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Abstract: This paper considers interference management and capacity improvement for Internet
of Things (IoT) oriented two-tier networks by exploiting cognition between network tiers with
interference alignment (IA). More specifically, we target our efforts on the next generation two-tier
networks, where a tier of femtocell serving multiple IoT devices shares the licensed spectrum with
a tier of pre-existing macrocell via a cognitive radio. Aiming to manage the cross-tier interference
caused by cognitive spectrum sharing as well as ensure an optimal capacity of the femtocell, two novel
self-organizing cognitive IA schemes are proposed. First, we propose an interference nulling based
cognitive IA scheme. In such a scheme, both co-tier and cross-tier interferences are aligned into the
orthogonal subspace at each IoT receiver, which means all the interference can be perfectly eliminated
without causing any performance degradation on the macrocell. However, it is known that the
interference nulling based IA algorithm achieves its optimum only in high signal to noise ratio (SNR)
scenarios, where the noise power is negligible. Consequently, when the imposed interference-free
constraint on the femtocell can be relaxed, we also present a partial cognitive IA scheme that further
enhances the network performance under a low and intermediate SNR. Additionally, the feasibility
conditions and capacity analyses of the proposed schemes are provided. Both theoretical and
numerical results demonstrate that the proposed cognitive IA schemes outperform the traditional
orthogonal precoding methods in terms of network capacity, while preserving for macrocell users the
desired quality of service.

Keywords: internet of things; interference alignment; heterogeneous networks; cognitive radio

1. Introduction

Next generation wireless networks are expected to have an “everything, everywhere and always
connected” future, where the end users shift from individuals to things. The concept of Internet
of Things (IoT) has been proposed to cater for a massive number of smart devices and provide
high-speed data services. To cope with the ever-increasing wireless traffic demands induced by IoT,
a hierarchical approach to network deployment with a densely populated femtocell base station
has been proposed. Applications, such as cloudified mobile networks [1], virtual infrastructure [2],
and industrial communication, also exploit heterogeneous architecture to support ubiquitous, flexible,
and reliable connectivity [3]. Such proliferation of wireless base stations and data offloading strategies
are to be expected in the near future, presumably yielding the two-tier approach to network design [4].
More specifically, a tier of IoT oriented femtocell base stations coexists with a tier of pre-existing
macrocell base stations (MBSs) and shares the licensed spectrum. This two-tiered deployment aims at
breaking away from the traditional cellular layout to provide very high data rates for short-range IoT
devices, and reduces the load on the macrocell network [5].
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In the IoT network, smart devices are a low-power plug and play ones with rather small
transmission ranges. Deployed by end users, the IoT femtocell usually lacks a predefined network
infrastructure. Such architecture can reduce the load and congestion on the macrocell network,
and enables the resources to be allocated to the truly mobile users [6]. On the other hand, with a huge
volume of IoT devices connected to the existing macrocell based network, the IoT paradigm places an
overwhelming demand on the spectrum resources. It is preferred for femtocell to share the licensed
frequency band with the pre-existing macrocell network. However, cell splitting and spectrum sharing
will most probably cause harsh cross-tier interference, which restricts the reusability of frequency
resources and becomes a key limiting factor in developing the IoT technology [7]. To ensure the
peaceful coexistence of macrocell and femtocell, as well as improving the performance of cell-edge
users, effective interference management scheme design has recently attracted growing interest [8].

It is indicated that the things-oriented, Internet-oriented networks are meaningless if IoT objects
are not equipped with cognitive capability [4]. To mitigate the cross-tier interference, a cognitive
radio (CR) has been introduced into IoT oriented heterogeneous networks. The notion of cognitive
empowered IoT femtocell was proposed to enable IoT devices as femtocell users to be aware of
their environment, and can quickly adapt to the network variations by changing their transmission
patterns [9,10]. In other words, the cognitive femtocell could sense the idle licensed spectrum, allowing
the IoT devices to communicate with the base station over the underutilized frequency band. However,
in traditional cognitive radio networks, cognitive users can utilize the licensed band only when the
primary user is non-active. The capacity and accessibility will largely depend on the primary user
activity [11]. Inspired by the interference management, the CR-based network can operate in an
underlay paradigm. By limiting the performance degradation caused to the primary user under a
predefined threshold, both primary and cognitive users can transmit their data simultaneously within
the same frequency band [12]. Cognitive interference alignment (IA) is an emerging interference
management technology that has received extensive research. The basic idea here is to fully exploit
the precoding matrix of the cognitive transmitters, then align the cross-tier interference signals into a
lower dimensional subspace. More specifically, in each primary receiver, the cognitive interference
caused by IoT devices should be aligned into the subspace orthogonal to the primary link so that the
desired signal can be recovered free of cross-tier interference [13].

A number of state-of-the-art cognitive IA algorithms have been proposed in the literature, so as to
ensure the coexistence of such two tiers and enhance the effective utilization of the licensed spectrum.
For example, in [14], Guler et al. proposed a selective interference alignment with user selection.
By judiciously choosing the set of cognitive transmitters to be aligned at each primary receiver,
the selective interference alignment achieved a trade-off between algorithm complexity and achievable
capacity. In [15], Rezaei et al. considered the scenario with just one cognitive user and proposed
a cooperative IA scheme. The proposed scheme minimizes the distance between the subspaces of
the co-tier and cross-tier interferences, and aligns them into the same orthogonal subspace at each
primary user. In [16], Guler et al. focus on the uplink interference management in heterogeneous
cellular systems, and designed an IA based precoder. The precoding design was accomplished using
successive semi-definite programming (SDP), aiming to minimize the cross-tier interference leakage
while providing a suboptimal received signal to interference plus noise ratio (SINR). Although the
successive SDP approximation reduces the complexity, the proposed algorithm requires cooperation
from macrocell users (MUs) with the closest femtocell base station (FBS), and only achieves a fraction of
the optimal system capacity. In [17], Maso et al. proposed a distributed cognitive interference alignment
(DCIA) algorithm in the absence of cooperation between two tiers. The DCIA algorithm only considers
the interference to the primary tier, which reduces the overhead of the channel estimation in tiered
networks. In [18], for the case of a dense heterogeneous cellular layout, Debbah et al. proposed an
orthogonal transmission precoding scheme named MU-VFDM. By exploiting the cooperation and
designing the precoder as a cascaded linear structure, the MU-VFDM algorithm achieves a comparable
performance to the homogeneous scenario with multi-user coding techniques.
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As can be seen, existing cognitive IA schemes mainly focus on the cross-tier interference caused to
primary users. There is no suppression on the interference from primary users to cognitive users, which
may cause severe performance degradation. It is also significant to note that most existing schemes
require several degrees of co-tier and cross-tier coordination, which involves dedicated bidirectional
connection between the macrocell and femtocell. However, due to the unplanned deployment
and self-organizing features of IoT networks, it may be impractical to provide the bidirectional
cooperative links that meet the latency and delay requirements [19]. Moreover, for cooperative IA,
rather than designing the precoder to achieve the optimal capacity, primary users must compromise
its performance to help cognitive users to mitigate the cross-tier interference. This turns out to be
a major limitation that cooperative IA may degrade the channel capacity of the primary links. It is
also overlooking the principle that cognitive radio networks should be transparent to primary users
without causing any undesired performance degradation to them [20].

Motivated by these observations, in this paper, we consider a two-tiered network comprised of a
pre-existing macrocell tier and a cognitive IoT femtocell tier, and propose two novel self-organized
cognitive IA schemes to manage the interference and improve the network capacity. The main
contributions of this paper can be summarized as follows:

• To fully eliminate the interference, we first propose an interference nulling based cognitive IA
(IN-CIA) scheme. In such a scheme, both co-tier and cross-tier interferences are perfectly aligned
into the orthogonal subspace at each receiver, without causing any performance degradation on
the network users;

• as we know, the interference nulling based IA algorithm can achieve its optimum only with
negligible noise. By slightly loosening the interference-free constraint on the cognitive femtocell,
we also present a partial cognitive IA (P-CIA) scheme that can further improve the network
performance under low and intermediate SNR conditions;

• additionally, the feasibility condition, the proof of convergence, and the capacity analyses are
derived to demonstrate the effectiveness of the proposed cognitive IA schemes; and

• note that the proposed cognitive IA schemes can be performed in an autonomous way that
requires no explicit cooperation between the two tiers. Such schemes can satisfy the low-cost and
self-organized features of IoT, and achieves a considerably high network capacity while causing
no interference to the macrocell users.

Theoretical and numerical analyses are provided to show that the proposed cognitive IA schemes
can realize the coexistence between the two tiers, yielding a significant sum-rate and spectral efficiency
enhancements for a large range of signal to noise ratio (SNR) values.

The rest of the paper is organized as follows. In Section 2, the scenario and system model are
introduced. In Section 3, two novel cognitive IA schemes are proposed. The feasibility condition,
convergence, and capacity analyses are carried out in Section 4. Numerical simulation results are
presented in Section 5, followed by the conclusions and future work given in Section 6.

For the notation throughout this paper, we let a lower case italic symbol (e.g., x) denote a scalar
value, a lower case bold italic symbol (e.g., x) denote a vector, and an upper case bold symbol
(e.g., X) denote a matrix. IN represents the N × N identity matrix, and 0M×N denotes an M× N zero
matrix. The eigenvector of A corresponding to the i-th eigenvalue in ascending order is presented as
vA,i. tr{A}, rank{A}, and AH are the trace, rank, and conjugate transpose of matrix A, respectively.
Moreover, CM×N denotes the space spanned by complex M×N matrices, and CN (a, A) stands for the
complex Gaussian distribution with a mean, a, and a covariance matrix, A. E[·] denotes the statistical
expectation. All vectors are defined to be columns, and in vector and matrix definitions, the subscript
“p” refers to the primary tier.
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2. System Model

In this section, we first set up the system model of the IoT oriented two-tier cognitive network.
Then, we show that the cross-tier interference induced by cognitive spectrum sharing will invalidate
the full-IA algorithm, which motivates us to design cognitive empowered IA schemes.

As shown in Figure 1, in compliance with the Fourth-Generation (4G) standard, such as LTE-A [21],
we consider the uplink of a cognitive co-existing macrocell and IoT femtocell network, and assume
that the transmissions are operated in the time-division duplex (TDD) mode. In the macrocell (primary
tier), there is an NR,p antenna MBS (as primary receiver) serving several MUs through single-carrier
frequency division multiple access (SC-FDMA) [22]. The femtocell (cognitive tier) is comprised of an
FBS (as cognitive receiver) and several IoT nodes distributed over the coverage area. For matters of
spectral efficiency, the FBS is equipped with multiple antennas and an IA is introduced to enable space
division multiplexing. As in tiered cognitive radio networks, the primary tier (macrocell) is oblivious
to the cognitive tier (femtocell), and does not change its optimal precoding design; the cognitive tier
should adapt its transmission to protect the primary tier from any undesired performance degradation.
Hence, these two tiers are completely independent without any cooperation being established, and no
cross-tier interference management strategy needs to be implemented at the primary tier. Since the
macrocell operates in SC-FDMA, when accessing a certain licensed band, the femtocell is supposed to
consider just one macrocell user (MU) in this band. However, this assumption does not decrease the
generality of the proposed schemes. An extension to the model with multi-MUs per channel could be
obtained by means of multiuser scheduling techniques [23] once the solution for the single MU case
has been identified.
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More specifically, a K-user cognitive femtocell shares the licensed band with an MU
simultaneously. There are NT,k and NR,k antennas at the k-th transmitter and the receiver in the
femtocell, respectively, and a single antenna is equipped at the MU. We first focus on the full-IA
algorithm without considering the cross-tier interference. When the MU is absent, the signal of the
k-th IoT node can be recovered by full-IA at the FBS as:
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yk = UH
k Hk,kVkxk +

K

∑
i=1,i 6=k

UH
k Hk,iVixi + UH

k nk. (1)

Here, xk ∈ Cdk×1 is the data of the IoT node, k, with the transmit power constraint, Pk,
i.e., E

[
‖xk‖2

]
= Pk. Vk ∈ CNT,k×dk and Uk ∈ CNR,k×dk are the full-IA precoding and decoding matrices,

respectively. dk is the number of data streams, and nk ∈ CNR,k×1 ∼ CN
(

0, σ2
nINR,k

)
is the additive

white Gaussian noise vectors with a variance, σ2
n . For the Rayleigh channel, let Hk,k ∈ CNR,k×NT,k

denote the k-th transmission channel matrix, and Hk,i ∈ CNR,k×NT,i denote the interference channel
matrix from the i-th transmitter to the k-th receiver. The entries of the Rayleigh channel matrix are
standard independent identically distributed (i.i.d.) with zero-mean and unit-variance.

According to the full-IA algorithm, the co-tier interference among IoT nodes can be eliminated
perfectly. Hence, the precoding and decoding matrices for each IoT node should be designed to satisfy
the following conditions simultaneously [24]:

UH
k Hk,iVi = 0dk×di

k 6= i (2)

rank
{

UH
k Hk,kVk

}
= dk, f or k = 1, 2, · · ·K. (3)

Condition (2) guarantees that the interference signals of unintended transmitters can be projected
into the orthogonal subspace of the k-th receiver by Uk and Vi. Condition (3) preserves the required
interference-free degree of freedom (DoF) for the desired signal of each IoT node. In the Rayleigh
fading channel where the entries are independently distributed with no special structure, Condition (3)
would be satisfied naturally when Condition (2) is satisfied [25]. If the feasibility condition is held for
the tiered network, the received signal of the IoT node k can be given as:

yk = UH
k Hk,kVkxk + UH

k nk. (4)

Therefore, the transmission data rate of the k-th IoT node can be expressed as:

Rk = log2

∣∣∣∣∣∣Idk
+

Pk
dkσ2

n
·

UH
k Hk,kVkVK

k HH
k,kUk

UH
k

(
INR,k + Qk

)
Uk

∣∣∣∣∣∣, (5)

where Qk is the co-tier interference covariance. Note that if IA is fully achieved, the interference
covariance, Qk, would be a zero matrix and the sum rate of IoT nodes can achieve its maximum by
transmit power water-filling [26]:

Qk =
K

∑
i=1,i 6=k

Pi
diσ2

n
Hk,iViVH

i HH
k,i (6)

However, when the macrocell is active, since the MU will not sacrifice its own transmission rate to
satisfy the IA conditions of IoT nodes, the sum rate of the entire network would be severely decreased.
The received signals of both the macrocell and the femtocell would be disrupted by the cross-tier
interference as:

yp =

desired signal︷ ︸︸ ︷
UH

p hpxp +

cognitive interference︷ ︸︸ ︷
K

∑
k=1

UH
p Gp,kVkxk +

noise︷ ︸︸ ︷
UH

p np, (7)

yk =

desired signal︷ ︸︸ ︷
UH

k Hk,kVkxk +

co-tier interference︷ ︸︸ ︷
K

∑
i=1,i 6=k

UH
k Hk,iVixi +

cross-tier interference︷ ︸︸ ︷
UH

k gk,pxp +

noise︷ ︸︸ ︷
UH

k nk, (8)
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where hp is the channel coefficient vector between the MU and MBS. Gp,k and gk,p are the interference
matrix/vector between the two tiers. If the transmission power constraint of the MU is Pp, even with
the co-tier interference being eliminated by full-IA, the data rate of the k-th IoT node is degraded as:

R′k = log2

∣∣∣∣∣∣Idk
+

Pk
dk
·

UH
k Hk,kVkVK

k HH
k,kUk

UH
k

(
σ2

nINR,k + Ppgk,pgH
k,p

)
Uk

∣∣∣∣∣∣. (9)

The average received SINR of each data stream is also decreased by 10lg
(
1 + Pp/σ2

n
)

dB [27].
As can be seen, the performance of the full-IA algorithm will be severely degraded by the cross-tier
interference induced by cognitive spectrum sharing. Hence, the precoding schemes should be
redesigned as cognitive empowered IA to mitigate the cross-tier interference and achieve a better
network sum rate.

3. Cognitive Interference Alignment Schemes Design

In this section, two self-organizing cognitive IA schemes are proposed to mitigate the cross-tier
interference caused by the cognitive spectrum sharing in an autonomous way. First, we consider
the strict interference-free cognitive scenario and propose an interference nulling based cognitive IA
scheme. In such a scheme, both co-tier and cross-tier interferences can be perfectly eliminated by
aligning them into the orthogonal subspace of the intended signal. On the other hand, the interference
nulling based IA algorithm can achieve its optimum only with negligible noise. Hence, when the
interference-free constraint imposed on the femtocell users can be relaxed, we also propose a partial
cognitive IA scheme that further improves the network performance under low and intermediate
SNR conditions.

3.1. Cognitive Interference Elimination

According to the cognitive radio based paradigm [5], the cognitive network should first protect
the primary user from the cognitive interference caused by spectrum sharing, rather than selfishly
design its precoding scheme. In this subsection, we consider the proposal of a linear precoder design
for the femtocell to nullify the cognitive interference of (7) in a totally autonomous way.

By looking at (7), the cognitive interference constraint should be satisfied as:

K

∑
k=1

UH
p Gp,kVkxk = 0. (10)

Note that one possible way to obtain the channel state information (CSI), for instance the cognitive
interference channel, Gp,k, has been proposed in [28]. In such a method, the duality of TDD signals
and the sounding reference in the LTE/LTE-A frame is exploited to estimate the channel.

The data transmitted by the macrocell is unknown to the femtocell, which disqualifies the
interference cancellation algorithms, such as interweave IA [29] or dirty paper coding. Furthermore,
since the macrocell does not change its optimal decoding design, techniques that rely on cooperative
coding between the network tiers are not implementable [17]. Self-configuring and self-optimizing
precoding procedures should be designed for the femtocell. Assuming that, for the k-th IoT node,
the precoder is divided to Vk = WkṼk, then (10) can be rewritten as:

GpWṼ = 0, (11)

where Gp is the aggregated interference channel as:

Gp =
[
Gp,1, Gp,2, · · · , Gp,K

]
∈ CNR,p×∑K

k=1 NT,k . (12)
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The aggregated precoder, W, in (11) is the direct sum [30] of the total K precoders:

W =
K
⊕

k=1
Wk, (13)

where Wk is the linear precoder that aims to fully eliminate the cognitive interference to the macrocell.
It is straight-forward to see when the interference constraint (10) is always satisfied. Note that

the macrocell does not need to cooperate or share any transmit information to create the aggregated
precoder, W, which results in a lower backhaul transmission:

Gp,kWk = 0, f or k = 1, 2, · · · , K, (14)

Now, we focus on the k-th IoT node to devise Wk. By looking into (14), we can see that the precoder
must lie within the kernel of Gp,k. Here, we exploit the LQ decomposition to achieve a kernel space
with lower computational complexity. Let Gp,k = LkQk be the LQ decomposition of the interference
channel matrix, where Lk ∈ CNR,p×NT,k is a lower triangular matrix and Qk ∈ CNT,k×NT,k is a unitary
matrix. The matrix, Qk, can be given in columns as

[
q1, q2, · · · , qNT,k

]
, and the last N = NT,k − NR,p

orthonormal vectors of Qk span the kernel space, ker
(

Gp,k

)
. Therefore, the linear precoder, Wk, at the

k-th IoT node can be defined as:

Wk ,
[
qN+1, qN+2, · · · , qNT,k

]
, (15)

This fulfills the cognitive interference constraint (10). Note that, if the IoT nodes can obtain the
channel vector, hp, of the macrocell with the help of X2 interface [31], Wk can be designed directly as
the orthonormal basis of hp, which may preserve more interference-free DoF for the network.

After eliminating the cognitive interference, we focus on the received signal of the MBS in the
macrocell. By entering (15) into (7), we can obtain:

yp = UH
p hpxp + ñp. (16)

where ñp = UH
p np is the equivalent thermal noise, having the same size and statistic with the white

Gaussian noise. It is shown that with the linear precoder, Wk, at IoT nodes, the macrocell is now free
of cognitive interference, and the optimal decoding matrix for (16) can be expressed as:

Up =
(

h†
p

)H
= hp

(
hH

p hp

)−1
, (17)

Which is also known as the Moore-Penrose inverse of the channel vector.

3.2. Interference Nulling Based Cognitive IA

With the cognitive interference in (7) being fully eliminated by the linear precoder, we next
consider the communication in the femtocell and attempt to mitigate both the co-tier and cross-tier
interference for the precoding design.

After designing the precoder as Vk = WkṼk, the received signal in (8) can be simplified by
introducing H̃k,i = Hk,iWi as:

yk = UH
k H̃k,kṼkxk +

K

∑
i=1,i 6=k

UH
k H̃k,iṼixi + UH

k gk,pxp + ñk. (18)

The linear precoder, Wk, is constructed from the unitary matrix, Qk, hence, the entries of H̃k,i
remain the same statistic and can still be modeled as the Rayleigh fading channel. As we can only design
the precoding and decoding matrices of the femtocell rather than changing the optimal transmission
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strategies of the macrocell, we consider mitigating the co-tier and cross-tier interferences with IA in an
iterative way. By exploiting the channel propagation duality [32], the precoding and decoding matrices
can be obtained via iterations between the interference channel and its reciprocal channel. To simplify
the presentation, we summarize the interference nulling based cognitive IA in Algorithm 1.

More specifically, in the original channel, the optimization problem to minimize the interference
power imposed on the k-th IoT node can be given as:

U∗k = argmin
Uk

PI,k = argmintr
{

UH
k OkUk

}
s.t. UH

k Uk = INR,k , f or k = 1, 2, · · · , K,
(19)

where the interference covariance matrix:

Ok =
K

∑
i=1,i 6=k

PiH̃k,iṼiṼH
i H̃H

k,i + Ppgk,pgH
k,p. (20)

The interference channel, gk,p, in (20) should be estimated at the FBS by the blind channel
estimation [33], which can obtain the CSI with insufficient or even no pilot. On the other hand, for the
reciprocal channel, the optimization problem over the signal of the k-th IoT node can be expressed as:

U∗k = argmin
←
Uk

[←
P I,k = tr

{←
U

H

k
←
Ok
←
Uk

}]
s.t.

←
U

H

k
←
Uk = INR,k , f or k = 1, 2, · · · , K,

(21)

where the reciprocal interference covariance matrix:

←
Ok =

K

∑
i=1,i 6=k

Pi
←
Hi,k

←
Vi
←
V

H

i
←
H

H

i,k. (22)

Here, the corresponding variables in the reciprocal channel are denoted with a left arrow on

top, i.e.,
←
Uk = Ṽk,

←
Vk = Uk and

←
Hi,k = H̃H

k,i. It should be noted that the cognitive interference on
the macrocell is not involved in the reciprocal channel, since it has been eliminated by the linear
precoder, Wk.

The iterations alternate between the original and reciprocal channels, and in each iteration the

receivers optimize their decoding matrix, Uk or
←
Uk. To null the overall interference in (19), the FBS

should project the received signal into the subspace spanned by the eigenvectors corresponding to the
smallest dk eigenvalues of Ok. Hence, in the original channel, the decoder, Uk, can be expressed as:

Uk =
[
vOk ,1, vOk ,2, · · · , vOk ,dk

]
, (23)

Whose columns are the first dk eigenvectors of Ok in ascending order. In the reciprocal channel,

we update the precoder,
←
Vk, with the Uk determined in the original channel, then the reciprocal

decoder,
←
Uk, can be obtained similarly as:

←
Uk =

[
v←

Ok ,1
, v←

Ok ,2
, · · · , v←

Ok ,dk

]
, (24)

where
←
Uk is composed of the dk eigenvectors of the reciprocal interference covariance,

←
Ok. This process

iterates in such a way until it converges.
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Algorithm 1 Interference nulling based cognitive interference alignment (IN-CIA) (Hk,i, Gp,k, gk,p, Pk)

1. Input:
Hk,i: Co-tier channel; gk,p: Cross-tier channel;
Gp,k: Cognitive interference channel; Pk: Transmit power.

2. Step I:
Calculate LQ decomposition of Gp,k = LkQk for k = 1, 2, · · · , K.
Construct the linear precoder Wk as the last N columns of the unitary matrix Qk as (15).

3. Initialize: Let H̃k,i = Hk,iWi, start with arbitrary unitary matrix Ṽk that satisfies ṼkṼH
k = Id for each IoT node.

4. Step II:

4.1 Original:

Compute interference covariance matrix in original channel as:

Ok =
K

∑
i=1,i 6=k

PkH̃k,iṼiṼ
H
i H̃H

k,i + Ppgk,pgH
k,p.

4.2 Design Uk:

Compute the original decoder at the k-th receiver as the first dk eigenvectors of Ok:

Uk =
[
vOk ,1, vOk ,2, · · · , vOk ,dk

]
, f or k = 1, 2, · · · , K.

4.3 Reciprocal:

Consider the reciprocal channel and update all the precoder
←
Vk = Uk for k = 1, · · · , K.

Then compute reciprocal interference covariance matrix as:

←
Ok =

K

∑
i=1,i 6=k

Pk
←
Hi,k

←
Vi
←
V

H

i
←
H

H

i,k.

4.4 Design
←
Uk:

Similarly, compute the reciprocal decoder at the k-th reversed receiver as the first dk eigenvectors
of Ok:

←
Uk =

[
v←

Ok ,1
, v←

Ok ,2
, · · · , v←

Ok ,dk

]
, f or k = 1, 2, · · · , K.

5. Reverse Reverse the communication channel and update the decoder as Ṽk =
←
Uk, for k = 1, 2, · · · , K.

6. Loop:
If max

{
‖
←
Vk −Uk‖, ‖

←
Uk − Ṽk‖

}
≥ εk, i.e., the momentum greater than a given threshold.

Jump to Step 2.
7. Converge: Else: Return the precoder and decoder Vk = WkṼk and Uk.

3.3. Partial Cognitive IA

The interference nulling based IA algorithm achieves its optimum only with negligible noise.
In this sub section, we consider improving the performance interference nulling based IA algorithm
under low and intermediate SNR conditions and propose a partial cognitive IA scheme.

The interference nulling based cognitive IA aims to perfectly align both co-tier and cross-tier
interferences, providing a totally interference-free transmission for the femtocell users. However,
the full-IA method considers just the interference nulling rather than capacity optimization, and
achieves its optimum only in the networks with rather high SNR. When the transmit power is limited,
the orthogonal precoder makes no attempt to suppress the noise or maximize the desired signal, which
is generally a suboptimal solution with low or intermediate SNR values. The performance of the
cognitive IA can be further enhanced by partially aligning the interference. Hence, we propose the
partial cognitive IA to jointly consider the signal, interference, and noise power, and maximize the
transmission rate directly. The steps of the partial cognitive IA scheme are summarized in Algorithm 2.
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Algorithm 2 Partial cognitive IA (P-CIA) (Hk,k, Hk,i, Gp,k, gk,p, Pk, σn)

1. Input:
Hk,k: Transmission channel; gk,p: Cross-tier channel;
Hk,i: Co-tier channel; σn: White noise power;
Gp,k: Cognitive interference channel; Pk: Transmit power.

2. Step I:
Calculate LQ decomposition of Gp,k = LkQk, k = 1, · · · , K.
Construct the linear precoder Wk as the last N columns of the unitary matrix Qk as (15).

3. Initialize:
Let H̃k,i = Hk,iWi, initialize with arbitrary unitary matrix Ṽk =

{
ṽk,1, · · · , ṽk,ds

}
,

Uk =
{

uk,1, · · · , uk,ds

}
, whose columns are linearly independent unit vectors.

4. Step II:

Formulate the optimization problem for the s-th data stream of the k-th node as:

u∗k,s = argmax log2

∣∣∣∣1 + Pk
dk
· uk,sH̃k,k ṽk,sṽH

k,sH̃H
k,kuH

k,s
uk,sOk,suH

k,s

∣∣∣∣,
s.t. uH

k,suk,s = 1, f or ∀k ∈ [1, K], s ∈ [1, dk],

4.1 Original:

where the interference plus noise covariance matrix Ok,s is:

Ok,s =
K

∑
i=1

Pi
di

di

∑
j = 1

j 6= s, f or i = k

H̃k,iṽi,jṽ
H
i,jH̃

H
k,i + Ppgk,pgH

k,p + σ2
nINR,k .

4.2 Design uk,s:

Calculate the optimal receiving vector for the problem as:

u∗k,s =
O−1

k,s H̃k,kṽk,s

‖O−1
k,s H̃k,kṽk,s‖

.

4.3 Reciprocal:

In reciprocal channel, update all the precoder
←
v k,s = u∗k,s for ∀k ∈ [1, K] and ∀s ∈ [1, dk].

Compute reciprocal interference plus noise covariance matrix as:

←
Ok,s =

K

∑
i=1

Pi
di

di

∑
j = 1

j 6= s, f or i = k

←
Hk,i

←
v i,j
←
v

H
i,j
←
H

H

k,i + σ2
nINT,k .

4.4 Design
←
u k,s:

Similarly, the optimal receiving vector for reciprocal channel is given by:

←
u
∗
k,s =

←
O
−1

k,s
←
Hk,k

←
v k,s

‖
←
O
−1

k,s
←
Hk,k

←
v k,s‖

.

Reverse the communication channel and update all the decoder as ṽk,s =
←
u
∗
k,s, for

∀k ∈ [1, K], ∀s ∈ [1, dk].

5. Loop:
If max

{
‖
←
Vk −Uk‖, ‖

←
Uk − Ṽk‖

}
≥ εk, i.e., the momentum greater than a given threshold

Jump to Step 2.
6. Converge: Else: Return the coding matrices Vk = WkṼk and Uk.

The proposed partial cognitive IA also exploits the channel propagation duality and operates in

an iterative manner. We identify Uk and
←
Uk to be the decoders at the k-th receiver in the original and

reciprocal channels, respectively. Instead of eliminating the interference completely, we consider both
the noise and interference power for each IoT node, aiming to maximize the transmission rate of the
data streams directly. More specifically, the optimization problem for the s-th data stream of the IoT
node, k, in the original channel can be expressed as:
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u∗k,s = argmax log2

∣∣∣∣1 + Pk
dk
· uk,sH̃k,kṽk,sṽH

k,sH̃H
k,kuH

k,s
uk,sOk,suH

k,s

∣∣∣∣,
s.t.uH

k,suk,s = 1, f or ∀k ∈ [1, K], ∀s ∈ [1, dk],
(25)

where the vectors, uk,s and ṽk,s, are the s-th column of the coding matrices, Uk and Ṽk, respectively.
In (25), the interference and noise covariance matrix, Ok,s, is represented as:

Ok,s =
K

∑
i=1

Pi
di

di

∑
j = 1

j 6= s, f or i = k

H̃k,iṽi,jṽ
H
i,jH̃

H
k,i + Ppgk,pgH

k,p + σ2
nINR,k . (26)

It is known that, for the given interference and noise covariance, Ok,l , and the precoding vector,
ṽk,s, the optimal decoding vector to problem (25) is given by [34]:

u∗k,s =
O−1

k,s H̃k,kṽk,s

‖O−1
k,s H̃k,kṽk,s‖

. (27)

For the reciprocal channel, the partial cognitive IA algorithm operates in a similar way. We update

the reciprocal precoder,
←
Vk, with Uk as

←
Vk = Uk, and the reciprocal interference and noise covariance

is constructed without involving the cognitive interference to the macrocell:

←
Ok,s =

K

∑
i=1

Pi
di

di

∑
j = 1

j 6= s, f or i = k

←
Hk,i

←
v i,j
←
v

H
i,j
←
H

H

k,i + σ2
nINT,k . (28)

The optimization problem of the receiving vector,
←
u k,s, in the reciprocal channel can be solved in

the same way as:

←
u
∗
k,s =

←
O
−1

k,s
←
Hk,k

←
v k,s

‖
←
O
−1

k,s
←
Hk,k

←
v k,s‖

. (29)

The procedure of the partial cognitive IA algorithm also iterates between (27) and (29) until the

values of Uk and
←
Uk converge.

4. Performance Analyses of the Cognitive IA Schemes

In this section, we provide the proof of convergence, capacity, and feasibility analyses to show the
effectiveness of the proposed cognitive IA schemes.

4.1. Proof of Convergence

In this subsection, we illustrate how the proposed iterative algorithms are proved to be convergent.
Without a loss of generality, we assume the transmit power of each transmitter is normalized. In each

iteration of the interference nulling based cognitive IA scheme, the decoder, Uk/
←
Uk, is designed to

nullify the original/reciprocal interference power imposed on each IoT node, which is associated with
the covariance matrices in (21) and (22). More specifically, in the original channel, the decoder, Uk,
is designed as (23) to minimize the overall interference power, PI,k. Since the decoders, Uk, ∀k ∈ [1, K],
are uncoupled from each other and the sum interference power is given by PI = ∑K

k=1 PI,k, the objective
function can be decoupled as:
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min
U1,U2,··· ,UK

PI = min
U1,U2,··· ,UK

K

∑
k=1

PI,k =
K

∑
k=1

{
min

Uk
PI,k

}
, (30)

where:

PI,k =
K

∑
i=1,i 6=k

tr
{

UH
k H̃k,iṼiṼH

i H̃H
k,iUk

}
+ tr

{
UH

k gk,pgH
k,pUk

}
. (31)

We know that, in each iteration of the original channel, it always chooses the optimal
{U1, · · · , UK} to minimize the sum interference power in (30) and reduce the value of PI .

In the reciprocal channel, the reversed decoder,
←
Uk, associated with the k-th IoT node is designed

without considering the cross-tier interference from the macrocell. Hence, the reciprocal objective
function of the k-th IoT node is given as:

←
P I,k =

K

∑
i=1,i 6=k

tr
{←

U
H

k
←
Hi,k

←
Vi
←
V

H

i
←
H

H

i,k
←
Uk

}
. (32)

By substituting
←
Uk = Ṽk,

←
Vk = Uk and

←
Hi,k = H̃H

k,i to (32), we get:

←
P I,k =

K

∑
i=1,i 6=k

tr
{←

U
H

k
←
Hi,k

←
Vi
←
V

H

i
←
H

H

i,k
←
Uk

}
. (33)

As can be seen from (31) and (33), the first term of PI,k is equal to the reciprocal objective function,
←
P I,k, while the second term of PI,k is not affected by the reversed precoder,

←
Uk = Ṽk. It means that

the optimal decoder that ensures a receiver suffers the least co-tier interference also causes the least

interference to others in the reciprocal channel. Therefore, when the value of
←
Uk is chosen to minimize

←
P I,k, it also reduces the value of PI,k. Since the value of the interference power decreases monotonically
in every iteration and is lower bounded by zero, hence, convergence of the algorithm can be guaranteed.
The convergence of the partial cognitive IA scheme can also be discussed in a similar way, and a
semi-definite programming (SDP) problem generally requiresO

[√
Kd log(1/ε)

]
iterations to converge

with ε as the predefined solution accuracy.

4.2. Capacity Analysis

We next demonstrate the superiority of the proposed cognitive IA schemes by proving that it can
preserve the same performance as the non-cognitive IA based network when they are both feasible to
transmit the same number of data streams.

With the proposed interference nulling based cognitive IA scheme, the cross-tier interference form
the macrocell has been eliminated and we have:

PpUH
k gk,pgH

k,pUk = 0. (34)

Therefore, the data rate of the k-th IoT node coexisting with the macrocell can be expressed as:

RCIA
k = log2

∣∣∣∣∣Idk
+

Pk
dkσ2

n
·

UH
k H̃k,kṼkṼK

k H̃H
k,kUk

UH
k Uk

∣∣∣∣∣. (35)

Recall that in full-IA based networks, the data rate of the k-th IoT node can be expressed as:

R f ull−IA
k = log2

∣∣∣∣∣∣Idk
+

Pk
dkσ2

n
·

UH
k Hk,kVkVK

k HH
k,kUk

UH
k

(
INR,k + Qk

)
Uk

∣∣∣∣∣∣ (36)
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By comparing (35) with (36) we can see when the interference covariance, Qk, becomes a zero
matrix when full-IA is achieved, and these two equations have the same form with just different
dimensions of the channel matrices, Hk,k and H̃k,k. Note that all the precoders and decoders in both IA
schemes are i.i.d. unitary matrices and are independent of the channel matrix, which means the coding
process does not change the distribution of the channel matrix/vector. Therefore, the expectation
of the channel gain remains the same, and the proposed cognitive IA scheme achieves the same
average sum rate as the non-cognitive homogeneous IA with the same number of data streams, dk,
k = 1, 2, · · · , K. As the interference nulling based cognitive IA scheme becomes less effective under
low and intermediate SNR, the proposed partial cognitive IA scheme aims to directly maximize
the transmission rate for each data stream. Although the co-tier and cross-tier interferences are not
perfectly aligned into the orthogonal subspace of the desired signal, the partial cognitive IA still
achieves a better network sum rate than the interference nulling based cognitive IA scheme.

4.3. Feasibility Condition Analysis

The feasibility condition is also a primary concern in IA based schemes. In this subsection,
we analyze the feasibility condition of the proposed cognitive IA schemes and show that more
antennas are required to empower a network with cognition.

Despite being organized in different forms, the two cognitive IA schemes hold the same feasibility
condition. Inspired by the Bezout’s theorem, a generic polynomial system is solvable if, and only if,
the number of variables is not below the number of equations. Thus, we count the number of cognitive
IA equations and that of the unsolved variables to derive the feasibility condition. We first focus on the
co-tier interference constraint in (2) with the equivalent channel matrices, H̃k,i, k, i ∈ [1, K]. The total
number of Equations in (2) is counted as:

N IA
e = ∑

k,i∈[1,K], k 6=i
dk × di. (37)

when counting the number of variables, we can see that not all the variables are mutually independent.
After eliminating 2d2

k superfluous variables for the k-th IoT node, the total number of variables can be
given as:

N IA
v =

K

∑
k=1

dk
(

NT,k + NR,k − NR,p − 2dk
)
. (38)

To simplify the calculations, we assume that the tiered network is a symmetrical one,
i.e., NT,k = NT , NR,k = NR and dk = d, for ∀k ∈ [1, K]. Note that the assumption of network symmetry
does not limit the generality of the analysis. For asymmetrical networks, we can also derive the
feasibility condition with Bezout’s theorem by comparing the total number of equations and unsolved
variables in the whole network.

The unsolved variables in both the precoder and decoder can be determined by the IA polynomials,
and are solvable if, and only if, the number of the equations,N IA

e , does not exceed that of the variables,
N IA

v , as:
d2K(K− 1) ≤ dK

(
NT + NR − NR,p − 2d

)
, (39)

Which means the maximum number of data streams has the limit:

d ≤
NT + NR − NR,p

K + 1
. (40)

When considering the cognitive interference, the following constraint should be satisfied as:

UH
k gk,p = 0 ∈ Cd×1, f or k = 1, 2, · · · , K. (41)
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Hence, the polynomial (41) is also involved to derive the feasibility condition of the proposed
cognitive IA schemes. It can be seen that considering (41), there exists d independent equations for
each IoT node, and the total number of the equations isN CIA

e = ∑K
k=1 dk = Kd. Similarly, we count the

variables and remove the superfluous ones, hence, the total number of the variables is:

N CIA
v =

K

∑
k=1

dk(NR,k − dk) = Kd(NR − d) (42)

Since the N CIA
v variables can be solved only by the N CIA

e equations, and the decoder also
needs to cooperate with the precoder to align the co-tier interference, it should satisfy the condition,
N CIA

v ≥ N CIA
e + 1, i.e., NR ≥ d + 1.

With the analysis above, we can obtain the total number of equations as Ne = N IA
e +N CIA

e ,
and the number of variables, N IA

v , remains the same. The feasibility condition of the proposed
cognitive IA schemes with d data streams for each IoT node can be represented as:{

dK + d + 1 ≤ NT + NR − NR,p,
d ≤ min

{
NR − 1, NT − NR,p

}
.

(43)

Although the proposed cognitive IA schemes can achieve the same transmission rate as the full-IA
homogeneous network, we should note that, in the femtocell, more antennas at the transmitters and
receivers are required to deal with the interference introduced by the heterogeneous structure, as well
as to make the cognitive IA schemes feasible. More specifically, we can empower a feasible IA-based
network with cognition by adding NR,p − 1 antennas at each transmitter to eliminate the cognitive
interference, and one more antenna at each receiver to align the cross-tier interference.

5. Numerical Simulation Results

In this section, the numerical results are presented. To evaluate the effectiveness of the proposed
schemes, we compared the achieved sum rate of the IN-CIA and P-CIA algorithms with that of several
existing precoding methods, as well as with different data streams and antenna configurations. In the
simulations, we assumed there are three IoT nodes in the femtocell coexisting with a single antenna
MU and a dual antenna MBS of the macrocell, and that identical transmit power is allocated for each
user, i.e., K = 3, NT,p = 1, NR,p = 2 and Pk = P, for k = p, 1, 2, 3. Each cognitive pair transmits d = 1
data stream with NT,k = 3 transmitting antennas at the IoT node and NR,k = 4 receiving antennas at
the MBS.

Figure 2 shows the sum rate comparison of the IoT oriented femtocell with several existing
interference suppression precoding algorithms. When the feasibility condition is satisfied, both the
cooperative IA and P-CIA outperform the IN-CIA, and the performance converges in the high SNR
region. This is because the cooperative IA achieves a slightly higher channel gain with the cooperation
from the macrocell to eliminate the cross-tier interference, and the P-CIA further enhances the sum
rate by jointly considering the desired channel gain, interference, and noise. It is also observed that the
IA algorithms generally provide remarkable benefits over the orthogonality based precoding methods,
since IA can obtain half of the degrees of freedom per channel use. In Figure 3, we compare the
sum rate of the macrocell with several precoding algorithms. As the proposed cognitive IA schemes
fully eliminate the cognitive interference caused to the macrocell, the MUs can achieve an almost
identical performance with that of the non-cognitive homogeneous network. We can also see that the
cooperative IA compromises the primary users in the macrocell to ensure better performance of the IoT
oriented cognitive femtocell, which turns out to be a major limitation. The conventional non-cognitive
IA algorithm that neglects the cognitive interference also causes significant performance degradation
to MUs.
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Figure 2. Sum rate comparison of the Internet of Things (IoT) oriented femtocell with existing
precoding algorithms.
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Figure 3. Sum rate comparison of the macrocell with different precoding algorithms.

Next, we consider scenarios with different numbers of data streams and antenna configurations
to evaluate the performance of the proposed scheme. It can be seen from Figure 4 that the proposed
cognitive IA algorithm can achieve the desired sum rate when the number of antenna meets the
feasibility condition. However, the network performance would be severely degraded without enough
antennas equipped as the feasibility condition requires. In such a case, to make the IA schemes
feasible, we can either add more antennas at each transmitter/receiver or reduce the required degrees
of freedom by cutting down the number of data streams in the network.

To provide measurement results from a practical perspective, we evaluated the percentage of
interference leakage, which is defined as the fraction of the interference power in the dimensions
reserved for the desired signal [17]. The interference leakage percentage at each user is given as:

pk =
∑dk

i=1 λOk ,i

tr{Ok}
for k = 1, · · · , K. (44)
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where Ok denotes the interference covariance matrix in (20), and λOk ,i is the i-th eigenvalue of the
matrix in ascending order. The numerator and the denominator of (44) are the interference and desired
signal powers at the receiver, k, respectively.Sensors 2018, 18, x FOR PEER REVIEW 16 of 19 
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As can be seen from Figure 5, in the simulation, the expected total degrees of freedom for the
two curves are 5 and 7, respectively. When the antenna configuration just satisfies the feasibility
condition, the IA based network utilizes all the degrees of freedom to transmit data streams. Limited
by the numerical errors of the iterative approach, the interference may not be perfectly aligned into the
orthogonal subspace. However, the maximum percentage of interference leakage is less than 3% when
it is feasible, which does not reduce the effectiveness of the proposed cognitive IA algorithm. If more
strict interference-free transmissions are needed in the practical implementation, one or two degrees of
freedom can be reserved to achieve more precise interference alignment.
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6. Conclusions

In this paper, we targeted our efforts on IoT oriented heterogeneous networks with coexisting
femtocell and macrocell. We aimed to manage the cognitive interference caused to macrocell as well as
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ensuring an optimal capacity of the femtocell, hence, two novel self-organized cognitive IA schemes
were proposed. The interference nulling based cognitive IA scheme can perfectly eliminate both
the co-tier and cross-tier interference of the femtocell by aligning them into the lower dimension,
while preserving the interference-free transmission for the macrocell. As the interference nulling
based IA algorithm can achieve its optimum only with negligible noise, we also presented a partial
cognitive IA (P-CIA) scheme by loosening the co-tier interference constraint, and further improved
the network performance under low and intermediate SNR conditions. Additionally, the feasibility
condition, capacity, and convergence analyses were derived. Both the theoretical and numerical results
demonstrated that the proposed cognitive IA schemes achieved a significant improvement on the
network capacity while causing no performance degradation to the primary users, indicating that the
cognitive IA has a better application prospect for IoT oriented heterogeneous networks.

In addition, in this paper, we mainly focused on the physical layer interference management with
a stochastic geometry model. Extending the results of this paper to the network layer are interesting
future avenues for our work. One possible approach is to exploit the multi-hop relay and explore
corresponding routing protocols to further improve the network performance.
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