ± 4.2% Estimation of peak ground reaction force

Neugebauer et al. [30] 2014 Walking, running 1 3D Acc. Iliac crest of the
right hip Healthy adults Statistical

model
Vertical: 8.3 ± 3.7%

Braking: 17.8 ± 4.0%

Estimation of peak vertical and peak
braking ground reaction forces.
Acceleration of hip does not estimate
correctly GRF. Worst case: running.

Howard et al. [67] 2014 Counter and drop
jump 1 3D Acc. Pelvis Healthy adults Newton’s Law

of motion
Counter jump: 35.8%

Drop jump: 53.6%
Estimated GRF did not match the
measured GRF.

Wundersitz et al. [31] 2013 Running,
direction change 1 3D Acc. Upper back, T2 Healthy adults Newton’s Law

of motion ~24% Acceleration signal needed to be smoothed.

Charry et al. [37] 2013 Running 2 3D Acc. Medial tibia Healthy adults Correlation 8.28%
Implemented gait events identification.
Logarithmic correlation observed between
acceleration and peak GRF.

Pouliot-Laforte et al. [68] 2014 Vertical jump 1 3D Acc. Right Hip
Children and teenagers

with “osteogenesis
imperfect”

Newton’s Law
of motion 31% Good correlation between the GRF

estimated and the one directly measured.

Min et al. [71] 2015 Squat 3 3D Acc, 3D Gyro,
3D Mag.

Lumbar spine,
thigh, shank Healthy adults

Inverse
dynamics/Newton’s
Law of motion

R = 0.93
0.02 BW

High accuracy of estimated GRF. High
correlation between acceleration and GRF.

Logar and Munih [72]. 2015 Ski Jumping 10 3D Acc, 3D Gyro,
3D Mag.

Total body
tracking Athletes–ski-jumpers

Biomechanical
model and

inverse
dynamics.

12 ± 13%
Required calibration procedure. Good
similarity between measured and
calculated GRF.

Meyer et al. [39] 2015
Walking, jogging,
running, landing
and other tasks

1 3D Acc. Right hip Healthy Children Newton’s Law
of motion R = 0.89

Good correlation between acceleration and
measured GRF although GRF were
overestimated by accelerometer method.

Yang et al. [44] 2015 Walking 7 3D Acc, 3D Gyro Trunk, thigh,
shank, foot. Healthy adults Biomechanical

model 3D
R = 0.95

66 N
Estimation of the Intersegmental forces and
GRF. Identification of walking cycle.

Leporace et al. [86] 2015 Walking 1 3D Acc. Shank Healthy adults Machine
learning

Vertical: 5.2 ± 1.7% BW
Antero-Posterior:

5.4 ± 1.8% BW
Medio-Lateral:

13.0 ± 6.1% BW

Good prediction of all the components
of GRF.
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Faber et al. [73]. 2016 Bending 17 3D Acc, 3D Gyro,
3D Mag. Full body Healthy adults

Biomechanical
model/Newton’s

law.
20 N

Calibration needed. The full body
configuration allowed to estimate the three
dimensional GRF. Good agreement
observed between estimated and
measured forces.

Kodama and Watanabe [76] 2016 Sit to stand, squat 7 3D Acc. Trunk, Pelvis,
thigh, shank Healthy adults

Biomechanical
model/Newton’s

law.

Vertical: 15 N
Horizontal: 10 N

Estimated internal forces/moments, GRF
and CoP. Good estimation of GRF. Main
limitation due to statistics used to determine
inertial properties of body segments.

Setuain et al. [80] 2016 Vertical jump 1 3D Acc, 3D Gyro,
3D Mag. Lumbar spine Healthy adults Newton’s Law

of motion
19%

R = 0.93

Identification of jump phases from velocity
profile. Good correlation between
acceleration and force platform, but
disagreement between values.

Karatsidis et al. [45] 2017 walking 17 3D Acc, 3D Gyro,
3D Mag. Full Body Healthy adults Biomechanical

model 29.6% Use of smooth transition function to
determine GRF in double support.

Gurchiek et al. [56] 2017
Acceleration and

change of
direction

1 3D Acc, 3D Gyro,
3D Mag. Sacrum Healthy adults Newton’s law. 182.92 N

R = 0.53
3D GRF. Static calibration needed. Poor
results for the lateral components of force.

Raper et al. [59] 2018 Running 1 3D Acc. Medial tibia Professional Athletes Newton’s law. 16.04% IMU underestimates the force, but good
correlation with the direct measurement.

Aurbach et al. [60] 2017 Gait 15 3D Acc, 3D Gyro,
3D Mag. Full body Healthy adults

AnyBody™
musculoskeletal

model.
15.60 ± 12.54% GRF and ankle internal forces.

Guo et al. [87] 2017 Gait 1 3D Acc. L5, C7, Forehead Healthy adults Machine
learning. 5.0%

Membership function to identify GRF
during double support. Good estimation of
GRF. Gait phase identification was
dependent on pressure insoles. L5 is the
best placement.

Wouda et al. [89] 2018 Running 3 3D Acc, 3D Gyro,
3D Mag. Pelvis, shank. Athletes/runners

Multi stage
machine
learning.

0.27 BW
Minimal sensor setup. Only vertical GRF
was estimated. Excellent results when using
training data from the same subject.

Thiel et al. [62] 2018 Sprint running 2 3D Acc, 3D Gyro,
3D Mag. Shank Athletes/sprinters

Linear
modelling.
Empirical
parameter
estimation.

33.32%
Estimation of peak GRF by linear modelling.
Method was not reliable for every
participant.

Kiernan et al. [63] 2018 Running 1 3D Acc. Thigh Athletes/runners

Statistical
model/linear

regression
equation

N.A.

Estimation of peak GRF. Relation between
peak GRF and potential injury. Evaluation
of the training level. Use of the lateral
component of acceleration to determine
which foot is in contact with the ground.
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5. Conclusions and Final Remarks

Ground reaction forces play an important role in gait analysis and in functional evaluation to
study kinetic interaction with the ground. GRF are also necessary to estimate internal joint forces and
moments by means of inverse dynamics. The most common and most reliable method to measure GRF
is by using force platforms or treadmills instrumented with force sensors. Such instruments require
dedicated spaces, such as the motion analysis laboratories, and skilled operators. Thus, portable
methods represent an attractive alternative that is worth studying. Non-invasive wearable sensors
may be used in ambulatory environments, or on the field for monitoring training and improvements
of athletes or performers.

Among the wearable sensors currently available, the most reliable are the ones that allow the
direct measurement of GRF. Examples are: the pressure mapping insoles [90,91], wearable load
cells [18,92] or ad-hoc designed pressure sensing devices [82]. However, direct measurements have
several drawbacks: (i) the sensors are worn under the foot compromising the foot-ground interaction;
(ii) sometimes the sensors may change the rigidity of the shoes making them unsuitable for running or
jumping tasks; (iii) mechanical and repeated stress of the sensors is high, thus sensors can wear out or
break down easily; (iv) sensors may cause discomfort during training. For these reasons, the possibility
to indirectly estimate GRF from kinematic data and inertial measurements saw a growing interest in
scientific research.

The literature analysis showed that GRFs can be predicted from IMU data by using
a biomechanical model in conjunction with Newton’s second law of motion, or a machine learning
approach. Vertical GRF can be accurately predicted in case of the single stance, but during double
support the forces and moments under each foot cannot be easily determined.

The most critical aspects in estimating GRF from kinematic data were identified in:

(1) The number of sensors/body segments required for the biomechanical modelling
(2) Knowledge of the inertial properties of each body segment
(3) Determining the antero-posterior and medio-lateral components of GRF
(4) Determining the GRF acting on each foot in double support conditions and evaluating

loading asymmetry
(5) Even if a correlation between predicted and directly measured GRF exists, it is difficult to estimate

the absolute value of peak force.

Increasing the number of sensors means having a better knowledge of motion and acceleration of
each body part, leading to a more accurate estimation of GRF. On the other hand, reducing the number
of sensors would dramatically simplify subject preparation, data acquisition and subject’s comfort.
Approaches based on only one sensor were validated, having the sensor placed either on the sacrum or
on the hip but they still have some limitations, mainly due to the poor accuracy. When a multi-segment
body model is used, the distribution of inertial quantities is obtained by means of standard tables that
assign percentages of the body weight to each segment. This approach may not properly represent
each subject and it is a significant source of uncertainty.

According to our literature survey, most of the reviewed papers validated the estimation of
the vertical component of GRF that was acceptable in most of the cases, while a few focussed on
the lateral components and found a poor reliability in the estimation of such quantities. This result
was attributed to the lower absolute values observed for the lateral components of force. Moreover,
while the correlation between the body acceleration and the vertical GRF were found to be good in
most of the cases, the absolute values of the GRF were not estimated correctly by the IMU method.
This may be attributed to inaccuracies in the inertial properties of the models, impact attenuation
effects of the shoes and/or sensor placement.

The estimation of GRF in double support is probably the most critical aspect as it is difficult to
distribute the forces among the feet. In case of single support, all the estimated force can be attributed
to the foot in contact with the ground, which can be identified by means of some techniques based on
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inertial data. Double support does not occur in tasks such as running where the load is alternatively
transferred on each foot. Other tasks such as walking, jumping or training in general have double
support phases. Thus, some techniques to assign the estimated load on each foot were proposed,
such as a transfer function [44] or a membership function [87]. However these remain statistical models
that may not accurately represent each case and their use is restricted to the walking task. When an
accurate knowledge of double support forces on each foot is needed, the use of wearable force sensors
is recommended.

ANN were proved to be a good flexible tool for nonlinear modelling and versatile for the
prediction of GRF. In fact, the use of neural networks simplifies modelling and data acquisition
strategies and, since most of the models rely only on accelerometer data, these methods are immune of
magnetic disturbance. The drawback of ANN is that they are sensitive to the chosen input parameters,
are computationally expensive and require a large amount of data to train the system, in order to
reach an acceptable accuracy. ANN are a promising tool for the estimation of the lateral components
but this was not validated in the papers examined. Appropriate ANN configuration associated to
a multi-segment body modelling may allow to improve the estimation of GRF in double support as
well as the loading asymmetry. Further studies should be aimed to increase the accuracy of predicted
GRF. The combination of methods based on both biomechanical modelling and machine learning
seems a promising way to increase overall accuracy, even in the estimation of lateral components of
GRF. Furthermore, hybrid methods based on the concurrent measurement of kinematics and forces by
means of miniature wearable sensors should also be explored.

The design of a small non-invasive wearable system or sensor network to estimate GRF represents
a significant research challenge. Such a device will enable smart monitoring of training and of injuries
or fatigue related to repeated loads on the lower limbs.
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