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Abstract: The fault diagnosis of dimensional variation plays an essential role in the production
of an automotive body. However, it is difficult to identify faults based on small labeled sample
data using traditional supervised learning methods. The present study proposed a novel feature
extraction method named, semi-supervised complete kernel Fisher discriminant (SS-CKFDA), and a
new fault diagnosis flow for automotive assembly was introduced based on this method. SS-CKFDA
is a combination of traditional complete kernel Fisher discriminant (CKFDA) and semi-supervised
learning. It adjusts the Fisher criterion with the data global structure extracted from large unlabeled
samples. When the number of labeled samples is small, the global structure that exists in the
measured data can effectively improve the extraction effects of the projected vector. The experimental
results on Tennessee Eastman Process (TEP) data demonstrated that the proposed method can
improve diagnostic performance, when compared to other Fisher discriminant algorithms. Finally,
the experimental results on the optical coordinate data proves that the method can be applied in the
automotive assembly process, and achieve a better performance.

Keywords: automotive assembly; feature extraction; semi-supervised learning; complete kernel
Fisher discriminant analysis; fault classification

1. Introduction

As it is well-known, an automotive body is a complex structure consisting of a large amount of
thin stamping sheets with different geometry shapes welded together. Dimensional variation produced
during the welding process affects not only the appearance and performance of automotive products,
but also the personal and property safety of the user. Thus, the fault diagnosis of dimensional variation
is vital to the quality promotion of vehicles. In recent years, in order to meet the needs of different
customer groups, automobile manufacturers must develop more detailed product lines, and inevitably,
the product development cycle needed to be shortened. This has undoubtedly put forward higher
requirements for fault diagnosis, including quick, high accuracy and intelligent.

The traditional coordinate data source is a coordinate measurement machine (CMM), which has
been widely established in welding workshops to measure automotive body dimensional features [1].
Although CMM has high accuracy and reliability, it also has very obvious disadvantages, such as low
efficiency and harsh environmental requirements. According to statistics, merely <3% of automotive
bodies can be measured in most workshops [2], which is far from enough for quick fault discovery,
much less for fault diagnosis. In recent years, with the rapid development of optical imaging devices,
various vision-based systems have been widely applied in modern industries [3,4]. In automotive
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welding workshops, more and more hybrid visual inspection systems have been distributed on
production lines for 100% online inspection [4]. Combined the industrial robot’s high-flexibility and
high-speed visual inspection technology, the measure speed of a hybrid visual inspection system
can reach 80 points per minute, which is much more efficient than CMM, and provides favorable
conditions for data-driven fault diagnosis.

One of the important fault diagnosis methods for assembly dimensional variation is the
model-based method, which achieves fault diagnosis by constructing a mathematical model,
and estimating the residual between estimates and measurements. The classical model-based method
is the state space modeling approach [5,6]. In this method, the dimensional variation propagation is
described through a state space model, and an observation equation, which represents the relationship
between the observation vector and state vector, is also established. The state space modeling provides
a method to describe the overall body assembly variation propagation. However, once the number
of welding stations increases, the modeling process will become extremely difficult, and even lead
to failure of diagnosis. Different from model-based methods, the necessary process information of
data-driven methods can be extracted directly from huge amounts of recorded process data. Hu was
the first to introduce principal component analysis (PCA) into fixture fault diagnosis to extract the
deviation pattern and identify the source of fault by comparing the deviation pattern with potential
failure modes. Jang and Yang [7] adopted artificial neural networks (ANNs) to deal with noisy or
missing data. Lian [8] extracted the variations of the measured data by correlation analysis, and found
the root of fault through the maximal tree method. For small data set problems, Liu [2] established the
Bayesian network model, and was successfully able to overcome it.

As a well-known feature extraction method, Fisher discriminant analysis (FDA) and its extension
methods have been applied in various industries [9–12]. Chen [9] introduced local FDA and support
vector machines for hepatitis disease diagnosis. Wen [10] applied weighted KFDA to extract the
E-nose’s data, and achieved a desirable effect. Direct linear discriminant analysis was proposed for
view-angle invariant gait recognition [11]. Unlike PCA, which is an unsupervised method, FDA takes
full advantage of its sample label information, which can be regarded as a more outstanding method,
compared to PCA [13]. However, these supervised methods need sufficient labeled samples to achieve
a desirable result, which is hard to satisfy in the real world. Especially in the automobile industry, it is
costly and time-consuming to label fault data with different causes. However, unlabeled data can be
easily obtained. For example, if a fixture failure occurs in one assembly station, the corresponding
dimension deviation will delay a period of time, which is difficult even for professional technicians to
trace back.

In order to solve the problem of less labeled data, the investigators propose a novel
semi-supervised complete kernel Fisher discriminant analysis method for fault diagnosis, called
SS-CKFDA. The basic idea of SS-CKFDA is to extract the global structure from the unlabeled sample to
enhance the generalization performance of FDA. Meanwhile, the kernel method is reserved to solve the
nonlinear problem by projecting the data from the linear inseparable input space to a high-dimensional
feature space, which is linearly separable. The innovative contributions of the present study are
summarized, as follows:

(1) A novel semi-supervised feature extraction method called, SS-CKFDA, was proposed. In order to
confirm the method’s effectiveness, a simulation experiment based on TEP data was performed,
and the results were compared with three other FDA-based methods.

(2) SS-CKFDA was introduced to mine fault information obtained from the historical data of the
hybrid visual inspection system. Based on this, a novel fault diagnosis flow was put forward for
automotive body assembly.

(3) A real experimental system for the automotive body assembly process was realized, and the
results show that the proposed method can greatly enhance diagnosis accuracy, especially when
less labeled data are obtained.
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(4) Two representative classifiers, k-nearest neighbor classifier (KNN) and minimum distance
classifier (MD), were also discussed in the present study.

The present study is organized as follows: Section 2 presents the details of the proposed SS-CKFDA
algorithm for fault diagnosis. The two different experimental datasets used in the present study are
introduced in Section 3. In Section 4, simulations on TEP data were carried out to verify the effectiveness
of the proposed SS-CKFDA algorithm, and analyze the effects of the parameters and classifiers. Then,
the experimental results for the automotive assembly data were subsequently analyzed. Finally,
the conclusion is presented in Section 5.

2. Methodology

2.1. Principle of the Complete Kernel Fisher Discriminant Analysis (CKFDA)

The CKFDA algorithm was proposed based on a novel framework, KPCA plus LDA, which makes
full use of irregular discriminant information that exists in the null space of the within-class scatter
matrix [14]. The irregular discriminant subspace, which is neglected in the previous KFDA algorithm, is
as powerful as the regular discriminant subspace for feature recognition. Combined with discriminant
vectors in regular and irregular subspaces, CKFDA can outperform other FDA-based algorithms.
Although CKFDA was proposed as an effective tool for solving the “small sample size” problem, it
has also been proven to be suitable for “large sample size” problems. The principle of CKFDA is
as follows:

First, KPCA [15] is performed to transform the original input space <n into a m-dimensional
space <m. Hence, we first set forth the KPCA algorithm in detail.

It is assumed that a set of M training samples x1, x2, . . . , xM in space <n can be mapped into a
feature space H by a given nonlinear mapping Φ : x 7→ Φ(x) . Then, the covariance matrix on the
feature space can be given by:

SΦ
t =

1
M

M

∑
j=1

(
Φ(xj)−mΦ

0

)(
Φ(xj)−mΦ

0

)T
(1)

where mΦ
0 = 1

M ∑M
j=1 Φ(xj). In addition, for every eigenvector of SΦ

t , η can be linearly expanded by
M
∑

i=1
aiΦ(xi).

In order to obtain the expansion coefficients, Q = [Φ(x1), . . . Φ(xM)] and the Gram matrix
R̃ = QTQ were denoted, and the elements can be gained using the kernel trick:

R̃ij = Φ(xi)
TΦ(xj) = k(xi, xj) (2)

Kernel function can be any function that fulfills Mercer’s condition [16]. The most common kernel
functions are Gaussian kernel, polynomial kernel and sigmoid kernel.

Before the following operation, the Gram matrix R̃ should be centralized [16].
The orthonormal eigenvectors γ1, γ2, . . . , γm of R are calculated, which correspond to the m

largest eigenvalues λ1 ≥ λ2 ≥ . . . λm. Then, eigenvector ηj of SΦ
t can also be obtained by:

ηj =
1√
λj

Qγj, j = 1, . . . , m. (3)

Lastly, the KPCA-transformed feature vector y = (y1, y2, . . . , ym)
T can be obtained by:

y = PTΦ(x), where P = (η1, η2, . . . , ηm). (4)
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Next, LDA is performed in the KPCA-transformed space and the regular and irregular
discriminant features are extracted. Suppose that there are c pattern classes, the between-class scatter
matrix Sb and the within-class scatter matrix Sw in the KPCA-transformed space can be defined
through the following pairwise forms [17]:

Sb =
1
2

n

∑
i=1

n

∑
j=1

Wb
i,j
(
yi − yj

)(
yi − yj

)T (5)

Sw =
1
2

n

∑
i=1

n

∑
j=1

Ww
i,j(yi − yj)(yi − yj)

T (6)

where:

Wb
i,j =

{
1/n− 1/nk if yi ∈ class k and yj ∈ class k
1/n otherwise

(7)

and:

Ww
i,j =

{
1/nk if yi ∈ class k and yj ∈ class k
0 otherwise

(8)

Wb
i,j and Ww

i,j are the corresponding coefficient matrix of Sb and Sw.
It was assumed that α1, . . . , αm are the orthonormal eigenvectors of Sw, and the first q ones

correspond to positive eigenvalues, q = rank(Sw). Then, the irregular space of Sw is the subspace
Θw = span

{
αq+1, . . . , αm

}
, and its orthogonal complementary space Θ⊥w = span

{
α1, . . . , αq

}
is the

regular space.
In the regular space, P1 =

(
α1, . . . , αq

)
, and the optimal regular mapping vectors can be gained

by maximizing the Fisher criterion argmax
ξ

ξT S̃bξ

ξT S̃wξ
, (ξ 6= 0), where S̃b = PT

1 SbP1, S̃w = PT
1 SwP1 and

ξ represents the optimal vectors of Fisher criterion. The optimization problem is proven to be
equal to the generalized eigenvalue problem: S̃bξ = λS̃wξ. After working out u1, . . . , ud(d ≤ c− 1),
which correspond to the d largest positive eigenvalues of S̃bξ = λS̃wξ, the optimal regular discriminant
feature vector can be obtain, as follows:

z1 = UTPT
1 y, where U = (u1, . . . , ud) (9)

In a similar way, in the irregular space, P2 =
(
αq+1, . . . , αm

)
, and the criterion is converted into

argmax
ξ

ξTŜbξ, (‖ξ‖ = 1), where Ŝb = PT
2 SbP2. The optimal vector v1, . . . , vd(d ≤ c− 1) of Ĵ(ξ) are

the orthonormal eigenvectors of Ŝb, which corresponds to d largest eigenvalues. Then, the optimal
irregular discriminant feature vector can be obtained, as follows:

z2 = VTPT
2 y, where V = (v1, . . . , vd) (10)

Finally, the two kinds of discriminant features are fused for classification. The normalized-distance
between sample z =

[
z1, z2] and training samples zi =

[
z1

i , z2
i
]
(i = 1, . . . , M) is defined by:

g(z, zi) = θ
‖z1 − z1

i ‖
M
∑

j=1
‖z1 − z1

j ‖
+
‖z2 − z2

i ‖
M
∑

j=1
‖z2 − z2

j ‖
(11)

where θ is the fusion coefficient, which determines the weight of the regular discriminant information
in the decision level. In this study, θ was set to 1.
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To this point, the feature extraction process of CKFDA has been completed. The original features
are reduced to two kinds of discriminant features

[
z1, z2], and the normalized-distance can be used for

the next classification with one distance classifier.

2.2. Semi-Supervised Complete Kernel Fisher Discriminant Analysis

2.2.1. Semi-Supervised Learning

Traditional supervised learning only uses labeled data to train, which inevitably tends to perform
poorly due to overfitting when there are no adequate labeled samples. In some cases, such as
automotive assembly quality monitoring, labeled samples are hard to obtain, while unlabeled data
are abundant. Therefore, semi-supervised learning is an effective solution to reduce human labor
and improve identification accuracy. The goal of semi-supervised learning is to change the learning
behavior of the traditional supervised method by combining this with unlabeled data, and design
algorithms that take advantage of such combination [18].

SELF is an effective graph based semi-supervised learning algorithm [17–19]. The basic idea of
SELF is that the information extracted by limited labeled samples can be adjusted through the global
structure of unlabeled samples. The algorithm flow of SELF is as follows.

Assuming that the input samples X can be expressed by X = {XL, XU}, XL refers to labeled
samples, which corresponds to the above

{
xj

i

}
with c classes, while XU refers to unlabeled samples.

Then, SELF defines the regularized between-class and within-class scatter matrices, as follows:

Srb = (1− β)Sb + βSt (12)

Srw = (1− β)Sw + βIm (13)

where Sb and Sw corresponds to the between-class scatter matrix and within-class scatter matrix of the

labeled samples XL in Equations (5) and (6). St =
1
2

n
∑

i=1

n
∑

j=1
Wt

i,j(xi − xj)(xi − xj)
T corresponds to the

total scatter matrix of all samples X, where Wt
i,j = 1/n. β is a trade-off parameter, and its value range

is [0,1].
In SELF, St represents the global structure, and by adjusting parameter β, the influence of St

can be controlled. When β = 0, SELF inclines to FDA, which is a supervised method, and when
β = 1, SELF deteriorates to PCA, which is an unsupervised method. When β ∈ (0, 1), SELF is a
semi-supervised method.

2.2.2. The SS-CKFDA Algorithm

Based on the above idea of semi-supervised learning, a novel semi-supervised CKFDA algorithm
(SS-CKFDA), which combined CKFDA with SELF, was proposed first. Although CKFDA can achieve
an ideal performance with labeled samples, the investigators still wanted to obtain more information
from the unlabeled samples. Through the algorithm description of CKFDA, it could be observed that
the double discriminant subspaces (DDS), which irregularly and regularly spanned in the CKFDA
feature spaces, were learned from the labeled samples, and this can be inaccurate when the labeled
samples are insufficient. By complementing semi-supervised learning in the feature spaces, DDS can
be corrected through sufficient unlabeled samples. This is the basic idea of SS-CKFDA. The steps for
the proposed SS-CKFDA algorithm are presented, as follows:
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Algorithm 1. (SS-CKFDA Algorithm):

Step 1:
KPCA is performed for both labeled and unlabeled samples. Data X = {XL, XU} in input space
<n is transformed to data Y = {YL, YU} in feature space <m.

Step 2:

SELF is performed in <m. First, between-class scatter matrices Sb and within-class scatter
matrices Sw are constructed with data YL by Equations (5) and (6). Then, the regular
between-class scatter matrices Srb and regular within-class scatter matrices Srw are constructed
with data Sb, Sw and Y by Equations (12) and (13).

Step 3:
The Srw’s orthonormal eigenvectors α1, . . . , αm are calculated, assuming that the first
q (q = rank(Srw)) corresponds to the positive eigenvalues.

Step 4:
The regular discriminant feature z1 is extract in regular space

{
α1, . . . , αq

}
by Equation (9) and

irregular discriminant feature z2 is extracted in irregular space
{

αq+1, . . . , αm
}

by Equation (10).
Step 5: The regular and irregular discriminant features are fused using Equation (11) for classification.

The proposed SS-CKFDA algorithm has two advantages. On one hand, kernel methods have
been intensively used to determine the nonlinear structure, which adopts nonlinear mapping to map
the input data into an implicit feature space, where the data will obtain a nonlinear representation. In
order to avoid implicit features computation, nonlinear mapping usually adopts kernel tricks, that is,
the nonlinear dot product kernel in the kernel methods. On the other hand, SELF was applied in DDS.
SELF can incorporate the global structure of unlabeled samples into Fisher criterion to overcome the
overfitting problem induced by the lack of labeled samples.

2.2.3. Comparison of SS-CKFDA with Other FDA Algorithms

Figure 1 vividly describes the differences between SS-CKFDA and the other FDA algorithms
using two class data. The filled symbols represent the labeled samples, while the unfilled symbols
denote the unlabeled samples. Furthermore, circle symbols denote one class data, while diamond
symbols represent the other class data. The dotted lines indicate the best discriminant projection
vectors obtained through different algorithms.
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FDA and SELF are implemented in the input space. Compared to FDA, SELF utilizes unlabeled
data to improve data learning ability. However, as shown in Figure 1a, when dealing with nonlinear
data, the performance improvement of SELF is limited. CKFDA and SS-CKFDA are nonlinear
extensions of FDA and SELF, respectively. In essence, these implement FDA and SELF in a fused feature
space. By nonlinear mapping Φ(X), the sample data in the input space, which is linearly inseparable,
becomes separable in the feature space, as shown in Figure 1b. By using the global structure information
extracted from the unlabeled data, SS-CKFDA can determine a better discriminant vector that can
well-separate the unlabeled data, when compared with CKFDA.
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2.3. SS-CKFDA for Fault Diagnosis

A detail flowchart of the SS-CKFDA modeling method for online fault diagnosis is presented in
Figure 2. For the new data sample xnew, the first step is to extract its discriminant feature znew using
the SS-CKPCA model. The next step is to conduct a discriminant analysis based on the discriminant
feature znew to determine which fault type the new sample xnew belongs to. In the present study, two
distance classifiers, KNN classifier and MD classifier, were designed for fault classification.

The KNN classifier, which is a common non-parameter classification method, has extensive
research and application background in pattern recognition, machine learning and data mining due
to features of being intuitionistic, simple, effective and easy to realize [20]. Its working principle is
to first determine the k nearest neighbor of the data sample to be classified in the training set. Then,
the data sample is classified by the majority vote of its neighbors. Distance metric is a key part of
the KNN classifier, and plays an important role in the performance of the algorithm. In SS-CKFDA,
normalized-distance g(z, zi) defined by Equation (16) is the distance metric. The MD classifier is
another simple and easy-to-used distance classifier. First, the mean vector ui =

[
u1

i , u2
i
]

of class i in the
training sample is calculated. Then, for the new online data z, if g(z, uk) = minig(z, ui), then z belongs
to class k.
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3. Experiment Description

In order to verify the performance improvement of fault diagnosis based on the SS-CKFDA
algorithm, two experiments that came from different applications are exploited and studied in the
present study. The Tennessee Eastman Process (TEP) was employed to evaluate the superiority of
the proposed method with other FDA-based algorithms in the viewpoint of less labeled samples
situation, and the present method was further validated in the fault diagnosis of an actual automotive
assembly process.

3.1. Experiment I: Tennessee Eastman Process

TEP, which has been widely used as a benchmark for evaluating fault diagnosis methods, consists
of five main units: a reactor, a condenser, a tripper, a separator, and a compressor [21]. Figure 3 presents
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the schematic of the TEP. A, C, D and E presents the four gas phase reactants, G and H presents the
two liquid products, F presents the byproduct and B presents an inert. The reactor is used to transform
the fed gaseous reactants into the liquid products. In the present study, the TEP simulator downloaded
from http://www.brahms.scs.uiuc.edu was adopted, which can simulate a normal operating condition
and 21 faulty conditions.

In the present study, TEP experimental data consisted of a normal operation mode dataset and
four classes of faulty datasets, which were labeled 1–5, respectively. The specific description of a dataset
in the present experiment is indicated in Table 1. There were 500 normal operation samples and 100
samples in each type of faulty dataset in the training set. The proportion of labeled data was changed,
while the rest of the training samples were unlabeled data. In the present study, the algorithm with a
proportion of unlabeled data rates that changed from 10% to 90% was tested. Meanwhile, there are 100
normal operation samples and 200 faulty samples in the testing dataset, with the assumption that the
number of samples was equal with the different faulty types. For each sample, all 41 measurement
variables were selected as monitored variables.
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Table 1. Description of the dataset.

ID Description Type Training Set Test Set

1 No faulty / 500 100
2 A/C feed ratio, B composition constant Step change 100 50
3 B composition, A/C ration constant Step change 100 50
4 A, B, C feed composition Random variation 100 50
5 Condenser cooling water inlet temperature Random variation 100 50

3.2. Experiment II: Automotive Assembly Process

As mentioned at the beginning, visual inspection systems have been widely used to monitor the
quality of automotive assemblies. As shown in Figure 4, a typical visual inspection system mainly
consists of a six-degree-of-freedom industrial robot and a flexible vision sensor [3]. The measuring
principle of the vision sensor is the optical triangulation principle [22]. The coordinate systems
of the visual inspection system comprise of a workpiece frame (Ow − XwYwZw), a robot base
frame (Ob − XbYbZb), an end-effector frame (Oh − XhYhZh) and a vision sensor frame (Os − XsYsZs).
After global calibration was performed for the system, the original coordinate data collected from the
vision sensor was unified and accessed in the workpiece frame Ow − XwYwZw.

http://www.brahms.scs.uiuc.edu
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In the present experiment, the measured values of the rear combination assembly area were
chosen to evaluate the proposed fault diagnosis method. The rear combination was the area that was
important and more likely to expose the problem. This was assembled by the side panel, floor and
trunk lid. In order to eliminate measurement noise, three statistics for each coordinate variables were

calculated: the mean value xi =
1
k

i
∑

j=i−k+1

(
xj
)
, the standard deviation σi =

√
1
k

i
∑

j=i−k+1

(
xj − xi

)
and the

range value Ri = max(xi−k+1, xi−k+2, . . . , xi)−min(xi−k+1, xi−k+2, . . . , xi) with k = 5. There were 13
measure coordinates in this area, and 39 features were finally obtained to monitor this assembly. In the
rear assembly station, the Nylon blocks on the fixture play an important role in adjusting the position
of the auto-body part. Four typical fault modes exist in the nylon blocks deviation: the Y direction
deviation on the right side, the X direction deviation on the right side, the Y direction deviation on the
left side, and the X direction deviation on the left side. For simplicity, the label Y-R, X-R, Y-L and X-L
were used to represent the four fault modes. After a period of data collection and class labeling, a total
of 100 samples were acquired for each fault mode. In addition, 100 normal condition samples were
also added in the experiment. Similarly, the dataset was divided into the training set and test set to
evaluate the performance of various algorithms.
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4. Results and Discussion

The SS-CKFDA was used to extract the feature information of two datasets. FDA, SELF and
CKFDA were employed to act as controlled trials to demonstrate the validity of the proposed method.
Meanwhile, BP-ANN, KNN and SVM were also employed to prove whether SS-CKFDA is able to
achieve an ideal performance in dealing with the fault diagnosis in an automotive assembly process.

4.1. Parameter Selection Strategy

As described above, the tuning parameter β and kernel parameter σ play important role in
SS-CKFDA algorithm. So we analyze the effects of the two parameter separately first. Then we
proposed a parameter selection strategy based on repeated grid search cross-validation to find the
optimal parameters.
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4.1.1. The Effect of Kernel Parameter σ and Tuning Parameter β

First, the effect of the kernel parameter for SS-CKFDA with KNN was evaluated. The other
parameters were chosen as follows: the labeled rate and β were set to 0.5; the parameter of KNN
is set to 9. Figure 5a presents the performance of SS-CKFDA with the different kernel parameter σ,
which ranged from 1 to 50. It was obvious that classification accuracy varies with different kernel
values. Generally, the performance content initially increased as a result of the increase in kernel
parameters. However, this decreased thereafter when the values of the kernel parameters arrived at a
certain stage.
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Figure 5. The effect of kernel parameter (a) σ and parameter (b) β on SS-CKFDA.

Then, we evaluated the effect of tuning parameter β with kernel parameter σ set to 7 and the other
parameter remained unchanged. Figure 5b shows the performance of SS-CKFDA with the different
parameter β ranging from 0 to 1. It is clear that the semi-supervised algorithm outperformed both the
unsupervised algorithm when β = 0 and the supervised algorithm when β = 1.

It can be observed that the performance of SS-CKFDA algorithms is affected by both the value of
the kernel parameter σ and parameter β.

4.1.2. Parameter Selection Strategy

When SS-CKFDA is applied to the TEP data and automotive assembly process data, these two
optimization parameters (σ and β) need to be decided. For KNN classifier, the chosen of K is also
an important parameter. In this study, we applied cross-validation for parameter tuning. An initial
set of possible input parameters were chosen first and then repeated grid search cross-validation
algorithm [23] was performed to find optimal parameters for SS-CKFDA. By repeating cross-validation
N times and for each grid point generating N cross-validation errors, the tuning parameter with
minimal mean cross-validation error was chosen as optimal. An overview of the parameter selection
strategy based on repeated grid search cross-validation is presented in Figure 6.
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4.2. Results of the TEP Data

4.2.1. Selection of Classifier

First, the distance classifier to be applied should be determined. SS-CKFDA with KNN and MD
was designed to determine which classifier is better for the present situation. The labeled rate was set
to 0.5 and other parameters were optimized as follows: β were set to 0.5; the Gaussian kernel parameter
σ was set to 7.2 and the parameter of KNN is set to 5. The test ran with 10-fold cross validation for ten
times. The average classification accuracy of each time was recorded and shown in Figure 7. The min,
max, average and standard deviation statistics were given in Table 2.
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Table 2. Outcome of SS-CKFDA with KNN and MD with TEP data.

Min Max Average/Std

SS-CKFDA + KNN 0.87 0.91 0.883/0.012
SS-CKFDA + MD 0.83 0.89 0.859/0.016

It is clear that SS-CKFDA with KNN has better performance than SS-CKFDA with MD. This is
because KNN with an optimal k value can be more effectively in avoiding the influence of outliers
than MD. So KNN is selected as the major distance classifier for SS-CKFDA.

4.2.2. Results Comparison of SS-CKFDA with Other FDA Algorithms

As a novel FDA based feature extraction algorithm, it is necessary to compare with other FDA
algorithms. Thus, we selected FDA, SELF and CKFDA for comparison with different unlabeled rate.
The unlabeled rate from 10% to 90% was changed, and the total number of labeled and unlabeled
samples was kept constant. Here, we tested 10-fold cross-validation ten times for each unlabeled rate
and each algorithm. The average accuracy and standard deviation of each algorithms under different
unlabeled rate were listed in Table 3.

Table 3 and Figures 8 and 9 present the classification accuracy at different unlabeled rates. FDA
and SELF were combined to compare the linear supervised and semi-supervised learning methods.
It could be easily observed that FDA and SELF cannot handle this nonlinear data, in which the
classification accuracy was the lowest. It was also concluded that SELF cannot use unlabeled data to
improve its performance when a nonlinear relationship exists between variables. On the other side,
SS-CKFDA can achieve higher accuracy, when compared with CKFDA, as a whole. When the unlabeled
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rate was relatively low, SS-CKFDA had no advantage, when compared with CKFDA, and CKFDA
can even achieve a better performance when the unlabeled rate was 10% and 20%. However, as the
unlabeled rate increased, the performance of CKFDA declined more rapidly than SS-CKFDA. When
the unlabeled rate reached 80% and 90%, the classification of SS-CKFDA continued to reach to 0.84
and 0.78, respectively, which are significantly superior to CKFDA. This was because as the labeled
samples decreased, the model precision decreased for CKFDA. However, for SS-CKFDA, it could use
more and more unlabeled samples to correct its model, ensuring its classification accuracy at a high
level. On the other hand, it can be seen from the comparison of standard deviation that SS-CKFDA can
achieve more stable performance than CKFDA.
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Table 3. Outcomes of average classification accuracy and standard deviation at different unlabeled rates. (Standard deviations are show in parentheses).

Unlabeled Rate FDA SELF CKFDA SS-CKFDA

Training Set Test Set Training Set Test Set Training Set Test Set Training Set Test Set

10% 0.74(0.009) 0.73(0.008) 0.77(0.005) 0.73(0.007) 0.91(0.012) 0.88(0.015) 0.88(0.006) 0.85(0.007)
20% 0.77(0.008) 0.76(0.009) 0.78(0.004) 0.76(0.007) 0.93(0.011) 0.94(0.016) 0.9(0.005) 0.91(0.006)
30% 0.77(0.011) 0.76(0.013) 0.78(0.005) 0.75(0.008) 0.88(0.014) 0.87(0.018) 0.89(0.006) 0.90(0.009)
40% 0.76(0.007) 0.74(0.009) 0.77(0.005) 0.73(0.006) 0.89(0.012) 0.89(0.013) 0.91(0.007) 0.89(0.009)
50% 0.73(0.008) 0.73(0.01) 0.77(0.006) 0.74(0.006) 0.86(0.015) 0.83(0.015) 0.91(0.005) 0.87(0.01)
60% 0.73(0.009) 0.73(0.011) 0.76(0.006) 0.73(0.008) 0.86(0.011) 0.84(0.015) 0.9(0.006) 0.88(0.011)
70% 0.74(0.01) 0.75(0.014) 0.78(0.008) 0.74(0.011) 0.88(0.016) 0.86(0.018) 0.88(0.006) 0.88(0.008)
80% 0.73(0.008) 0.71(0.011) 0.73(0.007) 0.71(0.008) 0.72(0.014) 0.74(0.019) 0.86(0.009) 0.84(0.012)
90% 0.72(0.011) 0.72(0.012) 0.71(0.008) 0.70(0.01) 0.71(0.013) 0.70(0.016) 0.81(0.009) 0.78(0.011)

Average 0.744(0.009) 0.737(0.011) 0.761(0.006) 0.732(0.008) 0.849(0.013) 0.839(0.016) 0.882(0.007) 0.867(0.009)
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4.3. Results of the Automotive Assembly Process Data

Similarly, the collected data were divided into the training set and test set. At the same time,
a small adjustment was performed, in which the test set was also added to the training procedure
as unlabeled data for semi-supervised algorithms. This was because even though the test data was
the present prediction data, its measured values remain beneficial for differentiating its fault category.
In the present study, 10% of the samples were taken as the training set, and the rest of the samples were
used as the test set, which is really consistent with realistic situations. The test ran ten times to reduce
accidental error. Furthermore, we selected BP-ANN [24], KNN [20] and SVM [25] for comparison.

For BP-ANN, the parameters were set in this study as follows: three layers (i.e., an input layer,
a hidden layer and an output layer) were arranged; the number of neurons in the hidden layer was
set 10, the learning rate factor and momentum factor were all set to 0.1; the initial weights were set
to 0.3; the learning algorithm was gradient descent backpropagation. For kernel parameter of SVM
and k value of KNN, we used the same repeated gird search cross-validation algorithm described in
Section 4.1 for parameter selection.

Figure 10 demonstrates the score plots of the proposed SS-CKFDA, revealing that the five different
kinds of samples were better dispersed. Table 4 lists the results for SS-CKFDA and other classical
methods. It was clearly shown that SS-CKFDA can achieve the highest average classification accuracy
and lowest standard deviation. For each type of fault, SS-CKFDA always performed better than others.
Although SVM has the best performance in the classification of Normal and X_L, it performs poorly in
the classification of Y_R and X_R, where SS-CKFDA is significantly better. Summarizing all of the five
conditions, SS-CKFDA performs better than SVM and other algorithms.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 17 

 

4.3. Results of the Automotive Assembly Process Data 

Similarly, the collected data were divided into the training set and test set. At the same time, a 

small adjustment was performed, in which the test set was also added to the training procedure as 

unlabeled data for semi-supervised algorithms. This was because even though the test data was the 

present prediction data, its measured values remain beneficial for differentiating its fault category. 

In the present study, 10% of the samples were taken as the training set, and the rest of the samples 

were used as the test set, which is really consistent with realistic situations. The test ran ten times to 

reduce accidental error. Furthermore, we selected BP-ANN [24], KNN [20] and SVM [25] for 

comparison. 

For BP-ANN, the parameters were set in this study as follows: three layers (i.e., an input layer, 

a hidden layer and an output layer) were arranged; the number of neurons in the hidden layer was 

set 10, the learning rate factor and momentum factor were all set to 0.1; the initial weights were set 

to 0.3; the learning algorithm was gradient descent backpropagation. For kernel parameter of SVM 

and k value of KNN, we used the same repeated gird search cross-validation algorithm described in 

section 4.1 for parameter selection. 

Figure 10 demonstrates the score plots of the proposed SS-CKFDA, revealing that the five 

different kinds of samples were better dispersed. Table 4 lists the results for SS-CKFDA and other 

classical methods. It was clearly shown that SS-CKFDA can achieve the highest average 

classification accuracy and lowest standard deviation. For each type of fault, SS-CKFDA always 

performed better than others. Although SVM has the best performance in the classification of 

Normal and X_L, it performs poorly in the classification of Y_R and X_R, where SS-CKFDA is 

significantly better. Summarizing all of the five conditions, SS-CKFDA performs better than SVM 

and other algorithms. 

 

Figure 10. Score plots of SS-CKFDA with the (a) training set and (b) test set. 

Furthermore, SS-CKFDA was also compared with other methods with respect to training time, 

and the results are presented in Table 5. This clearly shows that BP-ANN has the longest training 

time, while FDA has the least training time. Within these five methods, SS-CKFDA also performs 

very well. Although the training time was slightly longer than other FDA methods, it can achieve a 

better accuracy rate when the labeled sample is lesser. 

Figure 10. Score plots of SS-CKFDA with the (a) training set and (b) test set.

Furthermore, SS-CKFDA was also compared with other methods with respect to training time,
and the results are presented in Table 5. This clearly shows that BP-ANN has the longest training
time, while FDA has the least training time. Within these five methods, SS-CKFDA also performs very
well. Although the training time was slightly longer than other FDA methods, it can achieve a better
accuracy rate when the labeled sample is lesser.
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Table 4. Outcomes of the average classification accuracy and standard deviation of the automotive assembly process data. (Standard deviations are show in
parentheses).

FDA SELF CKFDA SS-CKFDA
Training Set Test Set Training Set Test Set Training Set Test Set Training Set Test Set

Normal 0.34(0.135) 0.26(0.012) 0.42(0.147) 0.34(0.011) 0.78(0.148) 0.68(0.015) 0.88(0.103) 0.72(0.008)
Y-R 0.56(0.126) 0.55(0.014) 0.72(0.103) 0.52(0.008) 0.66(0.165) 0.53(0.017) 0.82(0.148) 0.66(0.011)
X-R 0.72(0.103) 0.66(0.015) 0.78(0.114) 0.75(0.009) 0.88(0.14) 0.68(0.012) 0.9(0.105) 0.82(0.009)
Y-L 1(0) 1(0) 1(0) 0.98(0.006) 1(0) 1(0) 1(0) 1(0)
X-L 1(0) 0.95(0.011) 1(0) 0.95(0.005) 1(0) 0.95(0.006) 1(0) 0.98(0.003)

Average 0.724(0.073) 0.684(0.01) 0.784(0.072) 0.708(0.008) 0.864(0.091) 0.768(0.01) 0.92(0.071) 0.836(0.006)

BP-ANN KNN SVM
Training Set Test Set Training Set Test Set Training Set Test Set

Normal 0.32(0.103) 0.35(0.022) 0.48(0.169) 0.53(0.028) 0.9 (0.141) 0.76(0.011)
Y-R 0.66(0.135) 0.65(0.025) 0.62(0.148) 0.56(0.025) 0.72(0.193) 0.62(0.014)
X-R 0.9(0.105) 0.84(0.018) 0.68(0.235) 0.72(0.031) 0.86(0.165) 0.74(0.008)
Y-L 1(0) 0.95(0.012) 1(0) 1(0) 1(0) 1(0)
X-L 1(0) 0.95(0.013) 1(0) 0.95(0.019) 1(0) 1(0)

Average 0.776(0.069) 0.748(0.018) 0.756(0.11) 0.752(0.021) 0.896(0.1) 0.824(0.007)
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Table 5. The comparison of average training time.

Average Training Time (ms)

SS-CKFDA 13.62
CKFDA 12.55

SELF 3.41
FDA 1.60

BP-ANN 265.54
KNN 142.36
SVM 21.78

5. Conclusions

The present study mainly investigates a novel semi-supervised learning method called,
SS-CKFDA, which combines the advantages of semi-supervised learning and CKFDA. The main
idea of this method is that the projected vectors extracted from labeled data can be adjusted by
integrating the global structure information provided by all labeled and unlabeled samples. We also
analyze the effects of the two important parameters β and σ separately and propose a parameter
selection strategy based on repeated grid search cross-validation to find the optimal parameters.
The experimental results of the TEP data proves that as a novel algorithm, SS-CKFDA coupled with
the KNN classifier achieves better and more stable performance, compared to FDA, SELF and CKFDA
individually. As the unlabeled rate increases, its advantages become more obvious.

Automotive assembly process data is collected from vision sensors, and the lack of labeled samples
is a typical situation. Hence, the proposed method was implied on this. The experimental results of
the automotive assembly process data revealed that the new algorithm can be successfully used in
automotive manufacturing. When compared with other classical methods, it was observed that when
the labeled samples were limited, SS-CKFDA can achieve better average classification accuracy for
both training set and test set, allowing training time to satisfy practical use.
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