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Abstract: Tomato greenhouses are a crucial element in the Equadorian economy. Wireless sensor
networks (WSNs) have received much attention in recent years in specialized applications such as
precision farming. The energy consumption in WSNs is relevant nowadays for their adequate
operation, and attention is being paid to analyzing the affecting factors, energy optimization
techniques working on the network hardware or software, and characterizing the consumption
in the nodes (especially in the ZigBee standard). However, limited information exists on the analysis
of the consumption dynamics in each node, across different network technologies and communication
topologies, or on the incidence of data transmission speed. The present study aims to provide a
detailed analysis of the dynamics of the energy consumption for tomato greenhouse monitoring in
Ecuador, in three types of WSNs, namely, ZigBee with star topology, ZigBee with mesh topology
(referred to here as DigiMesh), and WiFi with access point topology. The networks were installed
and maintained in operation with a line of sight between nodes and a 2-m length, whereas the
energy consumption measurements of each node were acquired and stored in the laboratory.
Each experiment was repeated ten times, and consumption measurements were taken every ten
milliseconds at a rate of fifty thousand samples for each realization. The dynamics were scrutinized
by analyzing the recorded time series using stochastic-process analysis methods, including amplitude
probability functions and temporal autocorrelation, as well as bootstrap resampling techniques
and representations of various embodiments with the so-called M-mode plots. Our results show
that the energy consumption of each network strongly depends on the type of sensors installed
in the nodes and on the network topology. Specifically, the CO2 sensor has the highest power
consumption because its chemical composition requires preheating to start logging measurements.
The ZigBee network is more efficient in energy saving independently of the transmission rate,
since the communication modules have lower average consumption in data transmission, in contrast
to the DigiMesh network, whose consumption is high due to its topology. Results also show that the
average energy consumption in WiFi networks is the highest, given that the coordinator node is a
MeshliumTM router with larger energy demand. The transmission duration in the ZigBee network is
lower than in the other two networks. In conclusion, the ZigBee network with star topology is the
most energy-suitable one when designing wireless monitoring systems in greenhouses. The proposed
methodology for consumption dynamics analysis in tomato greenhouse WSNs can be applied to
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other scenarios where the practical choice of an energy-efficient network is necessary due to energy
constrains in the sensor and coordinator nodes.

Keywords: wireless sensor networks; stochastic process; energy consumption; tomato greenhouse;
M-mode plots.

1. Introduction

The tomato, technically known as Solanum lycopersicun, is one of the most significant products
contributing to the economy of the Ecuadorian agricultural sector [1]. For this reason, tomatoes are
usually grown under greenhouses to increase their production. This structured environment facilitates
the implementation of internal and external climate monitoring systems. On the other hand,
wireless sensor networks (WSNs) are currently the telecommunication systems with the highest
penetration in the use of the population for specialized applications such as precision agriculture.
WSNs are implemented with autonomous sensor nodes that collect data packages and transmit
them to a coordinator at the expense of an external energy source, such as batteries [2–4]. Therefore,
the energy consumption of the nodes is an especially relevant parameter for the operation quality of
these networks.

At present, the energy consumption characterization of WSNs nodes in terms of telecommunication
infrastructure is a topic of interest, because it affects about 1% of the world’s electricity consumption,
and it has been exponentially increasing [5,6]. The scientific and technical literature includes
works focused to the analysis of energy consumption in relation to the operation mode [7] and
the performance of the operating system [8] in the communication radios. In addition, energy-saving
techniques using hardware [9–12] and software [13] have been considered, and most of these studies
are applied to WSNs with ZigBee technology and star topology. To our best knowledge, few works
involve an extensive knowledge of the detailed statistical description of consumption dynamics and
its ergodic properties, as well as a rigorous analysis of the estimation of stationarity. In addition,
the contributions with respect to comparisons of the energy consumption behavior of WSNs for
different wireless technologies, network topologies, and transmission rates are scarce.

Based on this background, the present study aims to provide a detailed analysis of the dynamics
of the energy consumption in three types of WSNs, namely, ZigBee with star topology, ZigBee with
mesh topology (so-called here DigiMesh), and WiFi with access point topology for tomato greenhouse
monitoring in Ecuador. We want to provide an accurate statistical characterization of the behavior of
WSNs, relating energy consumption, transmission rate, and network topology to provide researchers
with the selection criteria of the appropriate network design in terms of energy savings, and oriented to
monitoring the climate of greenhouses. For this purpose, the the electrical current time series recorded
at each node were studied using stochastic-process analysis methods, including amplitude probability
functions and temporal autocorrelation estimation. We also used bootstrap resampling techniques
to provide with non-parametric statistical description of confidence intervals (CIs) when convenient,
as well as the so-called M-mode plots to represent and compare the statistical properties of the several
realizations. The two companion papers are devoted to the analysis of the WSN topologies and their
configuration and to the study of the dynamics of the environmental measurements, both of them in
Equadorian tomato greenhouse monitoring [14,15]. The first one has the detailed description of the
complete system and network setup, and the second one has a short summary of the proposed system
for tomato greenhouse monitoring.

This paper is organized as follows. Section 2 reviews some documents related with the energy
consumption dynamics in WSNs. Section 3 describes the statistical analysis tools that are used to
study the dynamics of the energy consumption variables. Section 4 presents the detailed results when
analyzing each WSN at different speeds. Finally, Section 5 gives the discussion and conclusions.
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2. Related Work

WSN is a modern technology that has been widely used in a variety of applications, such as
greenhouse parameter control in precision agriculture [16,17], quality water monitoring systems [18,19],
military applications [20], intelligent street lighting systems [21], air pollution monitoring systems [22],
urban traffic characterization [23], oil industry [24], or health status monitoring [25], among many
others. Today, WSNs offer some advantages over traditional wireless communication systems, such as
low cost, ease of installation, real time, reliability, and connectivity [26]. Although the choice of
WSN technology is attractive, there are still some limitations present, such as energy consumption,
low battery life, redundant data acquisition, or low duty cycle.

One of the today problems in the development of WSN systems comes from the high energy
consumption of the sensor nodes, due to its direct impact on the WSN useful life [27]. According
to the literature [28,29], the relevant factors for energy consumption are inside the sensing module
(active sensors, sampling rate, and sensor type), inside the processing module (active state, clock
frequency, and microcontroller), and inside the communication module (bandwidth, radio, distance,
duty cycle, and topology). The heaviest energy consumer is the communication module used for the
transmission and reception of data among sensor nodes, and the most energy-demanding elements
are at the radio subsystems. Batteries are usually constrained to be small and they are in trouble when
required to support long-distance communications due to transmitted power constraints [7].

Table 1 shows a compilation of research works on the evaluation of WSNs topologies, transmission
reliability, energy-consumption optimization techniques, and energy modeling of sensor nodes.
In summary, it can be seen that the research is often limited with respect to the analysis of the
energy consumption dynamics of the sensor nodes, with the simultaneous consideration of different
communication technologies and topologies, in addition to the incidence of the data transmission
speed. However, and to our best knowledge, a detailed analysis on the consumption dynamics in terms
of detailed statistical descriptions of the consumption time series evolution is missing in the literature.

Table 1. State of the art of relevant works in WSN literature related with energy aspects.

Work Technical Contribution

Barboni et al. (2008) [30] An electronic system to visualize node current consumption usage,
and charge extracted from the battery during node operating states.

Niewiadomska et al. (2009) [31] A short overview of the energy conservation techniques and algorithms
for calculating energy-efficient topologies for WSNs.

Al et al. (2010) [32] A technique for WSN with mobile sensor nodes reducting 50% in the
energy consumption.

Casilari et al. (2010) [33] A full experimental characterization of current consumption in ZigBee
sensor nodes.

Ishmanov et al. (2011) [34] A review of energy consumption balancing (ECB) issues in WSNs.

Lozneanu et al. (2011) [35] Energy mathematica model for each part of the wireless sensor node,
which is adaptable to any sensor node.

Mihajlov et al. (2011) [36] A performance evaluation of a WSN.

Soua et al. (2011) [37] A review of different techniques to reduce the consumption of the
sensor nodes.

Kaur et al. (2012) [38] An overview of WSNs and a scenario based comparison for energy
efficiency between different topologies.

Silva et al. (2012) [39] A methodology to evaluate the dependability of WSNs in typical
industrial environments.
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Table 1. Cont.

Work Technical Contribution

Distefano (2013) [40] An evaluation of the reliability of WSN applied from a system
reliability point of view.

Deshpande et al. (2014) [41] A study of the topology control to minimize energy consumption
for a WSN.

Luo et al. (2014) [42] Analysis of the distributions of the energy consumption for
the communications among nodes.

Moschitta et al. (2014) [43] A review on energy consumption measurements in WSN networks,
highlighting the node architecture and the network operation.

Rault et al. (2014) [44] A new taxonomy of energy conservation schemes and an analysis
of how these techniques can affect the performance of their applications.

Abo et al. (2015) [45] An energy consumption model for a WSN node based on physical
and MAC layer parameters.

Aguirre et al. (2015) [46] A radio planning analysis for WSN deployment is proposed by
employing a deterministic 3D ray.

Zhu et al. (2016) [47] A reliability evaluation model for network transmission.

Dâmaso et al. (2017) [48] An integrated analysis of power consumption and reliability.

3. Statistical Analysis of the Consumption Dynamics

In this section, we briefly describe the data analysis tools that have been used to study the
dynamics of a set of energy consumption variables. From a time-process analysis viewpoint, we used
methods allowing us to scrutinize the statistical nature of the recorded signals (histograms and
autocorrelation) and their stationarity (autocorrelation and M-mode representations). To provide a
detailed statistical description, nonparametric statistics (in terms of bootstrap resampling techniques)
were used to calculate CIs when convenient [49]. We describe in Appendix A the theoretical
fundamentals for this set of statistical analysis tools, and the interested reader is encouraged to
find therein a more detailed mathematical notation and statistical description for all these elements.

In addition to the conventional time representation of signal and time processes, in this work,
we often use the representation of the observed process using a bidomain support. For this purpose,
we introduce here the so-called M-mode representation, which is just a bidomain plot of time signals
(or its estimated statistical descriptors) accounting for a second and convenient representation domain.
This M-mode representation has been recently used in cardiac signal processing to provide with
spatial-temporal representations of a set of time signals along a line of spatial sampling points [50,51].
This M-mode representation can be advantageously used not only for signals, but also for their
statistical descriptions. In our case, it is also applied to the characterization of the energy consumption
time processes in terms of their probability distributions and of their autocorrelation, as described next.

The probability density function (often denoted as pdf) describes the relative probability that the
random variable falls in a specific region of the probability space, and it is defined by the integral of
the density of this variable between the limits of said region. Note that, since the pdf representation on
a linear scale can limit the visual perception of small yet relevant values, especially in the tails, we also
considered here its representation in log-log scale when convenient. The M-mode plots were also used
to represent jointly the estimated pdf of each realization to quantitatively and visually analyze the
similarities among them. In this work, the pdf was estimated in terms of the normalized histogram,
either for a given realization, or for the complete process. The histogram is the representation in
the form of bars of the distribution of a set of data from a given variable, so that each bar has equal
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width a and the bar heights are proportional to the relative frequency of the data represented in that
interval or bin [52]. In our application, this simple technique offers a panoramic and ordered view of
the estimated pdf of the consumption in each node of the three networks to easily identify the trends,
variability, and shape of the energy consumption distributions.

In addition to the estimated averaged pdf, it is informative to define a CI for it. However,
this calculation is not simple, because the underlying distributions are not known in practice.
For this reason, a non-parametric method is required to estimate the density of the estimated
statistics, which is required to be robust with respect to the underlying distribution shape. Bootstrap
resampling is a statistical estimation method which has been widely applied in Probability Theory
and in Statistical Inference for the construction and estimation of CI of a wide variety of statistical
processes. This technique uses the data collected from a given process and the plug-in principle to
randomly generate new simulated samples (resamples) of the same size as the original sample [49].
Bootstrap resampling techniques are widely used in practical problems; they are versatile and robust
with respect to the underlying statistical distribution; and they can be applied to virtually any estimator
that can be obtained computationally [53].

The simple autocorrelation function (SAF) is a statistical tool that determines the correlation or
similarity between a signal and its out-phase replica as a function of delay time (commonly denoted
as τ) [54]. In the field of signal processing, the autocorrelation facilitates the analysis of seasonality
of functions or time series in the time domain, especially when focused on applications related with
recognition of repetitive statistical patterns, on detection of (near-)periodic signals masked by noise,
or on the study of autoregressive moving average processes, among many others [55].

4. Experiments and Results

In this section, we first describe the configuration parameters and the connections of the
measurement equipment used in the experimental stage to acquire the energy consumption of each
node of the three networks. The data collection experiments were repeated ten times, all under the
same scenario, to characterize the statistical behavior of the energy consumption of each element of
the networks. Next, we present the dynamics of the consumption signals that were analyzed with
custom-developed software in MatlabTM . Selected and representative graphs of time series, probability
distributions, and SAF, were studied in each node and at different transmission rates. The scheme of the
comparative study was the following. Initially, we defined some relevant characteristics of the different
graphical representations of the DigiMesh network, as given by its trend, mean, standard deviation,
probability distribution, and seasonality, at a fixed and low rate of 9600 bauds. Next, we compared
these signals with other transmission speeds, and we identified the significant peculiarities and got the
corresponding conclusions. The same procedure was applied to the ZigBee and WiFi networks. We end
with a global analysis of the results of the three networks to discern the incidence of communication
technology and the transmission rate with respect to the battery consumption of each kind of node.

4.1. Setup of Energy Consumption Measurements

The efficient energy consumption in the nodes of WSNs is relevant for their performance, because
it increases the operating time of the batteries and reduces the risk of data loss due to lack of energy
in a network node. In this research, the energy consumption measurements of each node were
acquired and stored in the laboratory according to the scheme in Figure 1. An experiment was
developed for each network, and in all cases the link between the nodes was with line of sight and 2-m
length. The battery of each node was connected to the AgilentTM 34410A multimeters for the current
consumption measurements, and the recordings were transmitted through a local area network to the
computer. The multimeter was configured from the computer using SCPI commands, and current data
were transferred to a Microsoft ExcelTM database with Agilent IntuiLinkTM software, where data were
subsequently processed and analyzed with custom-made MatlabTM functions.
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Figure 1. Acquisition and storage of the current consumption in each node.

The relevant aspects that were considered for the experimentation phase of the three networks
are shown in Table 2. Baud rates were selected according to the technical specifications given by the
manufacturer of the Waspmote processing card and the communication modules. The parameters
configured on multimeters were static IP address, DHCP protocol disabled, and sample count to fifty
thousand. The resolution of the device was also analyzed according to the integration time, which was
defined as the period during which the analog-to-digital converter in the multimeter sampled the input
signal measurements. This time is typically expressed in number of power line cycles (NPLC) [56].
The integration time is directly related to the resolution of the device and inversely related to the noise
and measurement speed. For the first experiment, a low NPLC was selected for the three networksto
have a moderate acquisition time of each measurement. However, we observed that the noise in the
resulting signals was considerable, especially in the DigiMesh and WiFi networks. The NPLC values
were configured differently for each network after the noise level analysis, and shown in Table 2.
For the three networks, the experiment was repeated ten times in the same scenario, and fifty thousand
samples were acquired every ten milliseconds to statistically verify the similarity of the signals and to
determine the behavior pattern of the energy consumption of each node at different speeds.

Table 2. Relevant parameters in the data collection of energy consumption.

Network Nodes NPLC Noise RMS (PPM) Baud Rate Waspmote Card Communication Module

ZigBee 1 Coordinator
3 Sensor Nodes 0.006 6

9600
19,200
57,600

Software: ID PRO LibeliumTM

Hardware: Not required
Software: X-CTU

Hardware: ZigBee Gateway

DigiMesh 1 Coordinator
4 Sensor Nodes 2 0.2

9600
19,200
57,600

Software: ID PRO LibeliumTM

Hardware: Not required
Software: X-CTU

Hardware: ZigBee Gateway

WiFi 1 Coordinator
4 Sensor Node 1 0.3 9600

57,600
Software: ID PRO LibeliumTM

Hardware: Not required
Software: FTDI drivers Microchip TM

Hardware: RN-XV-EK1 Module

4.2. Energy Consumption Dynamics of DigiMesh Network

In Appendix B, we present the detailed analysis with all the proposed elements for the Digimesh
Network when working at 9600 bauds. This complete description is only detailed for that case, so that
the interested reader can better follow the scope and contribution of every kind of analysis addressed
here. Based on the methodology described in detail in Appendix B, we present in this section only
the relevant results of the comparative study for the energy consumption dynamics of the DigiMesh
network at 9600, 57,600 and 19,200 baud rates.

For three transmission rates, the time signals were homoscedastic, as seen in the example in
Figure 2, and also the values of µ and σ of the sensor nodes and the peak-transmission sequences
were similar. In addition, we verified that regardless of the transmission speed, the average power
consumption was the highest for Node 4 and the lowest for Node 3. In the particular case of the
Coordinator Node, we observed that, when the velocity increased, the averaged of energy consumption
decreased. Table 3 summarizes the average consumption, its deviation, and the transmission duration
of each realization for the three analyzed baud rates. The standard deviations were low, being below
1 µA at the Sensor Nodes and below 1.2 µA at the Coordinator Nodes. The transmission duration for
the three speeds was about 0.68 s. This value was determined by first taking the mode of the samples
in each realization, and then averaging them for all the realizations.
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Table 3. Values of energy consumption and transmission duration for the DigiMesh network.

Baud Rate Network Element Parameters 1 2 3 4 5 6 7 8 9 10 Average

9600

Coordinator µ (uA) 20.48 19.19 14.65 14.32 13.18 12.01 11.17 10.34 9.63 7.90 13.29
σ (uA) 1.05 0.94 1.83 0.74 0.68 1.15 0.97 1.05 1.09 1.00 1.05

Node 1 µ (uA) 112.11 112.34 112.54 113.03 113.14 113.44 113.58 113.99 114.29 114.14 113.26
σ (uA) 0.43 0.50 0.41 0.45 0.53 0.64 0.59 0.43 0.42 0.46 0.49

Node 2 µ (uA) 80.28 80.13 80.16 80.24 80.18 80.53 80.37 80.44 80.44 80.38 80.32
σ (uA) 0.57 0.43 0.48 0.46 0.58 0.78 1.00 0.96 0.98 0.95 0.72

Node 3 µ (uA) 77.01 77.17 77.23 77.25 77.2 77.18 77.37 77.37 77.3 77.26 77.23
σ (uA) 0.71 0.60 0.71 0.78 0.63 0.70 0.59 0.59 0.71 0.58 0.66

Node 4 µ (uA) 156.77 157.31 157.94 159.18 159.66 161.78 161.56 161.41 161.62 161.96 159.92
σ (uA) 0.39 0.43 0.41 0.44 0.43 0.87 0.58 0.39 0.40 0.38 0.47

Transmission Duration T (s) 0.71 0.68 0.68 0.68 0.68 0.70 0.68 0.68 0.67 0.67 0.68

19,200

Coordinator µ (uA) 10.78 9.55 8.61 7.61 7.40 7.57 6.02 5.42 4.87 4.40 7.22
σ (uA) 1.30 1.33 1.31 1.35 1.49 1.07 0.69 0.71 0.67 0.74 1.07

Node 1 µ (uA) 111.19 111.33 111.53 111.9 112.02 112.61 112.01 112.27 112.52 112.76 112.01
σ (uA) 0.39 0.50 0.41 0.43 0.39 0.52 0.43 0.41 0.44 0.37 0.43

Node 2 µ (uA) 79.98 79.98 79.97 80.04 80.04 80.03 80.2 80.03 80.08 80.13 80.05
σ (uA) 0.52 0.46 0.46 0.50 0.46 0.49 0.59 0.71 0.64 0.59 0.54

Node 3 ć (uA) 77.35 77.39 77.37 77.43 77.36 77.38 77.37 77.39 77.45 77.5 77.40
σ (uA) 0.83 0.96 0.81 0.83 0.65 0.85 0.62 0.55 0.63 0.64 0.74

Node 4 µ (uA) 161.51 161.47 161.57 164.57 165.25 164.59 163.50 164.05 164.46 164.86 163.58
σ (uA) 0.32 0.39 0.42 0.38 1.69 0.43 0.36 0.46 0.42 0.41 0.53

Transmission Duration T (s) 0.68 0.68 0.68 0.67 0.67 0.67 0.68 0.68 0.68 0.68 0.68

57,600

Coordinator µ (uA) 4.03 9.55 8.32 5.63 4.74 4.28 3.87 4.47 4.02 3.26 5.22
σ (uA) 0.69 1.19 1.12 1.00 1.03 1.00 1.02 1.39 1.69 1.42 1.16

Node 1 µ (uA) 112.72 112.99 113.33 113.71 114.94 115.15 115.33 115.47 110.00 110.21 113.39
σ (uA) 0.44 0.49 0.46 0.40 0.45 0.42 0.48 0.46 0.47 0.41 0.45

Node 2 µ (uA) 80.08 80.22 80.28 80.29 80.35 80.36 80.33 80.31 80.60 80.45 80.33
σ (uA) 0.44 0.68 0.66 0.51 0.50 0.38 0.58 0.45 0.65 0.70 0.56

Node 3 µ (uA) 77.51 77.21 77.42 77.59 77.66 77.65 77.64 77.59 76.84 76.98 77.41
σ (uA) 0.76 0.61 0.65 0.62 0.58 0.55 0.57 0.54 0.79 0.62 0.63

Node 4 µ (uA) 164.97 159.83 159.97 161.03 164.01 164.21 163.64 163.66 159.77 160.43 162.15
σ (uA) 0.43 0.41 0.47 0.57 2.18 2.12 2.73 0.59 0.55 0.43 1.05

Transmission Duration T (s) 0.68 0.70 0.68 0.67 0.66 0.66 0.66 0.68 0.69 0.68 0.68
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Figure 2. Time signals for DigiMesh network in two example realizations: (Left) at 19,200 bauds;
(Right) at 57,600 bauds; (Top) complete time signals; and (Bottom) signal sections with closer detail.

Figure 3 shows the set of pdf, whose behavior was different from the signals analyzed in
Appendix B. The distributions of the ten realizations for the Coordinator Node at 19,200-baud rate
showed more stable behavior than those obtained at 9600 and 57,600 bauds. However, the load effect
remained present in all runs of the three speeds, which was evidenced in the progressive phase shift
of the signals. The plots of Node 1 at 9600 and 19,200 bauds were similar, while a slight offset of
the two initial runs was observed at 57,600 bauds. This was caused by the low charge in the battery.
We conclude that the load effect on the sensor nodes is hardly visible at high transmission speeds.
Based on the high likeness of the pdf of Nodes 2 and 3 for the three speeds, the modification of the
value of this parameter does not significantly influence the energy consumption. The offset that was
observed in Node 4 pdf at 9600 bauds due to impedance decoupling was imperceptible for these other
speeds. Nevertheless, in some realizations, the increase in the transmission speed caused the presence
of low consumption values which were distant from the central distribution curve, and these values
corresponded to electrical noise, which was more noticeable at 57,600 bauds.

By means of the graphs of the CI of each network element at 19,200 and 57,600 bauds, we can
identify some characteristics with respect to the 9600 bauds, and the relevant signals are shown in
Figure 4. The Coordinator Node was the element with the widest CI for the three speeds; therefore,
the variation between the realizations because of the load effect was present in all cases, regardless the
communication transmission rate. The multimodal distribution and the size of the intervals were
similar at the speeds of 9600 and 57,600 bauds, however, the variation between modes at 19,200 bauds
was visibly softer and the CI width was larger. Based on this, we deduced that the data dispersion
was more stable, but the loading effect was slightly larger. In addition, the range with the highest
concentration of data consumption for this node decreases with increasing transmission speed.
The change in the transmission rate for Nodes 2 and 3 did not influence the behavior of energy
consumption, since the pdf, the margin of highest data concentration, and the narrow width of the
CI were very similar at the three speeds. In contrast, the similarities of these parameters for Sensor
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Node 1 were evident at 9600 and 19,200 bauds, but the pdf was multimodal, and the CI increased
considerably at 57,600 bauds, due to the lag between realizations that was previously explained in the
M-mode analysis of this node. The increase in the transmission speed in Node 4 did not significantly
change the consumption range with higher data concentration, however, the number of modes of
the probability distribution was reduced from three to two, and the CIs were reduced in both speeds,
with the narrowest one being obtained at 19,200 bauds. Hence, the energy consumption behavior for
this rate was less affected by factors such as the load effect given at low battery voltages or the delay in
the CO2 sensor activation.

Figure 3. M-mode of pdf with distinctive characteristics for DigiMesh network. From left to right:
Coordinator Node, Node 1, and Node 4. (Top) At 19,200 bauds; and (Bottom) at 57,600 bauds.

Figure 5 shows the estimation of the histograms for the DigiMesh network at 9600, 19,200,
and 57,600-baud rates. The elements of the DigiMesh network for the three speeds have the same
current ranges with higher occurrence probability. In addition, the current range with lower probability
of the Coordinator Node decreases with increasing speed. Accordingly, we identify that the sensor
nodes have higher average energy consumption than the Coordinator Nodes, especially Sensor Node 4.

Figure 6 shows relevant aspects identified in the autocorrelation analysis using the M-mode and
the CI at 19,200- and 57,600-baud rates. The plots of the Coordinator Node at 57,600 and 9600 bauds
were similar, and corresponded to a non-seasonal time process, since the decrease of their SAFs was
slow and exponential-like. In contrast, the first six realizations of this node at 19,200 bauds recorded
slow and anti-persistent drops, and for increasing run number, the battery voltage was reduced and
the consumption signals tend to be uncorrelated processes, because the falls were rapid and with
slight persistence in the initial delays. The persistence and fast descend of SAFs in Nodes 1 and 3
were similar for the three speeds, hence, we conclude that the consumption signals in these nodes
is seasonal, independently of the transmission rate. The autocorrelation variations in the signals of
Nodes 2 and 4 were rapid in all the runs and the number of signals with relevance throughout the
delay was greater than 19,200 bauds, but in general terms we can classify the consumption of these
nodes as uncorrelated processes.
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Figure 4. CI of pdf with distinctive characteristics for DigiMesh network. From left to right: Coordinator
Node, Node 1, and Node 4. (Top) At 19,200 bauds; and (Bottom) at 57,600 bauds.

Figure 5. Histograms for DigiMesh network. From left to right: at 9600, 19,200, and 57,600 bauds.

Through the comparative study of the CI of the SAF for the three speeds, we identified relevant
differences, which are shown in Figure 7. In the Coordinator Node, the consumption processes were
on average seasonal for all speeds, as long as the battery was fully charged in each realization. In all
cases, the widths of the CIs were greater with respect to the Sensor Nodes, and similarly at 9600
and 57,600 bauds. However, at 19,200 bauds the width decreased with increasing delay. In addition,
the average SAF was higher at 57,600 bauds. The rapid and persistent drops, as well as the CI
dimensions in the graphs of Nodes 1 and 3, were similar at all transmission rates, meaning that the
consumption signals of these network elements are seasonal. The SAFs of Node 2 were uncorrelated
at all speeds, as far as their values showed rapid drops without persistence with narrow CIs. Finally,
the consumption signals from Node 4 were classified as non-correlated processes for all the tests.
However, the speed increase caused a slight extension of the SAF in the first delays and the falls tended
to be smoother. In addition, persistence was lost throughout the range of delays for the highest rate.
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Figure 6. SAFs with different characteristics for DigiMesh network at 19,200 bauds. From left to right:
Coordinator Node, Node 2, and Node 4.

Figure 7. CI for SAF with distinctive characteristics for DigiMesh network: (Left) at 19,200 bauds;
(Right) at 57,600 bauds; (Top) Coordinator Node; and (Bottom) Sensor Node 4.

4.3. Energy Consumption Dynamics of ZigBee Networks

The analysis of the time series in the ZigBee network at 9600, 19,200 and 57,600 bauds showed
that, for the ten realizations, consumption fluctuated around the mean, there was no defined trend,
and the variability remained stable. This also indicates that the behavior of the signals is homoscedastic.
The cyclo-stationarity of the total and partial temporal signals for the 9600-baud rate is shown in
Figure 8, together with the time signals for 19,200 and 57,600 bauds, which did not exhibit any
periodicity. The µ and σ values of the Sensor Nodes indicate that the average energy consumption
was the highest. The Coordinator Node had lower consumption, because it has the XBEE ZB S2 PRO
communication module incorporated, and it is a low-power consumption module.

Figure 9 shows at a closer scale the consumption peaks of two realizations for the speed of
9600 bauds, in which the signal periodicity can be identified. The peak pattern indicates that Node 2
initiates the communication, then Node 3, and later Node 1. The peaks of the Coordinator Node are
present in the entire transmission sequence, whose duration is approximately 0.33 s. Five additional
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experimental tests were realized with the modification of the NPLC to characterize the periodicity for
speeds of 19,200 and 57,600 bauds, however, it was not possible to visualize the presence of periodicity
in any of them. The duration of the experiment was directly proportional to the resolution of the
multimeter expressed in NPLC, for its highest value, and the acquisition of measurements lasted
approximately 4 h per realization. In Figure 10, we observe that the increase of this parameter did not
improve the perception of periodicity, on the contrary, the current in the Coordinator Node noticeably
decreased. For this reason, we decided to maintain the NPLC to perform the energy consumption
analysis for the ZigBee network.

Figure 8. Time signals for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds.
(Top) Complete time signal; and (Bottom) time detail of the same signal.

Figure 9. Complete time signals for ZigBee network at 9600 bauds in two example realizations:
(Left) Realization 4; and (Right) Realization 7.

Table 4 summarizes the average consumption and deviation of each realization for the three
analyzed baud rates. The standard deviations were high, being above 12 µA at the Sensor Nodes
and above 22 µA at the Coordinator Nodes. The transmission duration at 9600 bauds was to 0.33 s.
This value was determined by taking the mode of the samples in each realization, and then calculating
the average for all realizations.
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Table 4. Values of energy consumption and transmission duration for the ZigBee network.

Baud Rate Network Element Parameters 1 2 3 4 5 6 7 8 9 10 Average

9600

Coordinator µ(uA) 30.46 30.11 28.88 28.29 27.8 27.26 26.64 26.2 25.72 25.22 27.66
σ (uA) 23.72 23.89 22.91 22.44 23.06 22.63 22.42 22.25 22.53 22.22 22.81

Node 1 µ (uA) 36.36 36.29 36.31 36.11 36.03 35.95 35.94 35.85 35.93 35.85 36.06
σ (uA) 18.77 18.54 18.71 18.63 18.38 18.72 18.59 18.3 18.54 18.51 18.57

Node 2 µ (uA) 34.8 34.84 34.97 34.88 34.82 34.71 34.76 34.7 34.71 34.66 34.79
σ (uA) 20.85 20.7 20.76 20.59 20.58 20.56 20.55 20.5 20.38 20.5 20.60

Node 3 µ (uA) 34.01 34.08 34.31 34.32 34.31 34.08 34.11 33.98 34.03 34 34.12
σ (uA) 21.07 21.17 21.35 21.35 21.15 21.3 20.95 20.95 21.02 21.09 21.14

Transmission Duration T (sg) 0.43 0.26 0.34 0.42 0.29 0.42 0.29 0.24 0.32 0.32 0.33

19,200

Coordinator µ (uA) 56.36 54.83 53.59 52.54 51.5 50.43 49.44 48.31 47.3 46.36 51.07
σ (uA) 24.55 23.12 22.62 22.58 22.97 22.56 22.44 22.32 22.92 23.01 22.91

Node 1 µ(uA) 40.56 40.6 40.28 40.45 40.66 40.61 40.58 40.61 40.58 40.66 40.56
σ (uA) 13.1 13.15 12.89 12.89 12.79 12.88 12.71 12.78 12.61 12.87 12.87

Node 2 µ (uA) 41.75 41.76 41.63 41.94 41.94 41.88 41.93 41.92 41.9 41.86 41.85
σ (uA) 13.62 13.89 15.47 15.65 14.86 14.92 14.86 14.86 14.83 14.75 14.77

Node 3 µ (uA) 40.76 40.7 40.51 40.87 41.28 41.13 40.98 40.98 41.1 40.99 40.93
σ (uA) 14.46 14.26 14.67 14.45 14.49 14.44 14.43 14.22 14.42 14.43 14.43

57,600

Coordinator µ (uA) 44.63 37.42 36.57 35.53 34.26 33.28 32.17 30.97 24.75 24.28 33.39
σ (uA) 37.98 34.72 34.1 35.54 33.94 33.92 33.64 33.02 30.87 31.14 33.89

Node 1 µ (uA) 41.21 41.38 41.39 41.4 41.35 41.3 41.29 41.28 41.13 41.16 41.29
σ (uA) 11.67 12.62 12.83 12.76 12.78 12.9 12.88 12.93 12.51 12.56 12.64

Node 2 µ (uA) 41.57 41.72 41.85 41.84 41.37 41.27 41.24 41.27 41.86 41.85 41.58
σ (uA) 13.71 13.31 13.93 13.01 13.44 13.96 13.58 13.4 13.65 13.63 13.56

Node 3 µ (uA) 40.62 40.88 41.03 41.14 41.15 41.15 41.12 41.43 41.45 41.52 41.15
σ (uA) 14.59 13.66 14.01 14.04 13.93 13.91 13.53 14.04 13.98 13.94 13.96
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Figure 10. Time signals for ZigBee network at different NPLC. From left to right: 0.2, 2, and 10 NPLC.

The similarity of the pdf signals obtained in ten realizations for the Coordinator Nodes was
high between the speeds of 9600 and 19,200 bauds, but it was different by the slight displacement in
Realization 10 at 57,600 bauds, as shown in Figure 11. In the case of the Sensor Nodes, the similarity
was greater among the three baud rates. Then, we can say that the increase in the transmission speed
does not significantly affect the behavior of the energy consumption. Figure 12 shows the estimated
pdf, with their CI for the ZigBee network nodes, at the three speeds. The widest CIs were produced in
the Coordinator Nodes, whereas the Sensor Nodes have narrow CI. The empirical pdf of the elements
in the ZigBee network was multimodal, and it was skewed to the right. The pdf of the Coordinator
Nodes were similar for the three speeds. The pdf of the Nodes 1, 2, and 3 at speeds of 19,200 and
57,600 bauds were similar, however, at 9600 bauds there were very low consumption values with very
low probability that were apparently generated by electrical noise. In addition, we observed that the
sensor nodes at low speed showed a greater number of modes, while the Coordinator Node at higher
speeds had a greater number of modes than at low speeds. The range with the highest concentration
of data consumption acquires an extension when increasing the transmission speed, which occurs only
in the Coordinator Nodes.

Figure 11. M-mode of pdf with distinctive characteristics for Coordinator Node of the ZigBee network:
(Left) at 9600 bauds; and (Right) at 57,600 bauds.

The estimated histograms of the ZigBee network for the three speeds are shown in Figure 13.
Figure 13 (center, left) shows that the current ranges with higher probability of occurrence for the
sensor and coordinator nodes were the same for the speeds of 9600 and 19,200 bauds. However,
Figure 13 (right) exhibits a decrease in the current range with lower probability of occurrence for the
sensor nodes, and this range increased for the Coordinator Node. Therefore, the speed increase to
57,600 implied a characteristic increase in the consumption peaks at the Coordinator Node. From these
results, we conclude that the increase in the transmission speed to its maximum value increases,
although not in a greater proportion, the average consumption of the node that manages the network.

From the review of the SAFs plotted in time series and with the M-mode for the three speeds,
we conclude that for each node the resulting signals in each realizations were statistically similar.
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Figure 14 shows some representative SAFs. In Figure 14a–c, we observe that, for all members of
the network, the fall was rapid and persistent. In the Coordinator Node, the persistence peaks were
lower, and the correlation was nearby zero, which means that the relationship among observations
was very low even in very short delays, and the results were quite similar for all speeds. Hence,
the behavior of the SAFs in this node was independent of the transmission rate. In the sensor nodes,
we note that for 9600 baud the correlation decreases with an approximately linear trend, and for delays
larger than 180 ms, its values were negative. This is to say that the relation between a signal and its
displacement is inverse. At 19,200 and 57,600 bauds, the SAF was positive and remains stable around
the average. Figure 14d–f represents the M-mode plots of the SAF for Sensor Node 1 to corroborate
that this different behavior between speeds was generated in the ten embodiments. The rest of the
nodes were not shown because the SAF variations are very similar.

The characterization of energy consumption dynamics in terms of seasonality can be
complemented by using the average SAF and its CI shown in Figure 15. For the Coordinator Node,
the process can be described as uncorrelated for 9600 bauds, since the persistence of the function is lost
with increasing delays. At high speeds it was stationary, since the SAF fall was fast and persistence was
visible throughout the range of delays. The processes of Nodes 1–3 for 9600 bauds can be described
as stationary for the first 200 delays, since the SAF falls are fast and the persistence is pronounced.
After that, they were uncorrelated, and they invert due to the persistence, so that the correlation
turns negative. In contrast, for 19,200 and 57,600 bauds, the processes were defined as stationary,
regardless of the number of delays. Based on the small width of the CIs in all cases, we conclude that
the average SAF of each node shows the presence or absence of seasonality in the signals with low
accuracy. At the highest transmission rate, we observe a slight increase in the CIs for all the network
elements.Finally, considering the narrow CI of the coordinator node, we conclude that the load effect
does not affect the consumption signals, as happened in the DigiMesh network. In general terms,
all the nodes in the ZigBee network at medium and high speeds would be the most suitable for energy
consumption characterization over time.

Figure 12. Cont.
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Figure 12. CI of pdf for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds. From top
to bottom: Coordinator Node and Nodes 1 to 3.

Figure 13. Histograms for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds.

(a) (b) (c)

Figure 14. Cont.
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(a) (b) (c)

(d) (e) (f)

Figure 14. Representative SAFs for the ZigBee network. From left to right: 9600, 19,200,
and 57,600 bauds. (a–c) Realizations 5, 1, and 8; and (d–f) M-modes of Sensor Node 1 at each speed.

Figure 14. Representative SAFs for the ZigBee network. From left to right: 9600, 19,200,
and 57,600 bauds. (a–c) Realizations 5, 1, and 8; and (d–f) M-modes of Sensor Node 1 at each speed.

Figure 15. CI of SAF for ZigBee network. From left to right: 9600, 19,200, and 57,600 bauds. From top
to bottom: Coordinator Nodes, and Nodes 1–3.
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4.4. Energy Consumption Dynamics of WiFi Network

The analysis of the time series of the ten realizations in the WiFi network at 9600- and 57,600-baud
rates showed that, for all cases, consumption continued oscillating around the mean, therefore,
there was no trend and the variability was less stable. This allows us to state that the behavior of the
signals was mostly homoscedastic. Figure 16 shows the periodicity of the total and partial time signals
of the consumption, and the pattern peaks of each node. The values of µ and σ at Node 4 indicated that
its average energy consumption was higher, due to it having the CO2 sensor. The Coordinator Node
had incorporated the RN-XV wireless communication module and the MeshliumTM router, so that
its consumption was higher, because it is a device similar to a router for home wireless networks,
and power saving is not a mandatory requirement. The consumption peaks of the sensor nodes
occurred when the data sending was generated, and in the Coordinator Node at the moment of data
reception and transmission. The event sequence occurred approximately every 1.2 s.

Table 5 shows the average consumption, as well as its deviation and the transmission duration
values of each realization for two speeds. The average power consumption in Sensor Node 4 was the
highest and in Node 1 it was the lowest. The average energy consumption of the Coordinator Node
was maintained independently of the transmission rate. The standard deviation averages were high,
about 20 µA at sensor nodes and about 11 µA at coordinator nodes. The transmission duration for
both speeds was 1.28 s.

The differences in the pdf between speeds were not significant. However, the results of the
Coordinator Node (MeshliumTM WiFi router) differed considerably with respect to the DigiMesh
network, as shown in the example in Figure 17. The signals of WiFi network were very similar in the
ten realizations, since this device incorporates its own power system. In comparison to the DigiMesh
network, the average consumption was not shifted between realizations, which means that this node
was not affected by the load effect.

The estimation of the histograms represented in logarithmic scale for the 9600- and 57,600-baud
rate is shown in Figure 18. For Nodes 1–3, and Coordinator, we observe that the current ranges with
higher probability of occurrence were the same for both speeds. However, in Node 4, this range
increased for the lower speed, which reveals the presence of current peaks with amplitudes slightly
higher than those generated for 57,600 bauds. This behavior occurred for both speeds, and it was due
to the type of sensor installed in this node, but it was more visible at 9600 bauds. In general terms,
we conclude that these peaks do not significantly affect the average energy consumption, since their
occurrence probability is low.

Figure 19 shows the estimated pdf, with their respective CI for the WiFi network nodes, at 9600-
and 57,600-baud rates. In all cases, the CIs were very narrow, and we conclude that the behavior of the
energy consumption process in each node tends to be similar, regardless of the number of repetitions
of the data collection experiment. The pdf in the Coordinator Node and in Nodes 1–3 were very similar
for both speeds, since they maintained the multi-modal characteristic and the trend to skew to the right.
In Node 4, we observe differences for consumption values lower than 0.1 mA, presumably generated
by electrical noise. This was more perceptible at 9600-baud rate because the occurrence probability was
high there. Besides, the electric current range covered by each pdf was reduced by increasing the speed.
The pdf at 9600 bauds showed consumption values higher than 0.6 mA, whose occurrence probability
was low, and it was likely caused by random electric current spikes that are typical in the CO2 sensor
operation. Nevertheless, this particularity does not significantly affect the consumption.
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Figure 16. Time signals for WiFi network: (Left) at 9600 bauds; and (Right) at 57,600 bauds. From top
to bottom: total time signal, time detail of the signal, and signal sections with closer detail.

After a comparative study of the pdf and CIs of the three networks, we conclude that the WiFi
network exhibits relevant differences. In the Coordinator Node, the CIs were considerably narrow,
the modes of the curve were easily distinguished, they do not vary sharply, and the range of the pdf
consumption values contained was high. In Node 1, the CI widths and the probability curves were
similar, but the consumption values tend to be low. The pdf in Nodes 2 and 3 differ with respect to the
other two networks, because an additional mode was generated for consumption values lower than
0.04 mA, whose probability amplitude was considerable. This was likely produced by noise, and also
the electrical current range with major occurrence probability was high. With respect to Node 4 of the
DigiMesh network, the pdf and the CIs at 19,200 and 57,600 bauds were very similar in form, but the
average consumption was high, while at 9600 bauds the differences are noticeable in terms of the CI
width and the number of modes.
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Table 5. Values of energy consumption and transmission duration for the WiFi network.

Baud Rate Network Element Parameters 1 2 3 4 5 6 7 8 9 10 Average

9600

Coordinator µ (uA) 277.99 278.06 278.43 278.74 279.25 278.63 278.73 278.83 278.65 278.49 278.58
σ (uA) 7.47 11.87 10.32 10.82 11.29 10.53 10.29 10.52 10.6 10.23 10.39

Node 1 µ (uA) 45.03 43.39 44.82 45.86 46.15 45.57 46.55 45.24 44.28 42.46 44.94
σ (uA) 10.34 10.28 10.71 10.87 11.18 10.74 10.89 10.87 11.05 10.2 10.71

Node 2 µ (uA) 55.25 54.29 54.47 54.38 54.27 54.03 54.13 53.89 53.8 53.79 54.23
σ (uA) 15.48 15.24 14.74 15.09 14.93 14.62 14.73 14.51 14.66 14.7 14.87

Node 3 µ (uA) 53.35 276.18 53.43 53.78 53.58 53.44 53.46 53.3 53.35 53.48 75.74
σ (uA) 15.28 10.42 15.04 14.97 14.9 15.13 15.13 15.43 15.37 15.16 14.68

Node 4 µ (uA) 123.63 120.98 120.68 121.43 121.43 121.8 123.38 123 123.08 123.3 122.27
σ (uA) 22.73 20.73 20.12 20.78 20.78 21.03 21.83 22.66 22.44 22.71 21.58

Transmission Duration T (sg) 1.29 1.28 1.28 1.28 1.27 1.30 1.30 1.27 1.28 1.29 1.28

57,600

Coordinator µ (uA) 279.01 278.06 278.43 278.74 279.25 278.63 278.73 278.63 278.66 278.49 278.66
σ (uA) 13.02 11.87 10.32 10.82 11.29 10.53 10.29 10.52 10.6 10.23 10.95

Node 1 µ (uA) 41.99 42 42.41 42.18 41.5 41.28 41.52 42.07 42.15 42.46 41.96
σ (uA) 10.22 10.22 10.42 10.37 9.74 9.71 9.93 10.12 10.22 10.2 10.12

Node 2 µ (uA) 54.72 54.13 54.18 54.25 53.77 53.78 53.98 53.62 53.79 54.12 54.03
σ (uA) 15.3 15.64 15.38 15.44 15.38 15.52 15.5 15.33 15.52 15.37 15.44

Node 3 µ (uA) 53.48 53.78 53.44 53.34 53.42 53.35 53.18 53.07 53.34 53.11 53.35
σ (uA) 15.36 15.66 15.63 15.37 15.65 15.64 14.94 15.23 15.26 15.15 15.39

Node 4 µ (uA) 123.75 123.78 124.26 124.42 124.89 124.8 125.26 125.04 125.04 125.23 124.65
σ (uA) 8.64 8.41 8.49 8.88 9.29 8.85 8.59 8.83 8.83 8.84 8.77

Transmission Duration T (sg) 1.27 1.28 1.28 1.28 1.28 1.3 1.29 1.29 1.27 1.29 1.28
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(a) (b)

Figure 17. M-mode plots of the pdf with particular characteristics: (a) DigiMesh Coordinator Node at
57,600 bauds; and (b) WiFi Coordinator Node at 57,600 bauds.

Figure 18. Histograms for WiFi network: (Left) at 9600 bauds; and (Right) at 57,600 bauds.

The estimation of the SAFs for the ten realizations revealed that the behavior of the functions
for the Coordinator Node and for Nodes 1–3 is the same for the two speeds. Figure 20 shows some
representative SAFs. The correlation of Node 1 falls slowly, with a slight persistence for the first
50 delays, its range was similar in all realizations and it was the highest with respect to the other nodes
of this network. The SAFs in Sensor Nodes 2 and 3 were the same for both transmission rates, the fall
was slow, and the persistence can be observed for delays less than 100. The correlation then decreases
and reaches negative values near to zero with increasing delays. In this scenario, the relation between
one observation and another was minimal and inverse. In the Coordinator Node, the SAF falls rapidly,
the correlation was positive and it varies with persistence for all delays. However, its values were very
low, therefore the relation between observations was very low even in the initial delays. In the case of
Node 4, the SAF lacks persistence for both speeds, but the drop was less pronounced at 57,600 bauds
and the increase in delays causes also a negative correlation. However, at the highest speed, we can see
a slight increase for delays higher than 400, and if the delay continues to increase, the relation between
observations tends to be high and direct.
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Figure 19. Cont.
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Figure 19. CIs of pdf for WiFi network: (Left) 9600 bauds; and (Right) 57,600 bauds. From top to
bottom: Coordinator Node and Nodes 1–4.

By studying the average SAF and the CIs shown in Figure 21, and for both speeds, we complement
the analysis of the energy consumption behavior of the elements of the network. The Coordinator
Node was a seasonal process, given the rapid and persistent fall of SAF. For all sensor nodes,
the processes were defined as non-seasonal, since the fall of the correlation coefficient was slow
and it lacks persistence. Regarding the CIs, we conclude that, for Nodes 2–4, the widths were very
small, and similar for the two transmission rates, while, in other network elements, we observe
variations. For the highest speed, the CI amplitude increases in the Coordinator Node, and decreases
in Node 1, but not in large magnitude, since the deviation does not exceed the 0.05. For Node 4,
the fall of autocorrelation coefficient was more rapid, as well as its increase to delays greater than 400,
particularities that were already explained. In general terms, the SAF average of each node defines
with enough precision the presence or absence of seasonality in the signals, since the intervals were
quite narrow.

Figure 20. Representative SAF for WiFi network: (Left) 9600 bauds; (Right) 57,600 bauds; (Top) time
series for Realizations 6 and 7; and (Bottom) M-mode of Sensor Node 4.
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Figure 21. CI of SAF for WiFi network: (Left) 9600 bauds; and (Right) 57,600 bauds. From top to
bottom: Coordinator, and Nodes 1–4.
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5. Discussion and Conclusions

In this paper, we addressed the detailed study of the dynamics of energy consumption time
processes in three types of WSNs, namely, ZigBee with star topology, ZigBee with mesh topology
(DigiMesh), and WiFi with access point topology, at different transmission rates, for the monitoring
of tomato greenhouses in Ecuador. The electrical current measurements of the nodes were acquired
at a fast sampling rate, using high resolution multimeters that were connected to the data storage
station through a local area network. The experiments were conducted with all the network elements
being active, distributed in line of sight, and at the same distance. For the three networks, the test
was repeated several times for each transmission rate, and without charging the battery between
runs to analyze the impact of battery discharge over the reliability of the acquired consumption data.
The consumption dynamics was scrutinized by using stochastic process analysis techniques, such as
time series, pdf, histograms, and autocorrelation estimation, complemented with bootstrap resampling
and CIs, and the results of all the realizations were simultaneously represented by the M-mode.

The power consumption of the WSNs nodes was evaluated considering the type of sensors,
the network topology, the transmission speed, and the data transmission duration. According to the
type of sensor, we conclude that the nodes with the CO2, wind speed, and wind direction sensors were
the ones with the highest consumption, independently of the network communication technology.
Regarding the network topology, we verify that the consumption is associated with the role of each
node. The consumption of the sensor nodes was lower in the ZigBee and WiFi networks (star topology),
where each node only communicates with its coordinator, in contrast to the DigiMesh network (mesh
topology), where the links are redundant and the nodes communicate simultaneously with more than
one network element. In the case of the coordinator nodes, we concluded that the consumption values
were lower for the DigiMesh network, closely followed by the ZigBee network. The consumption of the
WiFi coordinator node (MeshliumTM wireless router) was considerably greater than other networks,
because the design of this device does not prioritize the issue of energy optimization. Based on
these results, we conclude that, in terms of energy saving, the ZigBee network, with star topology
and maximum transmission rate, was the most efficient option, and therefore the recommended one
for greenhouse monitoring. The WiFi network can be considered as an appropriate second option,
since the Coordinator Node is a device whose supply system is the commercial electrical network,
and not a battery. Therefore, its high consumption is not a limitation, and the average consumption of
the sensor nodes was very close to the measured ones in the ZigBee network. The DigiMesh network
would be recommendable for applications where the redundancy of communication links is prioritized
instead of energy saving.

A further objective of the present research was the characterization of energy consumption of
WSNs nodes in terms of seasonality to identify the feasibility of its behavior prediction over time.
Unlike the previous analysis, the seasonality was not significantly dependent on the type of sensors
used in each node or the network topology, as the outcomes differed between networks, even for
cases where sensor nodes measured the same variables. The results of the DigiMesh network were
quite similar for the three speeds, i.e., the energy consumption processes were seasonal for the
sensor nodes that measure solar and ultraviolet radiation, non-seasonal for the coordinating node,
and weakly correlated for the CO2 sensor node. For the WiFi network at the different transmission
rates, the consumption process of the coordinator node was seasonal, while for all the sensor nodes it
was non-seasonal. The power consumption processes of all ZigBee network nodes were seasonal for the
medium and high speeds, while for the minimum speed the seasonality was lost from approximately
200 milliseconds of delay. Based on this background, we conclude that the ZigBee network at medium
and high transmission rates was the most recommendable for purposes of energy consumption
modeling of greenhouse monitoring networks.

The relevant contributions of the energy consumption study developed for the sensor
and coordinator nodes of three WSNs with different communication technologies, topologies,
and transmission rate are described next:
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• The usual patterns and duration times of each transmission were determined by locating the
periodic spikes in the time series of the electrical current measurements.

• A detailed statistical description of the consumption dynamics and ergodic properties using
histograms, the estimated pdf, and their CIs was elucidated.

• The nodes where consumption prediction is feasible by means of seasonality study (estimated
SAF and CIs), as well as the differentiation of the nodes affected by the type of topology or speed
change, were identified. To consider additional aspects such as the full charge of the battery
during the experimental phase, a particular case of this study was given by the sensor nodes that
measure CO2, as well as the Coordinating Nodes of the ZigBee and DigiMesh networks.

• Recommendation of the most suitable network in terms of energy saving for use in greenhouse
monitoring systems are given.

In summary, this work provides engineers and professionals in the field with a set of guidelines
that can be taken into account for the design and deployment of greenhouse monitoring networks,
to choose the most appropriate technology and topology, as well as the ideal transmission rate in terms
of energy consumption, without affecting the quality of the monitored data.

This research can be further expanded through the application of statistical learning and machine
learning techniques to predict the trend of battery discharge, depending on wireless technology,
network topology, transmission rate, link distances, and types of installed nodes.
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Appendix A

Time Series Notation and M-Mode Plots for Different Runs. The energy consumption signals in WSN
nodes are temporal random processes, since they are defined as time functions at some observation
interval, and it is not possible to describe exactly their waveform as it will be observed in the future
before performing another experiment. The recorded temporal signals are defined as continuous
stochastic processes, and we can denote each of these processes as ϕ(t) [57]. In general terms,
the mathematical notation assigned to an acquired consumption signal is x(t), and each signal
generated to jth realizations is defined as xj(t), with j = 1, 2, ..., R, where R is the total number
of realizations. All signals are observed in a time interval given by (ti, t f ) with duration T, and each of
these measured signals is denoted as

xj(t) =

{
x(t) if t ∈ (ti, ti + T)

0 otherwise
(A1)

The temporal evolution of a stochastic process in a sample period Ts is analyzed using
discrete-time series, which are also called sampled signals. The sampling process transforms a
band-limited continuous-time signal into a series of amplitude values at discrete-time instants [58].
Sampled signals can be obtained with the classical impulse- and uniform-sampling technique,
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which multiplies the input signal by a train of unit impulses in which the intervals between consecutive
impulses are the equidistant sampling times, as described by

∆j(t | Ts) = xj(t) ·
∞

∑
n=−∞

δ(t− nTs) (A2)

where the Dirac’s delta function or continuous-time unitary-impulse function is denoted as δ(t) [59].
Note that xj(t) is limited in duration, so that ∆j(t | Ts) has a limited set of N possibly non-zero samples.

Based on the description of process ϕ(t) in the time domain, we can obtain its estimated average
from the set of samples available for the j realizations by

∆̄j(t | Ts) = E[∆j(t | Ts)] (A3)

In addition, for a signal x(t), we can define an M-mode by defining a convenient second dimension
d, so that Γ(t, d) denotes this representation in general terms. For instance, if the second dimension is
the index corresponding to the jth realization, we can define the M-mode of the sampled process as a
index-temporal and simultaneous representation of the realizations of the stochastic process as follows,

X(j, t) = xj(t) (A4)

where the convention of capital notation is used for the M-mode of the represented signal.
Probability Density Function and Bootstrap Averaging. The study of the probability density function

(pdf) of a continuous random process ϕ(t) is relevant because it quantifies the certainty and the
uncertainty of the results obtained in each realization. The value of this function is positive throughout
the domain [60]. Since xj(t) is a continuous random signal, we can define the pdf of its amplitude as
fxj(x), and it represents the overall distribution of its amplitudes, integrated with respect to time and
then independently from it.

M-mode plots were also used in this work to represent jointly the estimated pdf of each realization,
as denoted by:

F(j, fxj) = fxj(x) (A5)

where again the convention of capital is used for the M-mode of the pdf. If we want to obtain the
overall estimation of process ϕ(t), denoted as fx(x), we can average in the available realizations,
as denoted by

f̄ (x) = Ej[ fxj(x)] (A6)

Bootstrap resampling can provide us with nonparametric estimation of a variety of CI for
different estimations with non-trivial analytical estimation equations. By using bootstrap resampling,
we generate b = 1, ..., B resamples of the empirical pdf by sampling with replacement of the process
time-samples, which is denoted as f ∗xj

(x, b). By following the usual bootstrap notation, the asterisk
(∗) is usually applied to represent the bootstrap versions of the statistical elements obtained from
the empirical process, so that xj

∗(b) are set of the samples with replacement obtained from a given
jth time series, and B is the total number of built resamples (often B = 100, B = 500, or B = 10, 000).
Once resample b is created, a bootstrap replication can be obtained for any estimated statistical
parameter, in our case the empirical pdf, in virtue of the plug-in principle, and with this we define its
estimator as

f̄ ∗j (x, b) = Ej[ fx j
∗(x)] (A7)

The CI for the estimated pdf can now be easily obtained by using ordered statistics from the
representation of the B replications. In our case, we used a significance level of 0.05.
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Simple Autocorrelation and its Bootstrap Average. If xj(t) is the energy consumption signal of jth
realization, then xj(t + τ) represents its replica displaced by delay τ, and its SAF is calculated by

rxjxj(τ) =
∫ ∞

−∞
xj(t + τ)xj(t)dt (A8)

The M-mode of the autocorrelation functions of the jth realizations is then just given by

Rxj(j, τ) = rxjxj(τ) (A9)

The estimated average of the SAF for the jth realization is given by

r̄xjxj(τ) = Ej[rxjxj(τ)] (A10)

Similar to the analysis in the previous paragraphs, we can estimate the statistical distribution
of the SAF and define its CI by using the bootstrap resampling method for nonparametric processes.
The empirical SAF that we built for resample b is denoted by

r∗xjxj
(τ, b) =

∫ ∞

−∞
x∗j (t + τ)x∗j (t)dt (A11)

and using the B built resamples, we can calculate a bootstrap replication for the SAF distribution,
by means of the plug-in principle, which is finally estimated as

r̄∗xx(τ, b) = Ej[r∗xjxj
(τ)] (A12)

The CI for the estimated SAF can again be obtained by using ordered statistics from the
representation of its B replications, and again we used a significance level of 0.05.

Appendix B

Here, we explain in detail the methodology of energy consumption analysis using as an example the
DigiMesh network at a transmission rate of 9600 baud. This explanation extends to the analysis of the
other case studies. Table A1 summarizes the applicability of the different statistical methods used in
this study for the acquired electrical current signals.

Table A1. Summary of statistical tools used for consumption dynamics analysis.

Statistical Plot Applicability

Time series

To determine trends, average, and variability of the energy consumption for each experiment run.

To identify the approximate transmission patterns (in terms of consumption peaks repeated after
some time intervals).

To determine the duration time of each transmission (T).

Histograms and pdf

To represent the relative frequency distribution of consumption in the network nodes.

To identify scattered data from the central distribution (tails with errors or noise).

To identify multimodalities.

Estimated SAF To determine persistence and stationarity profiles of the energy consumption processess.

CIs To provide with confidence limits on histograms and SAFs.

M-mode
Simultaneous representation of the time processes, pdf and SAFs for each experiment.

To better identify similarities and differences of the results accross runs.

The revision of the time series of the ten repetitions in the DigiMesh network at 9600-baud rate
showed that, for all cases, consumption remains oscillating around the mean. Hence, there is no actual
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trend, and the variability remains stable, which allows us to say that the behavior of these signals was
mostly homoscedastic. Figure A1 depicts two example observations, in which the value of the mean
(µ) and the standard deviation (σ) of each node are also included. In addition, since the CO2 sensor
of Node 4 requires greater current for its operation compared with the sensors installed in the other
nodes, the average energy consumption of this node was notably higher. The coordinator incorporated
only the communication module XBEE ZB S1 PRO, which is manufactured with ultra-low power
technology, hence its consumption was lower.

The patterns of the spikes in each node were analyzed in detail in each series. In the absence of
interaction among the elements of the network, their consumption remains almost constant around
the average. However, when the communication is established, the consumption peaks are generated
with different amplitudes and at time spacings, although they were very similar in terms of sequence
of events. Figure A2 shows in an increased scale the consumption peaks of two realizations taken
as an example at different time instants. Note that the Coordinator Node opens the communication
channel and generates a data request to the four Sensor Nodes, then each node sends the information
of the variables, and finally the Coordinator generates a closing communication message. The average
transmission duration T obtained after visual analysis of all realizations varied approximately between
0.6 and 1.7 s.

Figure A1. Detailed time signals for DigiMesh network at 9600 bauds in two example realizations:
(Left) Realization 4; and (Right) Realization 5.

Figure A2. Closer details signal sections for DigiMesh network, and spike sequence of two realizations
at 9600 bauds: (Left) Realization 9 with T = 0.68 s; and (Right) Realization 10 with T = 1.57 s.

The dynamics of consumption signals in the time domain was studied by using three of the
methods described in Section 3. The M-mode proposed in this work provided us with simultaneous
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graphical representation of the empirical pdf for the energy consumption of the ten realizations
performed for each node. This way, the similarity of the signals obtained between one and another
realization was analyzed to validate the acquired data, discriminate the erroneous signals, and repeat
the data collection process if necessary. The regions with the highest concentration of consumption
measures for each node, as well as their variability and dispersion, were scrutinized with the
histograms, so that an approximate view of the probability distributions was obtained. Finally,
the graphs of the CI allowed analyzing the variability of the probability distributions, and, for this
purpose, bootstrap techniques for each node yielded the CI for its estimated average, with 95% of
confidence level. Each graph was studied in the linear and logarithmic scales, as shown in Figure A3,
where the histograms represented with the second option can be visualized with better detail because
transitions and tails are imperceptible in the linear coordinate axis. Then, it is more appropriate
to analyze the histograms represented in logarithmic scale, since they expand the visual scope of
the analysis.

Figure A3. Histograms of the consumption signals for DigiMesh network at 9600 bauds: (Left) linear
scale; and (Right) logarithmic scale.

Figure A4 depicts the M-mode signals for the empirical pdf of the ten realizations, and their CI
obtained in each node. It can be seen that the similarity of the signals obtained in ten realizations for
the Sensor Nodes was larger than for the Coordinator Node, since this was connected to the computer
and an impedance mismatch was generated. This load effect was evidenced also in the time signals of
the ten realizations, where the average of consumption decreased as the number of runs increased.
Namely, if the battery voltage decreases, the similarity between the signals reduces, and for this reason
it is recommended that the battery is charged to its maximum capacity in each realization.

The widest CI occurs in the Coordinator Node, followed by Node 4. Based on this, it was
established that the behavior of the consumption of these nodes was not repetitive, and that it strongly
depends on external factors. In the case of the Coordinator Node, the consumption was conditioned by
the battery voltage and the severity of the mismatch with the load, whereas at Node 4 it is a function
of the response time of the CO2 sensor. The CI of Nodes 1, 2, and 3 were narrower, which suggests
that the consumption process in each transmission is similar and independent of the battery charge
status. The empirical pdf of elements in the DigiMesh network was multimodal and biased to the
left. The Coordinator Node is the network manager that interacts with all nodes. Based on this,
and considering that the energy consumption of the transmission sequences is different for each sensor
node, we verified that the distribution was quite spaced and with a greater number of modes than the
rest of nodes. For sensor nodes, both the number and range of modes depend on the type and number
of installed sensors.

The seasonality of consumption signals was analyzed using the SAF for 500 delays of one
millisecond. By means of the representation of the SAF in time series, we can observe the correlation
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of all nodes, and for each realization. Figure A5 shows some signals on a linear scale that we selected
as representative. In general terms, the SAF of the Coordinator Node falls slowly and exponentially,
while, in the sensor nodes, the falls are fast, with persistence for Nodes 1, 3, and 4, and anti-persistence
in Node 2. With respect to the average of the correlation coefficient, in the Coordinator Node and in
Sensor Nodes 1, and 4, it varies significantly in some realization, because of the load effect already
explained. In the rest of the nodes, the average was about the same in all the realizations and its value
was nearby zero for larger delays, hence we deduce that the relation between a signal and its out-phase
is minimal.

Figure A4. Cont.



Sensors 2018, 18, 2556 32 of 36

Figure A4. Plots of pdf for DigiMesh network at 9600 bauds: (Left) M-mode; and (Right) histograms of
each realization (discontinuous), and bootstrap CI (gray shading). From top to bottom: Coordinator
Node and Nodes 1–4.

Figure A5. Time signals of SAF for DigiMesh network at 9600 bauds. From left to right: Realizations 1, 4, and 7.

The SAFs in Figure A6 show additional graphical representations of the energy consumption
dynamics for each node at a linear scale. For each realization, the behavior was studied in terms of its
falling smoothness and of his persistence with increasing delay. The M-mode was also used for this case,
allowing us to simultaneously represent the SAF of the ten runs at each node. The bootstrap replication
of the averaged autocorrelation per node was obtained with a 95% confidence level. This analysis
revealed that the Coordinator Node has slow exponential-like and anti-persistent drop, indicating
its absence of seasonality. On the other hand, Nodes 1 and 3 were fast-dropping and persistent,
i.e., they were processes that follow seasonal behavior, whereas Nodes 2 and 4 were uncorrelated
processes. Although their fall was slow and persistent in the initial delays, the repetitiveness was lost
for larger delays. Similar to what happened in the pdf analysis, the coordinator and Node 4 presented
wider CI of the FAS, for already explained reasons.

Figura A6. Cont.
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Figure A6. Plots of SAF for DigiMesh network at 9600 bauds: (Left) M-mode; and (Right) autocorrelograms
of each realization, and the bootstrap CI. From top to bottom: Coordinator and Nodes 1–4.
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