
sensors

Article

Internet of Things with Lightweight Identities
Implemented Using DNS
DANE—Architecture Proposal

Mariusz Kamola

NASK Institute, Kolska 12, 01045 Warsaw, Poland; Mariusz.Kamola@nask.pl; Tel.: +48-603-180-166

Received: 11 July 2018; Accepted: 26 July 2018; Published: 1 August 2018
����������
�������

Abstract: Domain Name Service (DNS) and its certification related resource records are appealing
alternative to the standard X.509 certification framework, in provision of identities for Internet
of Things (IoT) smart devices. We propose to also use DNS to store device owner identification
data in device certificates. A working demonstration software has been developed as proof of this
concept, which uses an external identity provider run by national authorities. As a result, smart
devices are equipped with certificates that safely identify both the device and its owner. Hardware
requirements make such a framework applicable to constrained devices. It stimulates mutual trust in
machine-to-machine and man-to-machine communication, and creation of a friendlier environment
for sale, lease, and data exchange. Further extensions of the proposed architecture are also discussed.

Keywords: TLSA; IoT; identity provider

1. Introduction

While the rollout of the Internet of Things (IoT) is gaining its momentum, with so many new
kinds of devices being equipped with data processing capabilities, one may find strange the fact that
in practice, most of those things need some centralized service to interact properly, which is contrary
to the original IoT vision. Thermostats and light bulbs, coffee makers, smart buttons, and even smart
mains sockets—most of them require their avatar representation in the manufacturer’s cloud, or at
least use a proprietary communication protocol. This effectively prevents direct machine-to-machine
interaction, also referred to as edge or fog computing [1]. One of the reasons for such a situation is that
those small, but intelligent devices are connected with the Internet using a multitude of protocols and
communication paths, which are often subject to additional address translation. Application of IPv6 as
the common addressing scheme is therefore impossible.

Although, authors believe there is more to this. By keeping their devices in proprietary
information silos, providers of IoT management platforms evade the issue of worldwide identity and
authenticity management of “things”, and this hinders true fog computing. To make fog computing
possible, all devices would have to use Public Key Infrastructure (PKI), which is now the only global
authentication technology for Internet communications. Public key infrastructure relies on a proper
certification chain all the way down to each single service or device, and is implemented with the use
of X.509 certificates [2]. An essential role of an X.509 certificate is to bind human-readable identification
data of the certificate owner, that is, user name, with the computer-readable public key the owner
utilizes to sign his artifacts (services, documents). The certificate contains many additional fields of
technical significance, like Common Name (CN) and validity period. An important addition made
in version 3 are optional extension fields, where more descriptive information about the owner can
be stored.

Sensors 2018, 18, 2517; doi:10.3390/s18082517 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/8/2517?type=check_update&version=1
http://dx.doi.org/10.3390/s18082517
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2517 2 of 12

Certificates are issued and signed by Certification Authorities (CAs), which follow their identity
recognition procedure for certificate owners. Such an approach is hard to imagine for IoT because of
the following: (a) certificate price and reliability, (b) management inconvenience for individual owners
of smart devices, and (c) requirement that a public IP address be assigned for each device. In particular,
there are over 1000 CAs trusted by default by most Internet browsers; if only one of them goes corrupt,
it is capable of issuing any number of fake certificates. Getting such a certificate is the first step in
man-in-the-middle attack scenarios, resulting in browser redirection to malicious websites.

This PKI vulnerability has been confirmed by real incidents [3] and has become one of the
reasons for the introduction of secure DNS (DNSSec) with Domain Authenticated Naming services
Extension (DANE) [4,5]. DNSSec + DANE reinforces the traditional PKI, but it also may be used as
the replacement for PKI CAs, see Figure 1. In the latter case, domain owners issue certificates for all
entities in their domains. In the example in Figure 1, Alice would first create a self-signed certificate
for her domain, alice.priv, and use it to make and sign a certificate for her wristwatch. That certificate
gets installed in her IoT device, and is also placed in a Transport Layer Security Authentication (TLSA)
resource record associated with a unique domain name assigned to that device. All resource records
are signed by a domain owner; this, combined with the mechanism of assigning key pairs to domain
owners down the DNS hierarchy, creates an unbroken trust chain up to the root domain, whose
certificate is trusted globally. Such an alternative architecture for Transport Layer Security (TLS)
communication protocols has been demonstrated to work in practice [3]: a web browser plugin has
been implemented that performs web page X.509 certificate checks against DANE records, which is all
it takes to verify website authenticity.

Sensors 2018, 18, x FOR PEER REVIEW 2 of 12

Certificates are issued and signed by Certification Authorities (CAs), which follow their identity
recognition procedure for certificate owners. Such an approach is hard to imagine for IoT because of
the following: (a) certificate price and reliability, (b) management inconvenience for individual owners
of smart devices, and (c) requirement that a public IP address be assigned for each device. In
particular, there are over 1000 CAs trusted by default by most Internet browsers; if only one of them
goes corrupt, it is capable of issuing any number of fake certificates. Getting such a certificate is the
first step in man-in-the-middle attack scenarios, resulting in browser redirection to malicious websites.

This PKI vulnerability has been confirmed by real incidents [3] and has become one of the
reasons for the introduction of secure DNS (DNSSec) with Domain Authenticated Naming services
Extension (DANE) [4,5]. DNSSec + DANE reinforces the traditional PKI, but it also may be used as
the replacement for PKI CAs, see Figure 1. In the latter case, domain owners issue certificates for all
entities in their domains. In the example in Figure 1, Alice would first create a self-signed certificate
for her domain, alice.priv, and use it to make and sign a certificate for her wristwatch. That
certificate gets installed in her IoT device, and is also placed in a Transport Layer Security
Authentication (TLSA) resource record associated with a unique domain name assigned to that
device. All resource records are signed by a domain owner; this, combined with the mechanism of
assigning key pairs to domain owners down the DNS hierarchy, creates an unbroken trust chain up
to the root domain, whose certificate is trusted globally. Such an alternative architecture for
Transport Layer Security (TLS) communication protocols has been demonstrated to work in practice
[3]: a web browser plugin has been implemented that performs web page X.509 certificate checks
against DANE records, which is all it takes to verify website authenticity.

Figure 1. Chains of trust for X.509 certificate presented by a smart device, e.g., a wristwatch. (Left):
conventional Public Key Infrastructure (PKI) approach; certificate signatures get verified recursively
until some root Certification Authorities (CA) is reached, whom a client trusts. (Right): secure DNS
(DNSSec) + Domain Authenticated Naming services Extension (DANE) approach; device certificate
is signed by a self-signed domain owner certificate—but all domain records can be trusted because
they are signed with zone signing keys and chained up the hierarchy by key signing keys, up to the
root zone (trusted by default). TLSA—Transport Layer Security Authentication.

The appropriateness of DNSSec + DANE application for IoT authentication and relationship
management has already been recognized and emphasized by DNS experts and officials [6]. Use of
the framework boils down to comparing X.509 certificate emitted by the IoT device with TLSA
record for that device. Such a simple scheme, when combined with other DNS capabilities, enables
many other communication scenarios. A set of patents by VeriSign Inc., Reston, VA, is based on the

Figure 1. Chains of trust for X.509 certificate presented by a smart device, e.g., a wristwatch. (Left):
conventional Public Key Infrastructure (PKI) approach; certificate signatures get verified recursively
until some root Certification Authorities (CA) is reached, whom a client trusts. (Right): secure DNS
(DNSSec) + Domain Authenticated Naming services Extension (DANE) approach; device certificate is
signed by a self-signed domain owner certificate—but all domain records can be trusted because they
are signed with zone signing keys and chained up the hierarchy by key signing keys, up to the root
zone (trusted by default). TLSA—Transport Layer Security Authentication.

The appropriateness of DNSSec + DANE application for IoT authentication and relationship
management has already been recognized and emphasized by DNS experts and officials [6]. Use of
the framework boils down to comparing X.509 certificate emitted by the IoT device with TLSA record
for that device. Such a simple scheme, when combined with other DNS capabilities, enables many
other communication scenarios. A set of patents by VeriSign Inc., Reston, VA, is based on the common

Sensors 2018, 18, 2517 3 of 12

idea of utilizing DNS as a directory for authentication, relationship management, and ontological
description of IoT devices.

In particular, patents [7,8] introduce a concept of IoT identity and relationship service that
stores the IoT device public key in TLSA record or its equivalent meant to use for e-mail messages
authentication. This allows device-to-device secure communication worldwide over untrusted
channels, for example, message queues. Additionally, the IoT service manages authorization of
the device and of attribute files that contain descriptions of ownership(s) and the device parameters.
Such a solution, although incompatible with the work of [5], effectively addresses hardships of massive
certification and relationship management of interacting smart devices.

This vision gets developed further in patent [9] where IoT devices expose their communication
endpoints via a software component, termed a container. The patent introduces communication and
service discovery endpoints for containers. Additionally, establishing data access policies in containers
is envisioned, which is possible because communicating parties’ identities are publicly stored in DANE.
Authentication, communication, and search capabilities mentioned above are complemented with
ontological device annotation and search capabilities, proposed in patent [10]. However, the proposed
semantic search process does not explicitly involve DNS.

An alternative to the patented proposals [11] presents a vision of a global IoT device directory
accomplished by a dedicated domain name, or several names. This vision is a good example of
many other similar research ideas aimed to employ DNSSec and DANE to manage IoT infrastructure.
Specifically, the paper suggests that device ontological description be provided autonomously by the
device itself, and not stored in DNS. The authors propose to use Extended Environments Markup
Language (EEML) and Web Application Description Language (WADL) for this purpose. Device
lookup in DNS database would be provided by DNS-based Service Discovery (DNS-SD).

The above initiatives delegate the tasks of device certification and relationship management to
DNS instead of IoT management platforms. Yet they skip over the question of how the identity of
the IoT device owner be verified by the organization responsible for management of the domain that
is about to host that device. The solution is trivial only if the organization and the device owner are
the same entity; in such a case, one believes that organization identity has been verified during the
process of generation DNSSec key signing keys. Such an approach is still unreliable and impractical.
First, credibility of the domain owner identity depends on means used by the registrar in the domain
registration process, which are impossible to control worldwide, thus they are not uniform and
are sometimes even unknown. Second, to comply with the rules of communication defined in the
literature [5], each domain owner must be capable of generating a self-signed certificate, as well as
certificates for his/her things.

Our contribution addresses both drawbacks. We propose to involve two other entities in the
process of certificate generation for an IoT device, as shown in Figure 2. The architecture preserves the
domain maintenance role for the device owner, and outsources certificate generation to an external
service, the IoT signer, operated by some entity authorized to use Identity Provider (IdP) services in
order to authenticate the device owner. The IoT signer service is authorized to retrieve extra data about
the device owner, like phone number, e-mail address, or IdP login name; selected data get embedded
as X.509v3 extensions into the device certificate being released. Notably, other existing trust chains are
essentially unaffected (green and red arrows in Figures 1 and 2). Such an architecture addresses the
existing inconveniences of DNSSec + DANE: the domain registrar and owner are relieved from device
owner identity check (which is delegated to IdP); also, the device owner is relieved from the certificate
generation task (delegated to IoT signer).

Sensors 2018, 18, 2517 4 of 12

Sensors 2018, 18, x FOR PEER REVIEW 4 of 12

Figure 2. Introduction of identity provider and Internet of Things (IoT) signer services leads to
reinforcement of device owner identification and to device certificate generation outsourcing,
respectively. Unlike in Figure 1, the device certificate gets signed by the IoT signer, which in turn is
authorized to use identity provider services to identify the device owner.

Advantages of such an architecture over previous approaches are manifold: (a) a device can be
registered in any domain, as well as simultaneously; (b) device certificate can be issued by any
organization allowed to use IdP services; and (c) many alternative (or supplementary) IdP services
can be used.

Our another contribution is to implement the IoT signer service, and to make an adequate
configuration of the rest of the elements of such an architecture to assemble a working demonstrator.
Technical implementation details and applicability of the architecture to IoT devices are provided in
Section 2. Performance evaluation and possible application scenarios are presented in Section 3. In
Section 4, we discuss extensions of the architecture.

2. Materials and Methods

Roles of the IdP and IoT signer entities are fulfilled by web services available for unrestricted
public use, as shown in Figure 3. Together with standard PKI and DNSSec + DANE technologies,
they constitute our framework for secure identification of IoT devices as well as their owners. The
steps leading a user, say, Alice, to get her smart thing an identity are as follows:

Figure 3. Identity registration scenario (left) and identity verification scenario (right) for an IoT
device. IdP—identity provider.

Figure 2. Introduction of identity provider and Internet of Things (IoT) signer services leads
to reinforcement of device owner identification and to device certificate generation outsourcing,
respectively. Unlike in Figure 1, the device certificate gets signed by the IoT signer, which in turn is
authorized to use identity provider services to identify the device owner.

Advantages of such an architecture over previous approaches are manifold: (a) a device can
be registered in any domain, as well as simultaneously; (b) device certificate can be issued by any
organization allowed to use IdP services; and (c) many alternative (or supplementary) IdP services can
be used.

Our another contribution is to implement the IoT signer service, and to make an adequate
configuration of the rest of the elements of such an architecture to assemble a working demonstrator.
Technical implementation details and applicability of the architecture to IoT devices are provided in
Section 2. Performance evaluation and possible application scenarios are presented in Section 3. In
Section 4, we discuss extensions of the architecture.

2. Materials and Methods

Roles of the IdP and IoT signer entities are fulfilled by web services available for unrestricted
public use, as shown in Figure 3. Together with standard PKI and DNSSec + DANE technologies, they
constitute our framework for secure identification of IoT devices as well as their owners. The steps
leading a user, say, Alice, to get her smart thing an identity are as follows:

1. Alice logs into IdP service;
2. Selected Alice’s profile data (telephone number, email address, login name) are forwarded to IoT

signing service;
3. IoT service generates a X.509v3 certificate for Alice’s watch and the corresponding TLSA entry,

and sends them to Alice;
4. Alice adds TLSA record to DNS domain she manages;
5. Alice transfers the certificate to the device.

Sensors 2018, 18, 2517 5 of 12

Sensors 2018, 18, x FOR PEER REVIEW 4 of 12

Figure 2. Introduction of identity provider and Internet of Things (IoT) signer services leads to
reinforcement of device owner identification and to device certificate generation outsourcing,
respectively. Unlike in Figure 1, the device certificate gets signed by the IoT signer, which in turn is
authorized to use identity provider services to identify the device owner.

Advantages of such an architecture over previous approaches are manifold: (a) a device can be
registered in any domain, as well as simultaneously; (b) device certificate can be issued by any
organization allowed to use IdP services; and (c) many alternative (or supplementary) IdP services
can be used.

Our another contribution is to implement the IoT signer service, and to make an adequate
configuration of the rest of the elements of such an architecture to assemble a working demonstrator.
Technical implementation details and applicability of the architecture to IoT devices are provided in
Section 2. Performance evaluation and possible application scenarios are presented in Section 3. In
Section 4, we discuss extensions of the architecture.

2. Materials and Methods

Roles of the IdP and IoT signer entities are fulfilled by web services available for unrestricted
public use, as shown in Figure 3. Together with standard PKI and DNSSec + DANE technologies,
they constitute our framework for secure identification of IoT devices as well as their owners. The
steps leading a user, say, Alice, to get her smart thing an identity are as follows:

Figure 3. Identity registration scenario (left) and identity verification scenario (right) for an IoT
device. IdP—identity provider.

Figure 3. Identity registration scenario (left) and identity verification scenario (right) for an IoT device.
IdP—identity provider.

Here, we assume that the device communicates with outer world via TLS protocol, and has a
public IP address. The latter assumption makes it possible to associate its name with IP address using
DNS A record. The earlier one guarantees that the device will present its X.509 certificate (with IdP
provided v3 extensions) to any connecting client. Note that like in the literature [3], the TLSA record
stores an SHA256 certificate fingerprint rather than a whole certificate. This means that device owner
data can be only be obtained by direct communication with that device, and are not stored elsewhere
except IdP.

DNS DANE offers several modes of certificate matching. Following the literature [3], we switched
off PKI validation and required users to calculate and match SHA256 for the whole certificate. Hence,
the TLSA record “Usage”, “Selector”, and “Matching Type” field values of 3, 0, and 1, respectively.

A user, say, Bob, communicates with the device via TLS or Datagram TLS (DTLS) protocols and is
presented the X.509 certificate with IdP v3 extensions. Then, he checks the certificate against the TLSA
record with the use of any technology he trusts, for example, a set of existing programs (host, openssl).
For convenience, we have bundled this functionality into a standalone program named IoT verifier.
The verification process goes as follows:

A. Bob enters the address of the device he wants to verify;
B. IP address of the device gets resolved via DNSSec;
C. A connection attempt is made to the device, which results in the device revealing its

X.509v3 certificate;
D. The certificate is checked against the TLSA record, and PKI trust chain for the certificate signature

gets verified;
E. Bob is presented IdP details about the device if verification is successful, or a verification

error message.

The proposed framework does not pose any requirements about the strength of measures
applied by an IdP to ensure identities of its users. Therefore, it can host variety of providers and
technologies, ranging from highly secure, hardware-backed qualified digital signatures, to OpenID
and authentication through social websites. Similarly, there can exist a number of IoT signing entities
of all kinds: subsidiaries of IdPs, aggregators with agreements with many IdPs, subsidiaries of DNS
registrars, and alike. This architecture can eventually host an ecosystem of IdPs and signing entities.

In our demo implementation, the official Polish identity provider service, named Trusted Profile
(abbreviated PZ, for Profil Zaufany), was the IdP of our choice. PZ is the central user authentication
service for the rest of the governmental administration services, enabling official document exchange
with various state authorities by physical users as well as legal bodies. PZ user accounts are created on

Sensors 2018, 18, 2517 6 of 12

users’ requests; the users’ identities get confirmed by their online banking accounts, or by physical
appearance at authorization points, like national post offices or city halls. This cost-free and convenient
service has already won a substantial customer base of nearly 2 million registered users.

Moreover, PZ and the linked state services are able to interact with authorized third-party external
systems. As a result, a number of dedicated services have appeared that accomplish specific processes,
like university admissions. Our demo IoT signing service is one of them: it has been officially
recognized as a trusted external system by the Center for Informatics Technology, the PZ operator, and
has been granted permissions to use PZ as a Single Sign-On (SSO) service, as well as to retrieve basic
user profile information.

Our demo IoT signing service is named eGO-DANE (eGO is the brand name for user identity
provided by PZ). It runs with a public static IP address that is known to PZ service. A user fills simple
HTML forms to interact with both services. On opening the eGO-DANE homepage, user browser
is redirected to PZ login page (Step 1 in Figure 3). The login form is presented in Figure 4a. The
redirection is made with eGO-DANE credentials, and after successful login, eGO-DANE is called back
by PZ, and provided with user SAML assertion. This assertion is used to retrieve user profile data.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 12

operator, and has been granted permissions to use PZ as a Single Sign-On (SSO) service, as well as to
retrieve basic user profile information.

Our demo IoT signing service is named eGO-DANE (eGO is the brand name for user identity
provided by PZ). It runs with a public static IP address that is known to PZ service. A user fills simple
HTML forms to interact with both services. On opening the eGO-DANE homepage, user browser is
redirected to PZ login page (Step 1 in Figure 3). The login form is presented in Figure 4a. The
redirection is made with eGO-DANE credentials, and after successful login, eGO-DANE is called back
by PZ, and provided with user SAML assertion. This assertion is used to retrieve user profile data.

(a) (b)

Figure 4. (a) PZ (Profil Zaufany) login form after redirection; (b) eGO-DANE certificate customization
form.

The user may choose which of his/her IdP data will be stored in the certificate. S/he can also
provide some extra information to be stored, as shown in Figure 4b. Most of all, the requested
domain name must be the one planned to be used to identify the device in the DNS zone maintained
by the user. It will be stored in CN and subject alternative name URI fields, and checked while
verifying the certificate. Other fields are considered auxiliary, for example, the serial number
embedded in the certificate or any other data helping in physical identification of the device. The
object identifier (OID) extension codes for X.509 certificate make it easy to expand the form with
many more structured auxiliary data.

Once the form is complete, the user requests certificate generation, and is provided a certificate
in PEM format, as well as the device private key and prepared TLSA record containing the certificate
fingerprint. Now, the certificate and private key should be installed in the IoT device, and the TLSA
record should be added to the proper DNS zone file.

The signing application has been developed in Java, and deployed to Apache Tomcat container
running on a virtual Linux server (Debian 9, 1 virtual core, 4 GB RAM), provided by OVH SAS,
Roubaix, France. DNS for test domains was also provided by OVH; it supports DNSSec, and zone
management can be done either via web forms or by direct changes to zone file (apparently, it is
impossible to manage DNS entries via some public programming interface). The project sources can
be found in Supplementary Materials.

Developing the identity verification application has not placed such hard technology
constraints, because it did not interact with any proprietary API. The application has been
developed in Python using standard libraries for communication over TLS, DNS resolving, and
certificate manipulation. The project sources can be found in Supplementary Materials.

Raspberry Pi Zero W by Raspberry Foundation, Cambridge, UK has been chosen as the
intelligent device to be signed and checked in our scenario. At startup, it runs a simple Python
HTTPS server—just enough to provide its certificate to any connecting client application. When Bob
runs the identity verification program and enters the address of the Raspberry Pi device, he gets
either a security identification failure message, or selected details of Alice taken from her PZ profile
and stored in X.509 certificate. Eventually, Bob is able not only to verify the identity of Raspberry Pi,
but also the identity of its owner—for example, by calling Alice on the phone number provided in
the certificate.

Figure 4. (a) PZ (Profil Zaufany) login form after redirection; (b) eGO-DANE certificate
customization form.

The user may choose which of his/her IdP data will be stored in the certificate. S/he can also
provide some extra information to be stored, as shown in Figure 4b. Most of all, the requested domain
name must be the one planned to be used to identify the device in the DNS zone maintained by the
user. It will be stored in CN and subject alternative name URI fields, and checked while verifying
the certificate. Other fields are considered auxiliary, for example, the serial number embedded in
the certificate or any other data helping in physical identification of the device. The object identifier
(OID) extension codes for X.509 certificate make it easy to expand the form with many more structured
auxiliary data.

Once the form is complete, the user requests certificate generation, and is provided a certificate in
PEM format, as well as the device private key and prepared TLSA record containing the certificate
fingerprint. Now, the certificate and private key should be installed in the IoT device, and the TLSA
record should be added to the proper DNS zone file.

The signing application has been developed in Java, and deployed to Apache Tomcat container
running on a virtual Linux server (Debian 9, 1 virtual core, 4 GB RAM), provided by OVH SAS,
Roubaix, France. DNS for test domains was also provided by OVH; it supports DNSSec, and zone
management can be done either via web forms or by direct changes to zone file (apparently, it is
impossible to manage DNS entries via some public programming interface). The project sources can
be found in Supplementary Materials.

Developing the identity verification application has not placed such hard technology constraints,
because it did not interact with any proprietary API. The application has been developed in Python

Sensors 2018, 18, 2517 7 of 12

using standard libraries for communication over TLS, DNS resolving, and certificate manipulation.
The project sources can be found in Supplementary Materials.

Raspberry Pi Zero W by Raspberry Foundation, Cambridge, UK has been chosen as the intelligent
device to be signed and checked in our scenario. At startup, it runs a simple Python HTTPS server—just
enough to provide its certificate to any connecting client application. When Bob runs the identity
verification program and enters the address of the Raspberry Pi device, he gets either a security
identification failure message, or selected details of Alice taken from her PZ profile and stored in X.509
certificate. Eventually, Bob is able not only to verify the identity of Raspberry Pi, but also the identity
of its owner—for example, by calling Alice on the phone number provided in the certificate.

Our choice to use Raspberry Pi in testbed was motivated by a rich suite of pre-installed
applications that the device comes with. Script programming languages; decent processing power;
built-in WiFi adapter, which can be set into access point mode—all that reduced risk of getting involved
into hardware problems that could have been encountered in lower-grade appliances. With 512 MB
RAM, Raspberry Pi Zero W definitely qualifies as Class 2, according to Internet Engineering Task
Force (IETF) terminology [12], with native support for TLS and WiFi, which are the only compatibility
criteria in our architecture.

Constrained devices are able to fulfill those compatibility criteria as well. It is reported [13] that
Arduino, widely supported by IoT platforms, easily handles TLS with X.509 certificates. Examples of
other compatible Class 2 devices are those listed by Amazon [14] and running FreeRTOS operating
system, and some appliances running TinyOS on ARM, by Atmel [15]. With regards to Class 1
devices, there is evidence [16] of ARM appliance with 32 kB RAM and Contiki OS with X.509 support
implemented. In the last case, it was found that transmitting a compressed certificate reduced the
overall power consumption, and that the overhead for X.509 support was negligible.

3. Results

Performance evaluation results of the key components are presented in Table 1. In all cases,
execution times for a sequence of calls to selected operations were recorded. The tests were run under
good network conditions (at least 100 Mbps cable connection, or a WiFi connection in proximity of the
device). The client and server machines were not busy with other user tasks.

Table 1. Real execution times for selected operations, measured by the calling code [msec].
IdP—identity provider.

Operation Minimum Maximum Mean Standard
Deviation

No. of
Samples

Get user info from IdP 243 384 258 15 100
Generate X.509 certificate with user data 64 470 127 98 25
Get X.509 certificate from Raspberry Pi 29 586 38 55 100

Query DNS for TLSA record 1 7.7 26 11 3 100
1 Using default DNS resolver in Windows 10 Professional.

Obtained latencies for all test cases are at acceptable levels for man-to-machine interaction. The
total time for IdP query and making of X.509 certificate is well below 1 s. Response times from
Raspberry Pi device vary widely, but still are below 1 s, too. DNS queries are fast and reliable because
of caching. Applicability of the architecture to machine-to-machine scenarios would require more
profound tests done in parallel, and depends heavily on the actual machine-to-machine case.

The architecture presented so far involves multiple entities in provision of a complete chain of
authentication. Initially, Bob relies on DNSSec to be sure he is making a request on an authentic IP
address of Alice’s watch. Security could be breached in this phase in the case where either an attacker
had broken into Alice’s domain management system, or impersonated Alice while registering the
domain. Those problems are commonly known and the proposed architecture is neutral to them.

Sensors 2018, 18, 2517 8 of 12

Next, the device presents its X.509v3 certificate to Bob. Mechanisms of TLS and DNSSec + DANE
make it virtually impossible for an attacker to forge the certificate, even if he had broken into Alice’s
device. Finally, X.509v3 fields serve Bob for identification of the device owner. Data in those fields
come from the publicly recognized identity provider, from the profile of the person that requested
the certificate to be issued. Consequently, they correctly identify a person and, when joined by IoT
signing service and DNS with IoT device data (domain name, key pair), they get stored inseparably in
a certificate. As the IoT service is authenticated by PKI, there is no place where a security breach may
occur, except from the hacking of either the IdP or the signing service.

We assume that in the above scenario, all parties are online, and the device has a public static IP
address assigned. Such an assumption is unrealistic for simpler devices, like sensors or automation
appliances. Even if they support IP communications, their addresses are local or dynamically
assigned, or both. Our architecture can well support the case when the IoT device is offline, until it
is capable of providing TLS or DTLS-based service, accessible locally. In such a situation, the client
interested in identity verification cannot rely on DNS mapping between device domain name and IP
address, because it is nonexistent. Yet, it can still use the rest of our architecture, provided s/he can
assure identity of the device in some other safe way. We provide an option to store an extra serial
number extension in the certificate. Its use depends on any naming agreement, for example, Vehicle
Identification Number (VIN) number may be used to identify cars, as it can be found etched in spot
places, and it is costly and risky to forge it well. For other devices, it can be engraved in similar way
or, if possible, displayed on a device screen on user request. Note that such a visual identification
procedure typically precludes fully automated IoT interaction, unless the device and client establish
wired or any other assured channel for data exchange.

If the device is offline and the user can connect only by wireless communication, which happens
in most cases, we must provide another way to ensure he is interacting with the proper device, and not
with its copycat containing a stolen key pair and certificate. We propose to enable the verifier program
with an option to send a nonce (a number known only to the client) to the connected device, as shown
in Figure 5. The device reports this number for example, by LED blinking the correct number of times.
Such a method was implemented in our demonstration software; in the case of Raspberry Pi Zero,
power diode was used (the only factory-built one in this model). Other devices may use other nonce
display methods; consider Alice’s watch wagging its second hand the appropriate number of times,
for example. If the user gets connected to the malicious device, the original one does not react to the
nonce being sent. On the opposite hand, if the malicious device wants to simulate the original one, the
chances of guessing the nonce and displaying it in proper timing are low and can be reduced further
by replaying this scenario.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 12

assigned, or both. Our architecture can well support the case when the IoT device is offline, until it is
capable of providing TLS or DTLS-based service, accessible locally. In such a situation, the client
interested in identity verification cannot rely on DNS mapping between device domain name and IP
address, because it is nonexistent. Yet, it can still use the rest of our architecture, provided s/he can
assure identity of the device in some other safe way. We provide an option to store an extra serial
number extension in the certificate. Its use depends on any naming agreement, for example, Vehicle
Identification Number (VIN) number may be used to identify cars, as it can be found etched in spot
places, and it is costly and risky to forge it well. For other devices, it can be engraved in similar way
or, if possible, displayed on a device screen on user request. Note that such a visual identification
procedure typically precludes fully automated IoT interaction, unless the device and client establish
wired or any other assured channel for data exchange.

If the device is offline and the user can connect only by wireless communication, which
happens in most cases, we must provide another way to ensure he is interacting with the proper
device, and not with its copycat containing a stolen key pair and certificate. We propose to enable
the verifier program with an option to send a nonce (a number known only to the client) to the
connected device, as shown in Figure 5. The device reports this number for example, by LED
blinking the correct number of times. Such a method was implemented in our demonstration
software; in the case of Raspberry Pi Zero, power diode was used (the only factory-built one in this
model). Other devices may use other nonce display methods; consider Alice’s watch wagging its
second hand the appropriate number of times, for example. If the user gets connected to the
malicious device, the original one does not react to the nonce being sent. On the opposite hand, if the
malicious device wants to simulate the original one, the chances of guessing the nonce and
displaying it in proper timing are low and can be reduced further by replaying this scenario.

Figure 5. Physical identity verification for offline devices by user sending a nonce (shown as
envelope). A malicious device (red) with stolen identity cannot know the number being sent.

The scenario described until now in this chapter is a base one, covering both device and device
owner identity authentication. Its variation for offline devices has also been considered. The
proposed architecture relies as much as possible on existing technologies (DNSSec, PKI, TLS, phone
calls, text messages, and visual identification), which makes it capable to be applied in various
scenarios. Below, we provide a few of them.

3.1. Change of Ownership

This is the base scenario continued: once Bob has made sure of the identities of watch and of
Alice, and that Alice is the watch owner, he may want to buy that smart device. In order to comply
with our architecture, he must have an account with any of IdPs supported by any IoT signer service
(we assume that many entities of both kinds operate on the market). He also needs to administer any
domain with DNSSec enabled, in order to create resource records for the device being bought. He is
able, as any other person, to use the IoT signer to obtain a certificate with his credentials, and to
prepare DNS TLSA and A records. All those preparations are, however, void until Alice hands over
administrative privileges for the watch to Bob, allowing for final transfer of his certificate into the
device.

The procedure of watch trade has been completed but due to DNS caching, it may take some
time before Bob appears to everyone as the new owner. This lag can be shortened by reduction of

Figure 5. Physical identity verification for offline devices by user sending a nonce (shown as envelope).
A malicious device (red) with stolen identity cannot know the number being sent.

The scenario described until now in this chapter is a base one, covering both device and device
owner identity authentication. Its variation for offline devices has also been considered. The proposed
architecture relies as much as possible on existing technologies (DNSSec, PKI, TLS, phone calls, text
messages, and visual identification), which makes it capable to be applied in various scenarios. Below,
we provide a few of them.

Sensors 2018, 18, 2517 9 of 12

3.1. Change of Ownership

This is the base scenario continued: once Bob has made sure of the identities of watch and of
Alice, and that Alice is the watch owner, he may want to buy that smart device. In order to comply
with our architecture, he must have an account with any of IdPs supported by any IoT signer service
(we assume that many entities of both kinds operate on the market). He also needs to administer
any domain with DNSSec enabled, in order to create resource records for the device being bought.
He is able, as any other person, to use the IoT signer to obtain a certificate with his credentials, and
to prepare DNS TLSA and A records. All those preparations are, however, void until Alice hands
over administrative privileges for the watch to Bob, allowing for final transfer of his certificate into
the device.

The procedure of watch trade has been completed but due to DNS caching, it may take some
time before Bob appears to everyone as the new owner. This lag can be shortened by reduction of TTL
(time-to-live) parameters for the DNS records or, and probably better, by Bob following certification
procedure some time in advance, if possible.

3.2. Lease

This case covers many scenarios where the device is handed away temporarily, for example, in car
rental, home appliances repair, sports equipment rental and service, circulation of containers in supply
chain, pet medical treatment, and the like. Here, the device owner authorizes a tenant to execute
partial control of various scope, however, the device certificate does not change. It is DNS that is used
as the only storage of the lease contract details. Such an approach was successfully applied by other
architectures: sender policy framework, DNS-service discovery, some email antivirus scanners, and
so on. They mostly used TXT resource record; similarly, we propose that Canonical Name (CNAME)
record will be used by the borrower and TXT record will be used by the lender.

We postulate that the borrower creates a DNS name for the device being taken under his/her
care. The borrower creates a CNAME record for that name, which redirects requests to the real owner
DNS records. This is understood as a unilateral declaration “I tend the device CNAME record points
to”. Reciprocal confirmation of such a statement must be expressed by the lender in his/her TXT
record. TXT record type specification was created to store any extra domain related information in
human readable form and, although the key = value description convention is a de facto standard,
there is no officially recognized key dictionary that would suit the lender to describe the contract
details. Consequently, in our architecture, Alice, who now lends her watch to Bob, would prepare a
TXT record as follows: 443._tcp.watch IN TLSA TXT “leased-under-name = watch.bob.priv” or more
TXT records with contract details, like territorial or subleasing constraints, according to some agreed
metadata scheme.

Note that because of DNS limitations for CNAME usage, only the device owner is eligible to
provide TXT record with contract details.

3.3. Related IoT Devices

DNS records may serve as well to define relationships between different IoT devices that have
representation in their domain names. Hierarchical relationships within a single domain are interpreted
naturally using DNS naming hierarchy itself. Alice may establish a naming scheme for her stuff, for
example, by its location as shown in Figure 6a, where devices are given names within domains on
the same line. Such implementation may raise doubts about Alice’s privacy; although DNS does not
reveal domain names structure, replacing self-explanatory names with random ones (e.g., Universally
Unique Identifiers, UUIDs) could be a good precaution.

Sensors 2018, 18, 2517 10 of 12

Sensors 2018, 18, x FOR PEER REVIEW 9 of 12

TTL (time-to-live) parameters for the DNS records or, and probably better, by Bob following
certification procedure some time in advance, if possible.

3.2. Lease

This case covers many scenarios where the device is handed away temporarily, for example, in
car rental, home appliances repair, sports equipment rental and service, circulation of containers in
supply chain, pet medical treatment, and the like. Here, the device owner authorizes a tenant to
execute partial control of various scope, however, the device certificate does not change. It is DNS
that is used as the only storage of the lease contract details. Such an approach was successfully
applied by other architectures: sender policy framework, DNS-service discovery, some email
antivirus scanners, and so on. They mostly used TXT resource record; similarly, we propose that
Canonical Name (CNAME) record will be used by the borrower and TXT record will be used by the
lender.

We postulate that the borrower creates a DNS name for the device being taken under his/her
care. The borrower creates a CNAME record for that name, which redirects requests to the real
owner DNS records. This is understood as a unilateral declaration “I tend the device CNAME record
points to”. Reciprocal confirmation of such a statement must be expressed by the lender in his/her
TXT record. TXT record type specification was created to store any extra domain related information
in human readable form and, although the key = value description convention is a de facto standard,
there is no officially recognized key dictionary that would suit the lender to describe the contract
details. Consequently, in our architecture, Alice, who now lends her watch to Bob, would prepare a
TXT record as follows: 443._tcp.watch IN TLSA TXT “leased-under-name = watch.bob.priv” or more
TXT records with contract details, like territorial or subleasing constraints, according to some agreed
metadata scheme.

Note that because of DNS limitations for CNAME usage, only the device owner is eligible to
provide TXT record with contract details.

3.3. Related IoT Devices

DNS records may serve as well to define relationships between different IoT devices that have
representation in their domain names. Hierarchical relationships within a single domain are
interpreted naturally using DNS naming hierarchy itself. Alice may establish a naming scheme for
her stuff, for example, by its location as shown in Figure 6a, where devices are given names within
domains on the same line. Such implementation may raise doubts about Alice’s privacy; although
DNS does not reveal domain names structure, replacing self-explanatory names with random ones
(e.g., Universally Unique Identifiers, UUIDs) could be a good precaution.

(a) (b)

Figure 6. (a) Hierarchical device organization by DNS naming; (b) Introducing custom relationships
by annotations in DNS TXT resource records.

Independent of those natural hierarchical naming capabilities, DNS TXT resource records can
serve for defining any other custom relationships between devices, as shown in Figure 6b. In our
example, they take the form of asymmetric rules for device activities. Alice may introduce them for

Figure 6. (a) Hierarchical device organization by DNS naming; (b) Introducing custom relationships
by annotations in DNS TXT resource records.

Independent of those natural hierarchical naming capabilities, DNS TXT resource records can
serve for defining any other custom relationships between devices, as shown in Figure 6b. In our
example, they take the form of asymmetric rules for device activities. Alice may introduce them for
the sake of environment care (car vs. HVAC operation), her health (gaming/lighting), her comfort (car
location/food heating), and many others. Once the rules are stored in machine readable format, they
can influence Alice’s lifestyle and determine household operations. The same approach can be applied
in industry, and thanks to DNS distributed architecture, it would not adversely affect its efficiency
and reliability.

4. Discussion

The given proposition of architecture tries to make the best use of the existing DNS system
as a repository of smart device identities and relationships, by introduction of as few additional
new technologies as possible. In this regard, it is similar to ideas already described [3–5,7–11]. Our
contribution is to involve the existing range of identity providers in the process of X.509 certification.
Eventually, it will lead to an ecosystem of IdP proxies providing domain owners a convenient way
to generate and store TLSA records. Such functionality can be also provided directly by IdPs or
by domain registrars, as an additional service. The main goal is to deliver an attractive and open
alternative for today’s proprietary IoT management platforms. The architecture imposes modest
technical requirements on the devices, which basically amount to the support of TLS with X.509
certificate. This is much in line with what current IoT management platforms want [13]. For example,
the Azure IoT platform maintains a list of over 1000 certified compatible devices—all of them are Class
2, cf. for example, [17]. However, it has been proved [16] that Class 1 constrained devices, present in
Wireless Sensor Networks (WSN), can also support X.509 certificates.

There is no reason to expect scalability of such a system to be inferior to scalability of the DNS
system on which it is based—and the latter one is known to operate very efficiently. The delay of DNS
record updates visibility can in turn be controlled to some extent by TTL and caching policies adjusting.

The ultimate concern that can arise about this technology is privacy. Like for WHOIS data,
exposing extra information publicly is generally not an issue for institutional device owners, but it
effectively scares away individuals. Device owners must be provided means to reveal their sensitive
data only to selected parties. We consider giving devices names that are hard to guess not an option if
the owner really cares for its privacy. Instead, we propose to implement an additional service, here
named WhoX, which runs much the same way as the IoT signer, see Figure 7 and compare with
Figure 3. Alice authenticates herself with the IdP, and provides the email address of Bob, to whom she
wants her email and phone number to be sent. WhoX composes a signed message to Bob, carrying
Alice’s data retrieved from IdP. Bob is provided with Alice’s extra contact data. Note that in this case,
Alice’s watch X.509v3 certificate does not have to contain her contact data directly.

Sensors 2018, 18, 2517 11 of 12

Sensors 2018, 18, x FOR PEER REVIEW 10 of 12

the sake of environment care (car vs. HVAC operation), her health (gaming/lighting), her comfort
(car location/food heating), and many others. Once the rules are stored in machine readable format,
they can influence Alice’s lifestyle and determine household operations. The same approach can be
applied in industry, and thanks to DNS distributed architecture, it would not adversely affect its
efficiency and reliability.

4. Discussion

The given proposition of architecture tries to make the best use of the existing DNS system as a
repository of smart device identities and relationships, by introduction of as few additional new
technologies as possible. In this regard, it is similar to ideas already described [3–5,7–11]. Our
contribution is to involve the existing range of identity providers in the process of X.509 certification.
Eventually, it will lead to an ecosystem of IdP proxies providing domain owners a convenient way
to generate and store TLSA records. Such functionality can be also provided directly by IdPs or by
domain registrars, as an additional service. The main goal is to deliver an attractive and open
alternative for today’s proprietary IoT management platforms. The architecture imposes modest
technical requirements on the devices, which basically amount to the support of TLS with X.509
certificate. This is much in line with what current IoT management platforms want [13]. For
example, the Azure IoT platform maintains a list of over 1000 certified compatible devices—all of
them are Class 2, cf. for example, [17]. However, it has been proved [16] that Class 1 constrained
devices, present in Wireless Sensor Networks (WSN), can also support X.509 certificates.

There is no reason to expect scalability of such a system to be inferior to scalability of the DNS
system on which it is based—and the latter one is known to operate very efficiently. The delay of DNS
record updates visibility can in turn be controlled to some extent by TTL and caching policies
adjusting.

The ultimate concern that can arise about this technology is privacy. Like for WHOIS data,
exposing extra information publicly is generally not an issue for institutional device owners, but it
effectively scares away individuals. Device owners must be provided means to reveal their sensitive
data only to selected parties. We consider giving devices names that are hard to guess not an option
if the owner really cares for its privacy. Instead, we propose to implement an additional service, here
named WhoX, which runs much the same way as the IoT signer, see Figure 7 and compare with
Figure 3. Alice authenticates herself with the IdP, and provides the email address of Bob, to whom
she wants her email and phone number to be sent. WhoX composes a signed message to Bob,
carrying Alice’s data retrieved from IdP. Bob is provided with Alice’s extra contact data. Note that in
this case, Alice’s watch X.509v3 certificate does not have to contain her contact data directly.

Figure 7. Selective communication of personal information.

The last issue to address is how to accomplish storage of ownership information for things
incapable of emitting X.509v3 certificate, but already given their unique and persistent IDs in some
other way. Beacons, computer hardware components, Class 0 sensors, or any non-electronic devices
with their serial numbers securely attached are examples of such appliances. Their association with

Figure 7. Selective communication of personal information.

The last issue to address is how to accomplish storage of ownership information for things
incapable of emitting X.509v3 certificate, but already given their unique and persistent IDs in some
other way. Beacons, computer hardware components, Class 0 sensors, or any non-electronic devices
with their serial numbers securely attached are examples of such appliances. Their association with
owners can also be accomplished in DNS records. Unlike previously, all devices with the same ID type
must be given names equal to their ID values, and placed in the same globally known domain. Thus,
all IBAN (international bank account number) identifiers whose owners want to advertise via DNS
could be either in domain iban.org, or in national domains like iban.org.de, iban.org.pl, and so on.
To prevent identity theft, those domains would have to be managed by appropriate authorities, and
coupled with branch-related registers. Owner authentication procedure would, in general, follow that
in Figure 3, but with many branch IdPs involved.

In summary, we have shown that the idea of using DNS to store smart device owners’ identities is
desirable and technically viable. Increasing trust between smart devices and human users by providing
device owner identity will stimulate creation of new interaction scenarios, for example:

• a buyer or leaser can check authenticity or ownership of an item;
• some device may provide its services only to clients whose identities are confirmed by IdP;
• devices may team up and exchange sensitive data only when their owners’ identities

are confirmed.

Operation of such architecture in a testbed using real DNS and IdP systems has been proven.
Furthermore, if DNS TXT records get employed to store relationships, additional scenarios are

possible:

• when a device is temporary leased or serviced, parties can declare this fact mutually;
• multiple complex rules of interaction between devices can be written to a number of TXT records.

Possibilities of machine interpretation of TXT records data depend only on existence of some
common taxonomy of terms used. Although the specification recommends the key = value format, any
other one can be used, e.g., Resource Description Framework (RDF), like proposed in the literature [18].

Supplementary Materials: The source code for IoT signer and verifier programs is available online at http:
//www.mdpi.com/1424-8220/18/8/2517/s1.

Funding: This research was funded by NASK PIB grant number 11/2017. The APC was funded by NASK PIB.

Conflicts of Interest: The author declares no conflict of interest.

http://www.mdpi.com/1424-8220/18/8/2517/s1
http://www.mdpi.com/1424-8220/18/8/2517/s1

Sensors 2018, 18, 2517 12 of 12

References

1. Garcia Lopez, P.; Montresor, A.; Epema, D.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E.
Edge-centric computing: Vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 37–42.
[CrossRef]

2. Cooper, D.; Santesson, S.; Farrell, S.; Boeyen, S.; Housley, R.; Polk, W. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 5280 2008. [CrossRef]

3. Balakrichenan, S.; Bortzmeyer, S.; Souissi, M. A Step-by-Step Guide for Implementing DANE with a Proof of
Concept. 2013. Available online: https://www.ietf.org/mail-archive/web/dane/current/pdfk2DbQF0Oxs.
pdf (accessed on 9 July 2018).

4. Barnes, R. Adding acronyms to simplify conversations about DNS-based authentication of named entities
(DANE). RFC 6394 2011. [CrossRef]

5. Gudmundsson, O. Use Cases and Requirements for DNS-Based Authentication of Named Entities (DANE).
RFC 7218 2014. [CrossRef]

6. Lamb, R. IoT BS: Where do “we” fit in? In Proceedings of the 12th RIPE NCC Regional Meeting, Yerevan,
Armenia, 3–4 October 2016; Available online: https://www.enog.org/wp-content/uploads/presentations/
enog-12/40-ricklightning.pdf (accessed on 25 July 2018).

7. James, S.D.; Schonfeld, D.; Fregly, A.; Osterweil, E. Registering, Managing, and Communicating with IOT
Devices Using Domain Name System Processes. U.S. Patent 9,762,556, 12 September 2017.

8. Yacoub, S.B.; James, S.D. Systems and Methods for Establishing Ownership and Delegation Ownership of
IOT Devices Using Domain Name System Services. U.S. Patent 9,935,950, 3 April 2018.

9. Yacoub, S.B.; Piccand, R.; Schonfeld, D.; James, S.D.; Fregly, A. Systems and Methods for Providing IOT
Services. U.S. Patent 2016/0205106A1, 14 July 2016.

10. Piccand, R.; Mikkelsen, A.; Fregly, A.; Akhtar, A. Systems and Methods for Ontological Searching in an IOT
Environment. U.S. Patent 2016/0203234A1, 14 July 2016.

11. Kamilaris, A.; Papakonstantinou, K.; Pitsillides, A. Exploring the Use of DNS as a Search Engine for the
Web of Things. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea,
6–8 March 2014.

12. Borsmann, C.; Ersue, M.; Keranen, A. Terminology for Constrained-Node Networks. RFC 7228 2014.
[CrossRef]

13. Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A survey on the security of IoT frameworks. J. Inf.
Secur. Appl. 2018, 38, 8–27. [CrossRef]

14. Getting Started with Amazon FreeRTOS. Available online: https://aws.amazon.com/freertos/getting-
started/ (accessed on 25 July 2018).

15. Kothmayr, T.; Schmitt, C.; Hu, W.; Brünig, M.; Carle, G. A DTLS based end-to-end security architecture for
the Internet of Things with two-way authentication. In Proceedings of the IEEE 37th Conference on Local
Computer Networks Workshops (LCN Workshops), Clearwater, FL, USA, 22–25 October 2012.

16. Forsby, F. Digital Certificates for the Internet of Things; Degree Project in Computer Science and Engineering;
KTH University: Stockholm, Sweden, 2017.

17. Iomote Sensor Box. Available online: https://www.catalog.azureiotsolutions.com/details?title=Iomote-
Sensor-Box (accessed on 25 July 2018).

18. Cudre-Mauroux, P.; Demartini, G.; Difallah, D.E.; Mostafa, A.E.; Russo, V.; Thomas, M. A Demonstration of
DNS3: A Semantic-Aware DNS Service. In Proceedings of the International Semantic Web Conference, Bonn,
Germany, 23–27 October 2011.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2831347.2831354
http://dx.doi.org/10.17487/RFC5280
https://www.ietf.org/mail-archive/web/dane/current/pdfk2DbQF0Oxs.pdf
https://www.ietf.org/mail-archive/web/dane/current/pdfk2DbQF0Oxs.pdf
http://dx.doi.org/10.17487/RFC6394
http://dx.doi.org/10.17487/RFC7218
https://www.enog.org/wp-content/uploads/presentations/enog-12/40-ricklightning.pdf
https://www.enog.org/wp-content/uploads/presentations/enog-12/40-ricklightning.pdf
http://dx.doi.org/10.17487/RFC7228
http://dx.doi.org/10.1016/j.jisa.2017.11.002
https://aws.amazon.com/freertos/getting-started/
https://aws.amazon.com/freertos/getting-started/
https://www.catalog.azureiotsolutions.com/details?title=Iomote-Sensor-Box
https://www.catalog.azureiotsolutions.com/details?title=Iomote-Sensor-Box
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Change of Ownership
	Lease
	Related IoT Devices

	Discussion
	References

