
sensors

Article

RPC-Based Orthorectification for Satellite Images
Using FPGA

Rongting Zhang 1,2,3, Guoqing Zhou 1,2,3,4,*, Guangyun Zhang 3, Xiang Zhou 2,3,4

and Jingjin Huang 1,2,3

1 School of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China;
zrt65@tju.edu.cn (R.Z.); jingjin_huang@tju.edu.cn (J.H.)

2 Guangxi Key Laboratory for Spatial Information and Geomatics, Guilin University of Technology,
Guilin 541004, China; zqx0711@tju.edu.cn

3 The Center for Remote Sensing, Tianjin University, Tianjin 300072, China; guangyunzhang1@gmail.com
4 School of Microelectronics, Tianjin University, Tianjin 300072, China
* Correspondence: gzhou@glut.edu.cn; Tel.: +86-773-589-6073

Received: 25 May 2018; Accepted: 28 July 2018; Published: 1 August 2018
����������
�������

Abstract: Conventional rational polynomial coefficients (RPC)-based orthorectification methods are
unable to satisfy the demands of timely responses to terrorist attacks and disaster rescue. To accelerate
the orthorectification processing speed, we propose an on-board orthorectification method, i.e.,
a field-programmable gate array (FPGA)-based fixed-point (FP)-RPC orthorectification method.
The proposed RPC algorithm is first modified using fixed-point arithmetic. Then, the FP-RPC
algorithm is implemented using an FPGA chip. The proposed method is divided into three
main modules: a reading parameters module, a coordinate transformation module, and an
interpolation module. Two datasets are applied to validate the processing speed and accuracy that
are achievable. Compared to the RPC method implemented using Matlab on a personal computer,
the throughputs from the proposed method and the Matlab-based RPC method are 675.67 Mpixels/s
and 61,070.24 pixels/s, respectively. This means that the proposed method is approximately
11,000 times faster than the Matlab-based RPC method to process the same satellite images. Moreover,
the root-mean-square errors (RMSEs) of the row coordinate (∆I), column coordinate (∆J), and the
distance ∆S are 0.35 pixels, 0.30 pixels, and 0.46 pixels, respectively, for the first study area; and,
for the second study area, they are 0.27 pixels, 0.36 pixels, and 0.44 pixels, respectively, which satisfies
the correction accuracy requirements in practice.

Keywords: orthorectification; field-programmable gate array (FPGA); rational polynomial coefficient
(RPC)

1. Introduction

Orthorectification is a process that orthorectifies an image onto its upright planimetry map
and removes the perspective angle [1–3]. Orthorectification is a prerequisite for remotely sensed
(RS) image applications in areas such as land resource investigation, disaster monitoring, forestry
inventory, and environmental changes analysis. The RS image that is orthorectified not only contains
the geometric accuracy of the map but also has the features of the remote sensing image. In the past
20 years, many orthorectification methods were proposed. For example, Zhou et al. [2] presented
a comprehensive study on theories, algorithms, and methods of large-scale urban orthoimage
generation. Zhou [3] proposed a near real-time orthorectification method for mosaic of video
flow acquired by an unmanned aerial vehicle (UAV). Aguilar et al. [4] used rigorous model
and rational function model to orthorectify GeoEye-1 and WorldView-2 images and assessed the

Sensors 2018, 18, 2511; doi:10.3390/s18082511 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18082511
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/8/2511?type=check_update&version=1

Sensors 2018, 18, 2511 2 of 24

geometric accuracy of the orthophoto. The results showed that the best horizontal geo-positioning
accuracies were acquired by using third order rational functions with vendor’s RPC coefficients
data. Marsetič et al. [5] presented an automatic processing chain for orthorectification of optical
pushbroom sensors. Habib et al. [6] proposed an approach using generated orthophotos from frame
camera to improve the orthorectification of hyperspectral pushbroom scanner imagery. However,
these studies on orthorectification were based almost entirely on ground-image processing systems,
which is unable to meet the demand with respect to time-critical disasters. Thus, it is important to
determine how to improve the speed of the orthorectification process when used in the on-board
processing of a spacecraft.

With the increasing demands in (near) real-time RS imagery applications for applications such
as military deployments, quick response to terrorist attacks, and disaster rescue (e.g., flooding
monitoring), the on-board implementation of orthorectification has attracted much research
worldwide in recent years. To increase the speed of image processing, researchers have proposed
multiple parallel-processing methods and employed hardware acceleration such as the approach
by Warpenburg and Siegel [7], who performed resampling in a single instruction stream-multiple
data stream environment. Wittenbrink et al. [8] presented optimal concurrent-read-exclusive-write
and exclusive-read-exclusive-write parallel-random-access-machine algorithms for spatial image
warping. Liu et al. [9] proposed a parallel algorithm that is focused on massive remotely sensed
orthorectification. Dai and Yang [10] proposed a fast graphic processing unit (GPU)–central
processing unit (CPU) cooperative processing algorithm that is based on computing unified
device architecture for the orthorectification of RS images. Reguera-Salgado et al. [11] proposed
a method for the real-time geocorrection of images from airborne pushbroom sensors using the
hardware acceleration and parallel-computing characteristics of modern GPUs. Quan et al. [12]
presented an optical aerial image orthorectification parallel algorithm that employs GPU acceleration.
These ground-based parallel-processing systems have increased to an extent the processing speed for
RS image orthorectification. However, the RS images still need to be sent back to the ground-based
processing centers. However, this process is time consuming. In addition, most parallel-processing
methods are based on the multiple task operating system of the GPU, which cannot essentially solve
the problem of a serial instruction method.

To realize on-board orthorectification in (near) real-time, an efficient approach is to apply
field-programmable gate array (FPGA) hardware architecture because FPGA chips offer a highly
flexible design, scalable circuits, and a high efficiency in data processing for its pipeline structure
and fine-grained parallelism. In recent decades, researchers have widely used FPGA for image
processing applications. Examples are Halle can coworkers’ [13] proposed on-board image
data processing system based on the neural network processor NI100, digital signal processors,
and FPGA. Eadie et al. [14] investigated the use of FPGA for the correction of geometric image
distortion. Kumar et al. [15] realized the real-time correction of images using an FPGA under
a dynamic environment. Escamilla-Hernández et al. [16] and Kate [17] used an FPGA to implement
data compression. Tomasi et al. [18] proposed a stereo vision algorithm using an FPGA to
perform the correction of video graphics array images (57 fps). Pal et al. [19], Wang et al. [20],
and Zhang et al. [21] applied FPGAs to accelerate the image data and signal filtering processes.
Ontiveros-Robles et al. [22,23] proposed FPGA-based hardware architectures for real-time edge
detection using fuzzy logic algorithm. Li et al. [24,25] utilized FPGAs to realize the real-time processing
of video images to remove snow and fog. Huang et al. [26] proposed an FPGA-based method for
the on-board detection and matching of the feature points. Huang et al. [27] presented a new FPGA
architecture of a fast and brief algorithm for on-board corner detection and matching.

To the best of our understanding, research into FPGA hardware systems has focused mainly
on the real-time correction of video images, noise removal, edge detection, etc., and there are few
studies related to on-board orthorectification. Zhou et al. [28] first presented the concept of “on-board
geometric correction”, but details pertaining to its on-board implementation were not given. Zhou [3]

Sensors 2018, 18, 2511 3 of 24

proposed a method for a real-time mosaic of video flow acquired by a small low-cost unmanned
aerial vehicle. However, the method was implemented based on software, a serial instruction system,
which would affect the real-time processing efficiency. Thus, this paper proposes a FPGA-based method
for the on-board implementation of orthorectification. The proposed method can be divided into three
modules: reading parameters module, coordinates transformation module, and interpolation module.

The major contribution of this study is a FPGA-based method, in which a traditional
orthorectification algorithm is modified for on-board image (near) real-time orthorectification.

The paper is organized as follows. Section 2 describes the proposed RPC algorithm, i.e.,
fixed-point-based RPC (FP-RPC) algorithm, and gives the FPGA implementation process of the
FP-RPC algorithm. Section 3 provides an experimental comparison of the proposed method using
IKONOS-2 data and SPOT-6 data. Section 4 discusses the rectification accuracy by FPGA and PC
platforms, and processing speed and resource consumption of these two platforms. Finally, Section 5
gives some conclusions.

2. RPC-Based Orthorectification Using an FPGA Chip

High-resolution satellite sensors are different from conventional aerial frame perspective imaging,
and generally apply linear-array CCD pushbroom imaging technology. To deal with various types of
images, many geometric processing models and algorithms are presented. One of the most widely
used models is the rational polynomial coefficient (RPC) model, which is a general imaging model
that is independent of the satellite sensor and platform. Many modern satellite images are equipped
with rational polynomial coefficients (RPCs). Unlike rigorous physical models that are based on the
collinear equation, which uses the ephemeris, attitude information, etc., to establish the acquisition
geometry of the sensors, the RPC model does not require knowledge of the interior orientation elements
and exterior orientation elements, which are sometimes not provided by vendors. The RPC model
can produce uniform accuracy with a rigorous physical model, and is a simple generalized model.
The RPC model has been widely applied to orthorectify satellite images with the increasing utilization
of high-resolution images, as in [29–35]. The details of RPC orthorectification are given in [29,30].

In this study, the RPC algorithm is implemented using FPGA. Usually, an FPGA chip can offer
a highly flexible design, scalable circuits, and a high efficiency in data processing for its pipeline
structure and fine-grained parallelism. Moreover, an FPGA chip has advantages in size, weight,
and power (SWaP) compared to GPU and CPU, which is helpful to integrate the FPGA into the
on-board system.

However, the traditional RPC algorithm for orthorectification is computationally costly because
of floating-point operations in the RPC algorithm. To implement on-board orthorectification using
an FPGA chip in (near) real-time, a fixed-point-based RPC (FP-RPC) algorithm is proposed that can
reduce the computation cost significantly. The details of the proposed method are given below.

2.1. Proposed RPC Algorithm

FP processing is a method that accelerates the calculation [36,37]. To make the transformation
between a fixed-point variable and a floating-point variable, multiplication by a constant is necessary
to maintain the precision. When the constant is set to a power of 2, the multiplication can be seen as
a single bit shift, i.e.,

F =
⌊
2τ F′

⌋
(1)

where F′ is a floating-point variable, F is a fixed-point variable, and τ is a scale factor, which affects
the binary accuracy of the resulting integer representation. A larger scale factor will produce a higher
degree of the binary accuracy.

In the proposed FP-RPC algorithm, all of the variables and constants are transformed to integers
using Equation (1). Table 1 gives the integer variables and their scale factors. In Table 1, a′i, b′i, c′i,
and d′i (i = 1 to 20) are multinomial coefficients. Generally, the values of b′1 and d′1 are 1. Lon′, Lat′,

Sensors 2018, 18, 2511 4 of 24

and Hei′ are geodetic coordinates, which represent the longitude, latitude, and height, respectively.
Lat′off, Lat′scale, Lon′off, Lon′scale, H′off, H′scale, Line′off, Line′scale, Samp′off, and Samp′scale are the parameters
for normalization. Samp′ and Line′ represent the image coordinates, sample and line.

Table 1. Scale factors and integer variables.

Variable Name Scale Factor Integer Variable Name

a′ i, b′ i, c′ i, and d′ i (i = 1 to 20) τ1 ai, bi, ci, and di (i = 1 to 20)
Lon′, Lat′, Hei′ τ2 Lon, Lat, Hei
Lat′off, Lat′scale, Lon′off, Lon′scale, H′off, H′scale τ3 Latoff, Latscale, Lonoff, Lonscale, Hoff, Hscale
Line′off, Line′scale, Samp′off, Samp′scale τ3 Lineoff, Linescale, Sampoff, Sampscale

According to Fraser et al. [29] and Grodecki et al. [30] and Equation (1), the normalized coordinates
are converted into integers by

L = 2τ2
2−τ2 Lon−2−τ3 Lono f f

2−τ3 Lonscale

P = 2τ2
2−τ2 Lat−2−τ3 Lato f f

2−τ3 Latscale

H = 2τ2
2−τ2 Hei−2−τ3 Ho f f

2−τ3 Hscale

(2)

X = 2τ2
2−τ2 Samp−2−τ3 Sampo f f

2−τ3 Sampscale

Y = 2τ2
2−τ2 Line−2−τ3 Lineo f f

2−τ3 Linescale

(3)

Moreover, the polynomials are converted into integers by

2−τ2NDLS = (2−τ1C)(2−τ2NT) (4)

NDLS = 2−τ1CNT (5)

where
NDLS =

[
NumL DenL NumS DenS

]T
,

C =

a1 a2 . . . a19 a20

b1 b2 . . . b19 b20

c1 c2 . . . c19 c20

d1 d2 . . . d19 d20

,

N =
[

1 L P H LP LH PH LL PP HH PLH LLL LPP LHH LLP PPP PHH LLH PPH HHH
]
.

In addition, the normalized image coordinates (X′, Y′) are converted into integers by

2−τ2Y =
2−τ2 NumL
2−τ2 DenL

, 2−τ2 X =
2−τ2 NumS
2−τ2 Den′S

(6)

Y = 2τ2
NumL
DenL

, X = 2τ2
NumS
DenS

(7)

Finally, the image coordinates (Samp′, Line′) are converted into integers by{
2−τ3 Samp = (2−τ2 X)(2−τ3 Sampscale) + 2−τ3 Sampo f f
2−τ3 Line = (2−τ2Y)(2−τ3 Linescale) + 2−τ3 Lineo f f

(8)

{
Samp = (2−τ2 X)Sampscale + Sampo f f
Line = (2−τ2Y)Linescale + Lineo f f

(9)

Sensors 2018, 18, 2511 5 of 24

2.2. Parallel Computation of Orthorectification Using an FPGA

Many factors affect the computation speed when an FPGA is adopted, such as the optimal design
of algorithms and the logical resource of the utilized FPGA. By analyzing the structure of the FP-RPC
algorithm and optimizing it, an FPGA-based hardware architecture for FP-RPC-based orthorectification
is designed, as shown in Figure 1. As described in Equations (2)–(9), their structures are similar. It is
convenient for FPGAs to be implemented in parallel. As shown in Figure 1, the FPGA-based FP-RPC
module can be divided into three submodules, that is, Read_parameter_mod (RPM), which is used to
send parameters to other modules; Coordinate_Transform_mod (CTM), which is applied to transform
geodetic coordinates to image coordinates; and Interpolation_mod (IM), which is utilized to perform
bilinear interpolation. The details of these modules are given as follows.

1. For RPM, the coefficients of RPC can be calculated by least-squares adjustment [38]. According to
Tao et al. [38], the computing processes of the RPC coefficients are as follows. Equation (7) can be
rewritten as

FX = NumS(P, L, H)− 2τ2 XDenS(P, L, H) = 0 (10)

FY = NumL(P, L, H)− 2τ2YDenL(P, L, H) = 0 (11)

Thus, the matrix form of error equation can be expressed as

V = MA−R (12)

where

M =

 ∂FX
∂ai

∂FX
∂bj

∂FX
∂ci

∂FX
∂dj

∂FY
∂ai

∂FY
∂bj

∂FY
∂ci

∂FY
∂dj

 (i = 1, 2, . . . , 20; j = 2, . . . , 20)

R =
[
−F0

X −F0
Y

]T

A =
[

ai bj ci dj

]T

Equation (12) is solved by least-squares algorithm, and the solutions of RPC coefficients can be
represented as

A = (MTM)
−1

MTR (13)

The solution for Equation (13) is acquired by an iterative process. The entire algorithm of Equation
(13) has been implemented in our previous work [39], in which the detailed implementing process
can be found. The normalization parameters can be calculated by the following equations.

Lato f f =

n
∑

i=1
Lati

n , Lono f f =

n
∑

i=1
Loni

n , Ho f f =

n
∑

i=1
Heii

n , Sampo f f =

n
∑

i=1
Sampi

n ,

Lineo f f =

n
∑

i=1
Linei

n

(14)

Latscale = max
(∣∣∣Latmax − Lato f f

∣∣∣, ∣∣∣Latmin − Lato f f

∣∣∣),

Lonscale = max
(∣∣∣Lonmax − Lono f f

∣∣∣, ∣∣∣Lonmin − Lono f f

∣∣∣) (15)

Hscale = max
(∣∣∣Heimax − Ho f f

∣∣∣, ∣∣∣Heimin − Ho f f

∣∣∣),

Linescale = max
(∣∣∣Linemax − Lineo f f

∣∣∣, ∣∣∣Linemin − Lineo f f

∣∣∣) (16)

Sampscale = max
(∣∣∣Sampmax − Sampo f f

∣∣∣, ∣∣∣Sampmin − Sampo f f

∣∣∣) (17)

Sensors 2018, 18, 2511 6 of 24

where n is the number of ground control points (GCPs). When the enable signal is being
received, the geodetic coordinates (Lon, Lat, Hei) stored in the RAMs are read, and sent to
Coordinate_Transform_mod (CTM) with the attained parameters and the start signal (Start_Sig)
in the same clock cycle.

2. When the Start_Sig, the constants, and the geodetic coordinates are being received in the
CTM, the normalized coordinates (P, L, H) are first calculated in the regularization module
(Regulation_mod, ReM). Then, the normalized coordinates and the done signal of ReM
(ReM_Done_Sig) are sent to the polynomial module (Polynomial_mod, PM) with ai, bi, ci, and di
(i = 1 to 20) in the same clock cycle to compute the numerators and denominators (NumL, NumS,
DenL, and DenS) of Equation (7). Subsequently, when the done signal (PM_Done_Sig) of PM,
NumL, NumS, DenL, and DenS are being received, the normalized coordinates (X, Y) of the image
coordinates are calculated. Finally, when the normalized coordinates (X, Y) and the done signal
(RaM_Done_Sig) of the ratio module (Ratio_mod, RaM) are being received, the image coordinates
(Samp, Line) and the done signal (RCM_Done_Sig) of the image coordinate calculation module
(Row_Clm_mod, RCM) are acquired and sent to the interpolation module (Interpolation_mod,
IM) in the same clock cycle.

3. When the image coordinates (Samp, Line) and RaM_Done_Sig are being received in IM, the gray
of pixel (Samp, Line) is obtained by interpolating, and the done signal (IM_Done_Sig) of IM
is produced.

4. When the posedge clk of the signal, ALL_Done_Sig is being detected, the processing is finished.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 24

1==

n

i
i

off

Line
Line

n

()max minmax ,= − −scale off offLat Lat Lat Lat Lat ,

()max minmax ,= − −scale off offLon Lon Lon Lon Lon (15)

()max minmax ,= − −scale off offH Hei H Hei H ,

()max minmax ,= − −scale off offLine Line Line Line Line (16)

()max minmax ,= − −scale off offSamp Samp Samp Samp Samp (17)

where n is the number of ground control points (GCPs).
When the enable signal is being received, the geodetic coordinates (Lon, Lat, Hei) stored in the
RAMs are read, and sent to Coordinate_Transform_mod (CTM) with the attained parameters
and the start signal (Start_Sig) in the same clock cycle.

2. When the Start_Sig, the constants, and the geodetic coordinates are being received in the CTM,
the normalized coordinates (P, L, H) are first calculated in the regularization module
(Regulation_mod, ReM). Then, the normalized coordinates and the done signal of ReM
(ReM_Done_Sig) are sent to the polynomial module (Polynomial_mod, PM) with ai, bi, ci, and di
(i = 1 to 20) in the same clock cycle to compute the numerators and denominators (NumL, NumS,
DenL, and DenS) of Equation (7). Subsequently, when the done signal (PM_Done_Sig) of PM,
NumL, NumS, DenL, and DenS are being received, the normalized coordinates (X, Y) of the image
coordinates are calculated. Finally, when the normalized coordinates (X, Y) and the done
signal (RaM_Done_Sig) of the ratio module (Ratio_mod, RaM) are being received, the image
coordinates (Samp, Line) and the done signal (RCM_Done_Sig) of the image coordinate
calculation module (Row_Clm_mod, RCM) are acquired and sent to the interpolation module
(Interpolation_mod, IM) in the same clock cycle.

3. When the image coordinates (Samp, Line) and RaM_Done_Sig are being received in IM, the
gray of pixel (Samp, Line) is obtained by interpolating, and the done signal (IM_Done_Sig) of
IM is produced.

4. When the posedge clk of the signal, ALL_Done_Sig is being detected, the processing
is finished.

Figure 1. Flowchart showing implementation on an FPGA chip. Figure 1. Flowchart showing implementation on an FPGA chip.

2.2.1. Read Parameter Module

To ensure that the constants, geodetic coordinates, and the start signal (Start_Sig) are sent in the
same clock cycle, a parallel module (i.e., the RPM) is designed (see Figure 2). In the RPM, the constants
are assigned corresponding values, while the geodetic coordinates are stored in RAM. In this design,
all values are expressed using a fixed point of 32 bits to ensure computational accuracy.

In the RPM, the geodetic coordinates are sent to the next module according to the order of the
column. First, the address of RAM is initialized as 0. When the enable signal is detected, the first
group of geodetic coordinates (Lat0, Lon0, Hei0) is read from the RAM and sent to the next module with
the constants and the Start_Sig in the same clock cycle. Starting from the second group of geodetic

Sensors 2018, 18, 2511 7 of 24

coordinates, the rules for reading and sending geodetic coordinates are changed. In other words,
after the second group of geodetic coordinates (Lat1, Lon1, Hei1), the geodetic coordinates will be
read and sent unless the enable signal and the feedback signal (Feedback_Sig), which are sent by the
interpolation module, are detected at the same time. After the final group of geodetic coordinates are
read and sent, if the Feedback_Sig is received, the done signal (ALL_Done_Sig) of orthorectification is
produced. When the ALL_Done_Sig is detected, the process of orthorectification is stopped.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 24

2.2.1. Read Parameter Module

To ensure that the constants, geodetic coordinates, and the start signal (Start_Sig) are sent in the
same clock cycle, a parallel module (i.e., the RPM) is designed (see Figure 2). In the RPM, the
constants are assigned corresponding values, while the geodetic coordinates are stored in RAM. In
this design, all values are expressed using a fixed point of 32 bits to ensure computational accuracy.

In the RPM, the geodetic coordinates are sent to the next module according to the order of the
column. First, the address of RAM is initialized as 0. When the enable signal is detected, the first
group of geodetic coordinates (Lat0, Lon0, Hei0) is read from the RAM and sent to the next module
with the constants and the Start_Sig in the same clock cycle. Starting from the second group of
geodetic coordinates, the rules for reading and sending geodetic coordinates are changed. In other
words, after the second group of geodetic coordinates (Lat1, Lon1, Hei1), the geodetic coordinates will
be read and sent unless the enable signal and the feedback signal (Feedback_Sig), which are sent by
the interpolation module, are detected at the same time. After the final group of geodetic coordinates
are read and sent, if the Feedback_Sig is received, the done signal (ALL_Done_Sig) of
orthorectification is produced. When the ALL_Done_Sig is detected, the process of orthorectification
is stopped.

Figure 2. Schematic diagram of the read parameter module.

2.2.2. Coordinate Transformation Module

As shown in Figure 1, for the CTM, the inputs contain the constants, the geodetic coordinates,
and the Start_Sig, while the outputs include image coordinates and the done signal of this module.
The CTM can be divided into four submodules, namely ReM, PM, RaM, and RCM. Details regarding
these four submodules are as follows.

Figure 2. Schematic diagram of the read parameter module.

2.2.2. Coordinate Transformation Module

As shown in Figure 1, for the CTM, the inputs contain the constants, the geodetic coordinates,
and the Start_Sig, while the outputs include image coordinates and the done signal of this module.
The CTM can be divided into four submodules, namely ReM, PM, RaM, and RCM. Details regarding
these four submodules are as follows.

• Regulation Module

According to Section 2.1, the geodetic coordinates (Lat, Lon, Hei) should be first transformed as
the normalized coordinates (L, P, H) based on Equation (2) because this operation can minimize the
introduction of errors during the computation of the numerical stability of equations [13]. As shown
in Equation (2), the forms of these equations are uniform. In other words, they are suitable for
implementation using FPGA. To obtain the normalized coordinates (L, P, H) of the geodetic coordinates
(Lat, Lon, Hei) using an FPGA chip, a parallel computation architecture is presented in Figure 3.

Sensors 2018, 18, 2511 8 of 24

In Figure 3, the structures of “Normalize Lat”, “Normalize Lon”, and “Normalize Hei” are similar.
Thus, only the schematic diagram of “Normalize Lat” is presented (see Figure 4).

As shown in Figure 4, during the computation process, 1 divider, 10 adders, 10 flipflops,
and 16 multiplexer units are mainly used to normalize the Lat. In this design, the relationship among
“Normalize Lat”, “Normalize Lon”, and “Normalize Hei” is parallel. The normalized coordinates (L, P,
H) are obtained in the same clock cycle as the done signal.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 24

 Regulation Module

According to Section 2.1, the geodetic coordinates (Lat, Lon, Hei) should be first transformed as
the normalized coordinates (L, P, H) based on Equation (2) because this operation can minimize the
introduction of errors during the computation of the numerical stability of equations [13]. As shown
in Equation (2), the forms of these equations are uniform. In other words, they are suitable for
implementation using FPGA. To obtain the normalized coordinates (L, P, H) of the geodetic
coordinates (Lat, Lon, Hei) using an FPGA chip, a parallel computation architecture is presented in
Figure 3. In Figure 3, the structures of “Normalize Lat”, “Normalize Lon”, and “Normalize Hei” are
similar. Thus, only the schematic diagram of “Normalize Lat” is presented (see Figure 4).

As shown in Figure 4, during the computation process, 1 divider, 10 adders, 10 flipflops, and
16 multiplexer units are mainly used to normalize the Lat. In this design, the relationship among
“Normalize Lat”, “Normalize Lon”, and “Normalize Hei” is parallel. The normalized coordinates
(L, P, H) are obtained in the same clock cycle as the done signal.

Figure 3. Schematic diagram of the ReM.

Figure 4. Schematic diagram of normalizing Latitude.

Figure 3. Schematic diagram of the ReM.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 24

 Regulation Module

According to Section 2.1, the geodetic coordinates (Lat, Lon, Hei) should be first transformed as
the normalized coordinates (L, P, H) based on Equation (2) because this operation can minimize the
introduction of errors during the computation of the numerical stability of equations [13]. As shown
in Equation (2), the forms of these equations are uniform. In other words, they are suitable for
implementation using FPGA. To obtain the normalized coordinates (L, P, H) of the geodetic
coordinates (Lat, Lon, Hei) using an FPGA chip, a parallel computation architecture is presented in
Figure 3. In Figure 3, the structures of “Normalize Lat”, “Normalize Lon”, and “Normalize Hei” are
similar. Thus, only the schematic diagram of “Normalize Lat” is presented (see Figure 4).

As shown in Figure 4, during the computation process, 1 divider, 10 adders, 10 flipflops, and
16 multiplexer units are mainly used to normalize the Lat. In this design, the relationship among
“Normalize Lat”, “Normalize Lon”, and “Normalize Hei” is parallel. The normalized coordinates
(L, P, H) are obtained in the same clock cycle as the done signal.

Figure 3. Schematic diagram of the ReM.

Figure 4. Schematic diagram of normalizing Latitude.

Figure 4. Schematic diagram of normalizing Latitude.

• Polynomial Module

When the ReM_Done_Sig and (L, P, H) are being received by the PM module, the PM module
starts to work. As shown in Equations (4) and (5), these polynomials have a uniform form, which are
suitable for the implementation of an FPGA chip in parallel. In these equations, variables such as LH,

Sensors 2018, 18, 2511 9 of 24

LP, and PH are shared. To implement these polynomials in parallel using an FPGA chip, a parallel
computation architecture is proposed in Figures 5 and 6. As shown in those figures, the PM module is
divided into two parts: one is used to perform multiplication and the other is applied to manipulate
addition. When performing addition, some special operations about the positive and negative sets of
data should be considered. Thus, for the additions in Figure 6, each of them is extended to a similar
form, as shown in Figure 7, taking the addition between a3P and a4H as an example. In the example,
three situations are considered: (i) a3P and a4H are both positive; (ii) a3P and a4H are both negative;
and (iii) a3P and a4H have opposite signs. The details for an extended addition are shown in Figure 7.

To implement each polynomial, 35 multipliers are utilized in the multiplication, and 19 extended
additions are used. In each extended addition, three flipflops, four selectors, seven adders, and eleven
multiplexers are applied. After processing the PM module, four sums, i.e., NumL, NumS, DenL,
and DenS, are obtained with the done signal of the PM module, PM_Done_Sig, in the same clock cycle.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 24

 Polynomial Module

When the ReM_Done_Sig and (L, P, H) are being received by the PM module, the PM module
starts to work. As shown in Equations (4) and (5), these polynomials have a uniform form, which are
suitable for the implementation of an FPGA chip in parallel. In these equations, variables such as LH,
LP, and PH are shared. To implement these polynomials in parallel using an FPGA chip, a parallel
computation architecture is proposed in Figures 5 and 6. As shown in those figures, the PM module
is divided into two parts: one is used to perform multiplication and the other is applied to
manipulate addition. When performing addition, some special operations about the positive and
negative sets of data should be considered. Thus, for the additions in Figure 6, each of them is
extended to a similar form, as shown in Figure 7, taking the addition between a3P and a4H as an
example. In the example, three situations are considered: (i) a3P and a4H are both positive; (ii) a3P and
a4H are both negative; and (iii) a3P and a4H have opposite signs. The details for an extended addition
are shown in Figure 7.

To implement each polynomial, 35 multipliers are utilized in the multiplication, and 19
extended additions are used. In each extended addition, three flipflops, four selectors, seven adders,
and eleven multiplexers are applied. After processing the PM module, four sums, i.e., NumL, NumS,
DenL, and DenS, are obtained with the done signal of the PM module, PM_Done_Sig, in the same
clock cycle.

Figure 5. Schematic diagram of polynomial module.

Figure 6. Schematic diagram of summation module.

Figure 5. Schematic diagram of polynomial module.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 24

 Polynomial Module

When the ReM_Done_Sig and (L, P, H) are being received by the PM module, the PM module
starts to work. As shown in Equations (4) and (5), these polynomials have a uniform form, which are
suitable for the implementation of an FPGA chip in parallel. In these equations, variables such as LH,
LP, and PH are shared. To implement these polynomials in parallel using an FPGA chip, a parallel
computation architecture is proposed in Figures 5 and 6. As shown in those figures, the PM module
is divided into two parts: one is used to perform multiplication and the other is applied to
manipulate addition. When performing addition, some special operations about the positive and
negative sets of data should be considered. Thus, for the additions in Figure 6, each of them is
extended to a similar form, as shown in Figure 7, taking the addition between a3P and a4H as an
example. In the example, three situations are considered: (i) a3P and a4H are both positive; (ii) a3P and
a4H are both negative; and (iii) a3P and a4H have opposite signs. The details for an extended addition
are shown in Figure 7.

To implement each polynomial, 35 multipliers are utilized in the multiplication, and 19
extended additions are used. In each extended addition, three flipflops, four selectors, seven adders,
and eleven multiplexers are applied. After processing the PM module, four sums, i.e., NumL, NumS,
DenL, and DenS, are obtained with the done signal of the PM module, PM_Done_Sig, in the same
clock cycle.

Figure 5. Schematic diagram of polynomial module.

Figure 6. Schematic diagram of summation module. Figure 6. Schematic diagram of summation module.

Sensors 2018, 18, 2511 10 of 24
Sensors 2018, 18, x FOR PEER REVIEW 10 of 24

Figure 7. Details showing an example of extended addition.

 Ratio Module

When the PM_Done_Sig, NumL, NumS, DenL and DenS are being received, the RaM module starts
to calculate the normalized coordinates (X, Y) of image coordinates. As shown in Equation (6), the
forms for the two equations are the same. It is convenient to calculate X and Y in parallel using an
FPGA chip. In Figure 8, a parallel-computing architecture that is used to calculate X is presented. In
the same way, the Y coordinate can be obtained.

To obtain the X (or Y) coordinate, one divider, three adders, six multiplexers, six flipflops (two
flipflops are public), and 32 selectors are applied. After the processing of the RaM module, the X
coordinate and Y coordinate are acquired with the done signal, RaM_Done_Sig, in the same
clock cycle.

Figure 7. Details showing an example of extended addition.

• Ratio Module

When the PM_Done_Sig, NumL, NumS, DenL and DenS are being received, the RaM module
starts to calculate the normalized coordinates (X, Y) of image coordinates. As shown in Equation (6),
the forms for the two equations are the same. It is convenient to calculate X and Y in parallel using
an FPGA chip. In Figure 8, a parallel-computing architecture that is used to calculate X is presented.
In the same way, the Y coordinate can be obtained.

To obtain the X (or Y) coordinate, one divider, three adders, six multiplexers, six flipflops (two
flipflops are public), and 32 selectors are applied. After the processing of the RaM module, the X
coordinate and Y coordinate are acquired with the done signal, RaM_Done_Sig, in the same clock cycle.

Sensors 2018, 18, 2511 11 of 24

Sensors 2018, 18, x FOR PEER REVIEW 11 of 24

Figure 8. Schematic diagram of the ratio module.

 Image Coordinate Calculation Module

When the RaM_Done_Sig, X, and Y coordinates are being detected, the RCM module starts to
calculate the image coordinates (Samp, Line), i.e., column and row indexes. As shown in Equation (9),
the equations give the relationship between the normalized coordinates (X, Y) and image
coordinates (Samp, Line).

As shown in Equation (9), the equations have a uniform form, which is helpful for
implementation using an FPGA. To calculate the image coordinates (Samp, Line) in parallel, a
parallel-computing hardware architecture is designed. Because the forms of the equations in
Equation (9) are similar, only the schematic diagram used for calculating the Samp coordinate is
given. As shown in Figure 9, there are one multiplier, four flipflops (two of them are shared when
calculating Line coordinate), five selectors (MUX) shared when calculating Line coordinate, seven
adders, and 136 multiplexers (MUX21).

After the processing of the RCM module, the image coordinates, that is, the column and row
indexes (Samp, Line), and the done signal (RCM_Done_Sig) are obtained in the same clock cycle. Up
to this point, the whole processing of the coordinate transformation is done. The obtained image
coordinates are sent to the interpolation module to interpolate the grayscale.

Figure 8. Schematic diagram of the ratio module.

• Image Coordinate Calculation Module

When the RaM_Done_Sig, X, and Y coordinates are being detected, the RCM module starts to
calculate the image coordinates (Samp, Line), i.e., column and row indexes. As shown in Equation (9),
the equations give the relationship between the normalized coordinates (X, Y) and image coordinates
(Samp, Line).

As shown in Equation (9), the equations have a uniform form, which is helpful for implementation
using an FPGA. To calculate the image coordinates (Samp, Line) in parallel, a parallel-computing
hardware architecture is designed. Because the forms of the equations in Equation (9) are similar,
only the schematic diagram used for calculating the Samp coordinate is given. As shown in Figure 9,
there are one multiplier, four flipflops (two of them are shared when calculating Line coordinate),
five selectors (MUX) shared when calculating Line coordinate, seven adders, and 136 multiplexers
(MUX21).

After the processing of the RCM module, the image coordinates, that is, the column and row
indexes (Samp, Line), and the done signal (RCM_Done_Sig) are obtained in the same clock cycle.
Up to this point, the whole processing of the coordinate transformation is done. The obtained image
coordinates are sent to the interpolation module to interpolate the grayscale.

Sensors 2018, 18, 2511 12 of 24
Sensors 2018, 18, x FOR PEER REVIEW 12 of 24

Figure 9. Schematic diagram used for calculating Samp coordinate.

2.2.3. Interpolation Module

Because the obtained column and row indexes may not exist only at the center of a pixel, it is
necessary to use the interpolation method to obtain the grayscale in the obtained column and row
indexes. Considering the interpolation effect, the complexity of an interpolation algorithm, and the
resources of an FPGA, the bilinear interpolation method is selected to implement the interpolation
for grayscale. Mathematically, the bilinear interpolation algorithm can be expressed by the following
equation:

(,) (1)(1) (,) (1) (, 1)

(1) (1,) (1, 1)

+ + = − − + − +
+ − + + + +

g i p j q p q g i j p qg i j
p q g i j pqg i j

 (18)

where i and j are nonnegative integers; the intermediates p = |i − int(i)| and q = |j − int(j)| are within
the range of (0, 1); and g(i, j) represents gray values.

To implement the bilinear interpolation algorithm in parallel using an FPGA chip, a parallel
computation architecture was designed (see Figure 10). The designed hardware architecture
contains four submodules/parts: (i) the subtract_mod, which is used to obtain the integer part (iLine
and iSamp) and fractional part (p and q) of Line and Samp indexes, and to calculate the subtraction
(1_p and 1_q) in Equation (18); (ii) the get_gray_addr_mod, which is applied to obtain the address of
gray in RAM; (iii) the multiplication part, which is utilized to calculate the multiplications in

Figure 9. Schematic diagram used for calculating Samp coordinate.

2.2.3. Interpolation Module

Because the obtained column and row indexes may not exist only at the center of a pixel, it
is necessary to use the interpolation method to obtain the grayscale in the obtained column and
row indexes. Considering the interpolation effect, the complexity of an interpolation algorithm,
and the resources of an FPGA, the bilinear interpolation method is selected to implement the
interpolation for grayscale. Mathematically, the bilinear interpolation algorithm can be expressed by
the following equation:

g(i + p, j + q) = (1− p)(1− q)g(i, j) + (1− p)qg(i, j + 1)
+p(1− q)g(i + 1, j) + pqg(i + 1, j + 1)

(18)

where i and j are nonnegative integers; the intermediates p = |i − int(i)| and q = |j − int(j)| are within
the range of (0, 1); and g(i, j) represents gray values.

To implement the bilinear interpolation algorithm in parallel using an FPGA chip, a parallel
computation architecture was designed (see Figure 10). The designed hardware architecture contains
four submodules/parts: (i) the subtract_mod, which is used to obtain the integer part (iLine and iSamp)

Sensors 2018, 18, 2511 13 of 24

and fractional part (p and q) of Line and Samp indexes, and to calculate the subtraction (1_p and 1_q)
in Equation (18); (ii) the get_gray_addr_mod, which is applied to obtain the address of gray in RAM;
(iii) the multiplication part, which is utilized to calculate the multiplications in Equation (18); and (iv)
the calculate_sum_mod, which is used to compute the sum in Equation (18). After the processing
of the calculate_sum_mod, the results of interpolation in (Samp, Line) are obtained. The details of
subtract_mod, get_gray_addr_mod, and calculate_sum_mod are described as follows.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 24

Equation (18); and (iv) the calculate_sum_mod, which is used to compute the sum in Equation (18).
After the processing of the calculate_sum_mod, the results of interpolation in (Samp, Line) are
obtained. The details of subtract_mod, get_gray_addr_mod, and calculate_sum_mod are described
as follows.

Figure 10. Schematic diagram of interpolation module.

 subtract_mod

As shown in Equation (18), to perform the bilinear interpolation method, the gray values of four
neighbors around the acquired column and row indexes are required. Thus, the acquired column
and row indexes should be pre-processed to obtained the integer part and fractional part, which are
used to calculate (1 − q) and (1 − p). To implement the function using an FPGA chip, a
parallel-computing architecture is proposed, named subtract_mod. In subtract_mod, the methods
used to acquire iSamp, q and 1_q are similar to those for obtaining iLine, p and 1_p, respectively. Thus,
in this section, only the schematic diagram for obtaining iSamp, q and 1_q is given (see Figure 11).

As shown in Figure 11, to obtain iSamp, q and 1_q, three adders, seven multiplexers (MUX21),
and nine flipflops (three of which are shared when iLine), p and 1_p are used. In addition, three
MUXs are public. After the processing of the whole subtract_mod, iSamp, q, 1_q, iLine, p, and 1_p are
acquired with the done signal in the same clock cycle. When obtaining these variables, iSamp and
iLine are sent to the next submodule to retrieve the address of gray for four neighbors in RAM.
Meanwhile, q, 1_q, iLine, p, and 1_p are sent to another part to perform multiplication.

Figure 10. Schematic diagram of interpolation module.

• subtract_mod

As shown in Equation (18), to perform the bilinear interpolation method, the gray values of four
neighbors around the acquired column and row indexes are required. Thus, the acquired column and
row indexes should be pre-processed to obtained the integer part and fractional part, which are used
to calculate (1 − q) and (1 − p). To implement the function using an FPGA chip, a parallel-computing
architecture is proposed, named subtract_mod. In subtract_mod, the methods used to acquire iSamp,
q and 1_q are similar to those for obtaining iLine, p and 1_p, respectively. Thus, in this section, only the
schematic diagram for obtaining iSamp, q and 1_q is given (see Figure 11).

As shown in Figure 11, to obtain iSamp, q and 1_q, three adders, seven multiplexers (MUX21),
and nine flipflops (three of which are shared when iLine), p and 1_p are used. In addition, three MUXs
are public. After the processing of the whole subtract_mod, iSamp, q, 1_q, iLine, p, and 1_p are acquired
with the done signal in the same clock cycle. When obtaining these variables, iSamp and iLine are sent
to the next submodule to retrieve the address of gray for four neighbors in RAM. Meanwhile, q, 1_q,
iLine, p, and 1_p are sent to another part to perform multiplication.

Sensors 2018, 18, 2511 14 of 24
Sensors 2018, 18, x FOR PEER REVIEW 14 of 24

Figure 11. Schematic diagram of the subtract_mod module.

 get_gray_addr_mod

The grayscale of a pixel can be obtained according to the corresponding address. To obtain the
gray values of four neighbors around the obtained column and row indexes in parallel, a
parallel-computing hardware architecture is proposed (see Figure 12), called get_gray_addr_mod. In
the get_gray_addr_mod, 3 LESS-THAN comparators, 9 adders, 10 MUX21, 12 flipflops, and 70 MUX
are applied. After the processing of the get_gray_addr_mod, four addresses are obtained with the
done signal in the same clock cycle. According to the obtained addresses, the gray values can be
acquired from RAM. Then, they are sent to the multiplication part to perform the multiplication.

Figure 12. Schematic diagram of the get_gray_addr_mod module.

Figure 11. Schematic diagram of the subtract_mod module.

• get_gray_addr_mod

The grayscale of a pixel can be obtained according to the corresponding address. To obtain
the gray values of four neighbors around the obtained column and row indexes in parallel,
a parallel-computing hardware architecture is proposed (see Figure 12), called get_gray_addr_mod.
In the get_gray_addr_mod, 3 LESS-THAN comparators, 9 adders, 10 MUX21, 12 flipflops, and 70 MUX
are applied. After the processing of the get_gray_addr_mod, four addresses are obtained with the
done signal in the same clock cycle. According to the obtained addresses, the gray values can be
acquired from RAM. Then, they are sent to the multiplication part to perform the multiplication.

Sensors 2018, 18, x FOR PEER REVIEW 14 of 24

Figure 11. Schematic diagram of the subtract_mod module.

 get_gray_addr_mod

The grayscale of a pixel can be obtained according to the corresponding address. To obtain the
gray values of four neighbors around the obtained column and row indexes in parallel, a
parallel-computing hardware architecture is proposed (see Figure 12), called get_gray_addr_mod. In
the get_gray_addr_mod, 3 LESS-THAN comparators, 9 adders, 10 MUX21, 12 flipflops, and 70 MUX
are applied. After the processing of the get_gray_addr_mod, four addresses are obtained with the
done signal in the same clock cycle. According to the obtained addresses, the gray values can be
acquired from RAM. Then, they are sent to the multiplication part to perform the multiplication.

Figure 12. Schematic diagram of the get_gray_addr_mod module.

Figure 12. Schematic diagram of the get_gray_addr_mod module.

Sensors 2018, 18, 2511 15 of 24

• calculate_sum_mod

As shown in Figure 10, after the multiplication process, four variables, x1, x2, x3, and x4,
are obtained in the same clock cycle. To implement the addition for four variables, two levels of
additions are needed. Each addition corresponds to an extended addition that has an architecture that
is similar to Figure 7. The details can be found in Section 2.2.2 and Figure 7. After the processing of the
calculate_sum_mod, the result of interpolation in (Samp, Line) can be obtained.

2.3. Integration On-Board System

An FPGA device can be integrated into the on-board system as a part of the system, because
FPGA has advantages in size, weight, and power. After completing the proposed algorithm design
using Verilog language, the designed algorithm can be programmed into the selected FPGA device.

3. Experiments

3.1. Software and Hardware Environment

In this study, an Altera FPGA was used. The version of the FPGA is Kintex-7 XC7K325TFFG900-1
(see Figure 13), the design tool is Vivado 2016.4 (Xilinx, San Jose, CA, USA), and the simulation tool is
ModelSim SE10.1d (Mentor, Santa Barbara, CA, USA). The PC uses a Windows 7 (64 bit) operating
system, and has an Intel® Core™ i7-4790 CPU @ 3.6 GHz processor with 8 GB RAM. To validate
the proposed method, the orthorectification algorithm was also implemented using Matlab 2012a
(MathWorks, 1 Apple Hill Drive, Natick, MA, USA).

Sensors 2018, 18, x FOR PEER REVIEW 15 of 24

 calculate_sum_mod

As shown in Figure 10, after the multiplication process, four variables, x1, x2, x3, and x4, are
obtained in the same clock cycle. To implement the addition for four variables, two levels of
additions are needed. Each addition corresponds to an extended addition that has an architecture
that is similar to Figure 7. The details can be found in Section 2.2.2 and Figure 7. After the processing
of the calculate_sum_mod, the result of interpolation in (Samp, Line) can be obtained.

2.3. Integration On-Board System

An FPGA device can be integrated into the on-board system as a part of the system, because
FPGA has advantages in size, weight, and power. After completing the proposed algorithm design
using Verilog language, the designed algorithm can be programmed into the selected FPGA device.

3. Experiments

3.1. Software and Hardware Environment

In this study, an Altera FPGA was used. The version of the FPGA is Kintex-7
XC7K325TFFG900-1 (see Figure 13), the design tool is Vivado 2016.4 (Xilinx, San Jose, CA, USA), and
the simulation tool is ModelSim SE10.1d (Mentor, Santa Barbara, CA, USA). The PC uses a Windows
7 (64 bit) operating system, and has an Intel® Core™ i7-4790 CPU @ 3.6 GHz processor with 8 GB
RAM. To validate the proposed method, the orthorectification algorithm was also implemented
using Matlab 2012a (MathWorks, 1 Apple Hill Drive, Natick, MA, USA).

Figure 13. Photograph of the FPGA platform.

3.2. Dataset

To validate the correction accuracy and processing speed of the proposed FPGA-based
orthorectification method, two test datasets (as shown in Figure 14) were used in this study. The first
study area is located in San Diego, CA, USA. The IKONOS-2 PAN image with the resolution of 1.0 m
was collected on 7 February 2000. The wavelength range of IKONOS-2 PAN image is 450–900 nm.
The second study area is located in Genhe, Inner Mongolia, China. The SPOT-6 PAN image with the
resolution of 1.5 m was acquired on 29 September 2013. The wavelength range of SPOT-6 PAN
image is 450–745 nm. The known parameters are listed in Tables 2–4.

Figure 13. Photograph of the FPGA platform.

3.2. Dataset

To validate the correction accuracy and processing speed of the proposed FPGA-based
orthorectification method, two test datasets (as shown in Figure 14) were used in this study. The first
study area is located in San Diego, CA, USA. The IKONOS-2 PAN image with the resolution of 1.0 m
was collected on 7 February 2000. The wavelength range of IKONOS-2 PAN image is 450–900 nm.
The second study area is located in Genhe, Inner Mongolia, China. The SPOT-6 PAN image with the
resolution of 1.5 m was acquired on 29 September 2013. The wavelength range of SPOT-6 PAN image
is 450–745 nm. The known parameters are listed in Tables 2–4.

Sensors 2018, 18, 2511 16 of 24

Sensors 2018, 18, x FOR PEER REVIEW 16 of 24

(a) (b)

Figure 14. (a) Original IKONOS image; and (b) original SPOT6 image.

Table 2. Normalized parameters.

First Area Second Area
Lineoff (pixels) 1135 24,874.5
Sampoff (pixels) 2548 17,962.5
Latoff (degrees) 32.718700 50.737358
Lonoff (degrees) −117.13340 121.44648
Hoff (meters) 36.000 500
Linescale (pixels) 1829 24,874.5
Sampscale (pixels) 6570 17,962.5
Latscale (degrees) 0.01710000 0.41058849
Lonscale (degrees) 0.07090000 0.45794952
Hscale (meters) 223 500

Table 3. Rational function polynomial coefficients of the first study area.

Values # Values # Values # Values
a1 −7.52883250 × 10−4 b1 1 c1 −9.23491680 × 10−4 d1 1
a2 4.60115225 × 10−3 b2 −1.68736561 × 10−3 c2 1.01134804 d2 −1.68736561 × 10−3
a3 −1.03642070 b3 1.88384395 × 10−3 c3 3.57115249 × 10−4 d3 1.88384395 × 10−3
a4 −3.93943040 × 10−2 b4 −6.55340329 × 10−4 c4 −1.17541741 × 10−2 d4 −6.55340329 × 10−4
a5 1.75874570 × 10−3 b5 2.11928788 × 10−7 c5 1.71162003E × 10−3 d5 2.11928788 × 10−7
a6 2.25762210 × 10−4 b6 −2.15886792 × 10−7 c6 −2.77384658 × 10−4 d6 −2.15886792 × 10−7
a7 6.47497342 × 10−4 b7 6.60194370 × 10−8 c7 −4.67286564 × 10−5 d7 6.60194370 × 10−8
a8 −1.22344418 × 10−3 b8 1.29969058 × 10−6 c8 −1.70712175 × 10−3 d8 1.29969058 × 10−6
a9 −1.95386510 × 10−3 b9 −6.96485750 × 10−7 c9 7.61699396 × 10−7 d9 −6.96485750 × 10−7
a10 2.70799645 × 10−5 b10 3.41030606 × 10−7 c10 2.98181047 × 10−6 d10 3.41030606 × 10−7
a11 5.10672113 × 10−7 b11 5.17265975 × 10−10 c11 8.68077245 × 10−7 d11 5.17265975 × 10−10
a12 2.05965613 × 10−6 b12 2.71171743 × 10−10 c12 1.42413537 × 10−6 d12 2.71171743 × 10−10
a13 −2.18726634 × 10−7 b13 −1.47633205 × 10−10 c13 −1.11312088 × 10−6 d13 −1.47633205 × 10−10
a14 5.40855097 × 10−8 b14 3.59570414 × 10−10 c14 2.35665930 × 10−7 d14 3.59570414 × 10−10
a15 −3.96996732 × 10−6 b15 2.28588675 × 10−10 c15 5.40107978 × 10−7 d15 2.28588675 × 10−10
a16 7.19308892 × 10−7 b16 −1.11864088 × 10−10 c16 −1.10872161 × 10−10 d16 −1.11864088 × 10−10
a17 −3.89372910 × 10−7 b17 −1.37823694 × 10−10 c17 −4.86264967 × 10−10 d17 −1.37823694 × 10−10
a18 −4.18443985 × 10−6 b18 −3.32951199 × 10−9 c18 −8.43531861 × 10−7 d18 −3.32951199 × 10−9
a19 4.50802285 × 10−8 b19 6.33689691 × 10−10 c19 −3.64346611 × 10−8 d19 6.33689691 × 10−10
a20 −1.57227534 × 10−8 b20 −5.49482473 × 10−11 c20 −2.38643375 × 10−9 d20 −5.49482473 × 10−11

Figure 14. (a) Original IKONOS image; and (b) original SPOT6 image.

Table 2. Normalized parameters.

First Area Second Area

Lineoff (pixels) 1135 24,874.5
Sampoff (pixels) 2548 17,962.5
Latoff (degrees) 32.718700 50.737358
Lonoff (degrees) −117.13340 121.44648
Hoff (meters) 36.000 500
Linescale (pixels) 1829 24,874.5
Sampscale (pixels) 6570 17,962.5
Latscale (degrees) 0.01710000 0.41058849
Lonscale (degrees) 0.07090000 0.45794952
Hscale (meters) 223 500

Table 3. Rational function polynomial coefficients of the first study area.

Values # Values # Values # Values

a1 −7.52883250 × 10−4 b1 1 c1 −9.23491680 × 10−4 d1 1
a2 4.60115225 × 10−3 b2 −1.68736561 × 10−3 c2 1.01134804 d2 −1.68736561 × 10−3

a3 −1.03642070 b3 1.88384395 × 10−3 c3 3.57115249 × 10−4 d3 1.88384395 × 10−3

a4 −3.93943040 × 10−2 b4 −6.55340329 × 10−4 c4 −1.17541741 × 10−2 d4 −6.55340329 × 10−4

a5 1.75874570 × 10−3 b5 2.11928788 × 10−7 c5 1.71162003E × 10−3 d5 2.11928788 × 10−7

a6 2.25762210 × 10−4 b6 −2.15886792 × 10−7 c6 −2.77384658 × 10−4 d6 −2.15886792 × 10−7

a7 6.47497342 × 10−4 b7 6.60194370 × 10−8 c7 −4.67286564 × 10−5 d7 6.60194370 × 10−8

a8 −1.22344418 × 10−3 b8 1.29969058 × 10−6 c8 −1.70712175 × 10−3 d8 1.29969058 × 10−6

a9 −1.95386510 × 10−3 b9 −6.96485750 × 10−7 c9 7.61699396 × 10−7 d9 −6.96485750 × 10−7

a10 2.70799645 × 10−5 b10 3.41030606 × 10−7 c10 2.98181047 × 10−6 d10 3.41030606 × 10−7

a11 5.10672113 × 10−7 b11 5.17265975 × 10−10 c11 8.68077245 × 10−7 d11 5.17265975 × 10−10

a12 2.05965613 × 10−6 b12 2.71171743 × 10−10 c12 1.42413537 × 10−6 d12 2.71171743 × 10−10

a13 −2.18726634 × 10−7 b13 −1.47633205 × 10−10 c13 −1.11312088 × 10−6 d13 −1.47633205 × 10−10

a14 5.40855097 × 10−8 b14 3.59570414 × 10−10 c14 2.35665930 × 10−7 d14 3.59570414 × 10−10

a15 −3.96996732 × 10−6 b15 2.28588675 × 10−10 c15 5.40107978 × 10−7 d15 2.28588675 × 10−10

a16 7.19308892 × 10−7 b16 −1.11864088 × 10−10 c16 −1.10872161 × 10−10 d16 −1.11864088 × 10−10

a17 −3.89372910 × 10−7 b17 −1.37823694 × 10−10 c17 −4.86264967 × 10−10 d17 −1.37823694 × 10−10

a18 −4.18443985 × 10−6 b18 −3.32951199 × 10−9 c18 −8.43531861 × 10−7 d18 −3.32951199 × 10−9

a19 4.50802285 × 10−8 b19 6.33689691 × 10−10 c19 −3.64346611 × 10−8 d19 6.33689691 × 10−10

a20 −1.57227534 × 10−8 b20 −5.49482473 × 10−11 c20 −2.38643375 × 10−9 d20 −5.49482473 × 10−11

Sensors 2018, 18, 2511 17 of 24

Table 4. Rational function polynomial coefficients of the second study area.

Values # Values # Values # Values

a1 0.00207581 b1 1 c1 −0.01727220 d1 1
a2 0.05939323 b2 5.06562471 × 10−9 c2 1.01955596 d2 −2.43637767 × 10−6

a3 −1.06139835 b3 −2.23329117 × 10−9 c3 0.00149223 d3 1.76928700 × 10−6

a4 0.00300505 b4 −2.21235982 × 10−11 c4 −0.00498582 d4 −1.29701506 × 10−7

a5 9.99447200 × 10−5 b5 −3.85166222 × 10−8 c5 −0.01544990 d5 −4.50015117 × 10−5

a6 4.48210655 × 10−6 b6 7.22875706 × 10−11 c6 0.00070933 d6 1.03746933 × 10−6

a7 −0.00011601 b7 1.96276656 × 10−9 c7 −0.00021711 d7 −2.16896140 × 10−6

a8 −0.00285285 b8 1.03082157 × 10−8 c8 0.01454522 d8 2.27253718 × 10−5

a9 −0.00025849 b9 4.58273834 × 10−8 c9 0.00146642 d9 2.71848287 × 10−5

a10 8.66439267 × 10−8 b10 4.12786890 × 10−12 c10 −2.61417544 × 10−6 d10 −1.20465997 × 10−7

a11 1.94846265 × 10−7 b11 −8.77450090 × 10−11 c11 −2.38142758 × 10−5 d11 −8.45078827 × 10−9

a12 7.22766464 × 10−7 b12 −1.25925035 × 10−9 c12 4.37422992 × 10−5 d12 −2.25373082 × 10−9

a13 −2.45655192 × 10−5 b13 −1.41399102 × 10−9 c13 −0.00012373 d13 1.66156835 × 10−7

a14 −2.15776820 × 10−10 b14 1.09626013 × 10−12 c14 3.1682470454 × 10−7 d14 −2.87815787 × 10−10

a15 3.53191253 × 10−5 b15 1.82192638 × 10−9 c15 0.00022374 d15 −1.35493121 × 10−7

a16 3.58935305 × 10−5 b16 −8.74976255 × 10−10 c16 1.88815906 × 10−5 d16 −2.31068042 × 10−8

a17 −3.00220333 × 10−9 b17 2.05074275 × 10−13 c17 −1.37072926 × 10−7 d17 5.66675066 × 10−10

a18 −3.32028434 × 10−7 b18 8.02116204 × 10−11 c18 1.95362054 × 10−5 d18 −2.37161908 × 10−9

a19 −1.44250161 × 10−7 b19 −1.15845372 × 10−10 c19 2.68897003 × 10−6 d19 6.41890372 × 10−9

a20 1.88636696 × 10−12 b20 5.66352056 × 10−16 c20 −1.15446432 × 10−9 d20 −7.23372539 × 10−12

According to the proposed method, input parameters should be transformed into fixed-point data.
As shown in Tables 2–4, the values of parameters of two study areas are in different range. To ensure
computation accuracy, all parameters are transformed into fixed-point of 32 bits using different scale
factor, τ. The details are given in Tables 5 and 6. In addition, the clock frequency is 100 MHz.

Table 5. Scale factors for parameters of First Area.

τ Range Accuracy

Lat’, Lon’, Hei’ 23 (−256, 255.999999881) 0.000000119
Lat′off, Lat′scale, Lon′off, Lon′scale 23 (−256, 255.999999881) 0.000000119
H′off, H′scale 23 (−256, 255.999999881) 0.000000119
Line′off, Line′scale, Samp′off, Samp′scale 18 (−8192, 8191.999996185) 0.000003815
a′ i, b′ i, c′ i, and d′ i (i = 1 to 20) 30 (−2, 1.999999999) 0.000000001

Table 6. Scale factors for parameters of Second Area.

τ Range Accuracy

Lat′, Lon′, Hei′ 23 (−256, 255.999999881) 0.000000119
Lat′off, Lat′scale, Lon′off, Lon′scale 23 (−256, 255.999999881) 0.000000119
H′off, H′scale 21 (−1024, 1023.999999523) 0.000000477
Line′off, Line′scale, Samp′off, Samp′scale 16 (−32,768, 32,767.999984741) 0.000015259
a′ i, b′ i, c′ i, and d′ i (i = 1 to 20) 30 (−2, 1.999999999) 0.000000001

3.3. Results

As shown in Figures 15a and 16a, after the processing of the proposed method, the orthorectified
results (orthophoto) were obtained. To validate the accuracy and speed of the proposed rectification
method, orthorectification for the same datasets was also implemented by applying the PC-based
platform. On the PC-based platform, the proposed FP-RPC orthorectification was implemented using
Matlab codes.

The orthorectification results obtained using the PC-based software are shown in Figures 15b and 16b.
The contrast-enhanced difference images for two study areas are shown in Figures 15c and 16c,
respectively. As shown in Figures 15c and 16c, the contrast-enhanced difference images show the few
discrepancies that are present. The orthorectification images obtained by FPGA and PC are not visually

Sensors 2018, 18, 2511 18 of 24

different by inspection. The numerical differences between FPGA and PC become apparent when
observing the difference images shown in Figures 15c and 16c. These pixel position differences are
mainly caused by the used bit wide and scale factor of fixed-point data [1]. According to [1], the pixel
position difference can be decreased with the increasing of bit wide and scale factor. Error analysis
between the proposed method and the FP-RPC algorithm implemented on PC are provided in the
next section.

Sensors 2018, 18, x FOR PEER REVIEW 18 of 24

The orthorectification results obtained using the PC-based software are shown in Figures 15b
and 16b. The contrast-enhanced difference images for two study areas are shown in Figures 15c and
16c, respectively. As shown in Figures 15c and 16c, the contrast-enhanced difference images show
the few discrepancies that are present. The orthorectification images obtained by FPGA and PC are
not visually different by inspection. The numerical differences between FPGA and PC become
apparent when observing the difference images shown in Figures 15c and 16c. These pixel position
differences are mainly caused by the used bit wide and scale factor of fixed-point data [1]. According
to [1], the pixel position difference can be decreased with the increasing of bit wide and scale factor.
Error analysis between the proposed method and the FP-RPC algorithm implemented on PC are
provided in the next section.

(a) (b) (c)

Figure 15. Orthoimages for the first study area: (a) by FPGA; and (b) by Matlab; and (c) the difference
of image (a) and image (b).

(a) (b) (c)

Figure 16. Orthoimages for the second study area: (a) by FPGA; and (b) by Matlab; and (c) the
difference of image (a) and image (b).

4. Discussion

4.1. Error Analysis

To quantitatively evaluate the accuracy of the proposed orthorectification method, the
root-mean-square error (RMSE) [40,41] was utilized. Mathematically, the RMSEs of the image
coordinates along the vertical axis (ΔI) and horizontal axis (ΔJ), and distance (ΔS) can be calculated
using the following equations, respectively,

2

1

()
Δ

1
=

′ −
=

−

n

h h
h
I I

I
n

2

1

()
Δ

1
=

′ −
=

−

n

h h
h
J J

J
n

 (19)

Figure 15. Orthoimages for the first study area: (a) by FPGA; and (b) by Matlab; and (c) the difference
of image (a) and image (b).

Sensors 2018, 18, x FOR PEER REVIEW 18 of 24

The orthorectification results obtained using the PC-based software are shown in Figures 15b
and 16b. The contrast-enhanced difference images for two study areas are shown in Figures 15c and
16c, respectively. As shown in Figures 15c and 16c, the contrast-enhanced difference images show
the few discrepancies that are present. The orthorectification images obtained by FPGA and PC are
not visually different by inspection. The numerical differences between FPGA and PC become
apparent when observing the difference images shown in Figures 15c and 16c. These pixel position
differences are mainly caused by the used bit wide and scale factor of fixed-point data [1]. According
to [1], the pixel position difference can be decreased with the increasing of bit wide and scale factor.
Error analysis between the proposed method and the FP-RPC algorithm implemented on PC are
provided in the next section.

(a) (b) (c)

Figure 15. Orthoimages for the first study area: (a) by FPGA; and (b) by Matlab; and (c) the difference
of image (a) and image (b).

(a) (b) (c)

Figure 16. Orthoimages for the second study area: (a) by FPGA; and (b) by Matlab; and (c) the
difference of image (a) and image (b).

4. Discussion

4.1. Error Analysis

To quantitatively evaluate the accuracy of the proposed orthorectification method, the
root-mean-square error (RMSE) [40,41] was utilized. Mathematically, the RMSEs of the image
coordinates along the vertical axis (ΔI) and horizontal axis (ΔJ), and distance (ΔS) can be calculated
using the following equations, respectively,

2

1

()
Δ

1
=

′ −
=

−

n

h h
h
I I

I
n

2

1

()
Δ

1
=

′ −
=

−

n

h h
h
J J

J
n

 (19)

Figure 16. Orthoimages for the second study area: (a) by FPGA; and (b) by Matlab; and (c) the
difference of image (a) and image (b).

4. Discussion

4.1. Error Analysis

To quantitatively evaluate the accuracy of the proposed orthorectification method,
the root-mean-square error (RMSE) [40,41] was utilized. Mathematically, the RMSEs of the image
coordinates along the vertical axis (∆I) and horizontal axis (∆J), and distance (∆S) can be calculated
using the following equations, respectively,

∆I =

√√√√√ n
∑

h=1
(I′h − Ih)

2

n− 1
∆J =

√√√√√ n
∑

h=1
(J′h − Jh)

2

n− 1
(19)

Sensors 2018, 18, 2511 19 of 24

∆S =

√√√√√ n
∑

h=1
((I′h − Ih)

2 + (J′h − Jh)
2

n− 1
(20)

where I′h and J′h are the image coordinates rectified by the proposed orthorectification method; Ih and
Jh are the reference image coordinates; and n is the number of check points.

To compute the RMSEs, 40 check points for each study area were selected randomly (as shown
in Figure 17). As shown in Figure 18, the differences in the values of image coordinates for the
Matlab-based and FPGA-based methods are given. Based on Equations (19) and (20), the RMSEs (∆I,
∆J, and ∆S) are 0.35 pixels, 0.30 pixels, and 0.46 pixels, respectively, for the first study area; meanwhile,
they are 0.27 pixels, 0.36 pixels, and 0.44 pixels, respectively, for the second study area. Moreover,
other statistics were also calculated (as shown in Table 7).

According to the calculation results of Equations (19) and (20), the orthorectification results
obtained using the proposed method are considered acceptable because the RMSEs are less than one
pixel [42–44]. However, as shown in Figure 18, differences still exist in the image coordinates acquired
by the FPGA-based and Matlab-based methods. These differences may be caused by the algorithms
implemented by FPGA hardware, for example, the fixed-point computation, which propagate
and accumulate.

Sensors 2018, 18, x FOR PEER REVIEW 19 of 24

2 2

1

(() ()
Δ

1
=

′ ′− + −
=

−

n

h h h h
h

I I J J
S

n
 (20)

where I′h and J′h are the image coordinates rectified by the proposed orthorectification method; Ih and
Jh are the reference image coordinates; and n is the number of check points.

To compute the RMSEs, 40 check points for each study area were selected randomly (as shown
in Figure 17). As shown in Figure 18, the differences in the values of image coordinates for the
Matlab-based and FPGA-based methods are given. Based on Equations (19) and (20), the RMSEs (ΔI,
ΔJ, and ΔS) are 0.35 pixels, 0.30 pixels, and 0.46 pixels, respectively, for the first study area;
meanwhile, they are 0.27 pixels, 0.36 pixels, and 0.44 pixels, respectively, for the second study area.
Moreover, other statistics were also calculated (as shown in Table 7).

According to the calculation results of Equations (19) and (20), the orthorectification results
obtained using the proposed method are considered acceptable because the RMSEs are less than one
pixel [42–44]. However, as shown in Figure 18, differences still exist in the image coordinates
acquired by the FPGA-based and Matlab-based methods. These differences may be caused by the
algorithms implemented by FPGA hardware, for example, the fixed-point computation, which
propagate and accumulate.

(a) (b)

Figure 17. Check-point distribution in: (a) the first study area; and (b) the second study area.

(a) (b)

Figure 18. Different statistical analyses for the FPGA-based method and Matlab-based method for:
(a) the first study area; and (b) the second study area.

Figure 17. Check-point distribution in: (a) the first study area; and (b) the second study area.

Sensors 2018, 18, x FOR PEER REVIEW 19 of 24

2 2

1

(() ()
Δ

1
=

′ ′− + −
=

−

n

h h h h
h

I I J J
S

n
 (20)

where I′h and J′h are the image coordinates rectified by the proposed orthorectification method; Ih and
Jh are the reference image coordinates; and n is the number of check points.

To compute the RMSEs, 40 check points for each study area were selected randomly (as shown
in Figure 17). As shown in Figure 18, the differences in the values of image coordinates for the
Matlab-based and FPGA-based methods are given. Based on Equations (19) and (20), the RMSEs (ΔI,
ΔJ, and ΔS) are 0.35 pixels, 0.30 pixels, and 0.46 pixels, respectively, for the first study area;
meanwhile, they are 0.27 pixels, 0.36 pixels, and 0.44 pixels, respectively, for the second study area.
Moreover, other statistics were also calculated (as shown in Table 7).

According to the calculation results of Equations (19) and (20), the orthorectification results
obtained using the proposed method are considered acceptable because the RMSEs are less than one
pixel [42–44]. However, as shown in Figure 18, differences still exist in the image coordinates
acquired by the FPGA-based and Matlab-based methods. These differences may be caused by the
algorithms implemented by FPGA hardware, for example, the fixed-point computation, which
propagate and accumulate.

(a) (b)

Figure 17. Check-point distribution in: (a) the first study area; and (b) the second study area.

(a) (b)

Figure 18. Different statistical analyses for the FPGA-based method and Matlab-based method for:
(a) the first study area; and (b) the second study area. Figure 18. Different statistical analyses for the FPGA-based method and Matlab-based method for:
(a) the first study area; and (b) the second study area.

Sensors 2018, 18, 2511 20 of 24

Table 7. Statistical analysis for the different image coordinates obtained by Matlab and FPGA
(unit: pixel).

Study Area No. Maximum Minimum Mean STD

1st
|I′-I| 0.65 0.02 0.29 0.19
|J′-J| 0.68 0.01 0.25 0.18

2nd
|I′-I| 0.72 0.01 0.20 0.16
|J′-J| 0.73 0.01 0.26 0.24

4.2. Processing Speed Comparison

This section presents the processing time as the size of satellite image increases, and evaluates
processing speed of the FPGA-based orthorectification method and the Matlab-based method.

The processing time have been recorded as an average of 10 runs of the RPC orthorectification
algorithm for each image. The average processing time for difference size of image is presented in
Table 8. A plot of the image size vs. processing time is shown in Figure 19. The speed-up of the method
can be defined as the Matlab time taken divided by the time taken on the FPGA for the performance of
the RPC algorithm [45]. In the image case considered, the maximum speed-up is acquired from a size
of 1024 × 1024 pixels, where the speed-up is about 11,095.8709. From the results in Table 8, it can be
demonstrated that the speed increases with the size of image.

Table 8. Average processing time for RPC orthorectification implementation on Matlab and FPGA.

No. Image Size (Pixels) Matlab Time (s) FPGA Time (ms) Speed-Up

1 256 × 256 1.0515 0.09686 10,855.8745
2 512 × 512 4.2461 0.3875 11,008.8151
3 1024 × 1024 17.1986 1.5500 11,095.8709

Sensors 2018, 18, x FOR PEER REVIEW 20 of 24

Table 7. Statistical analysis for the different image coordinates obtained by Matlab and FPGA (unit:
pixel).

Study Area No. Maximum Minimum Mean STD

1st
|I′-I| 0.65 0.02 0.29 0.19
|J′-J| 0.68 0.01 0.25 0.18

2nd
|I′-I| 0.72 0.01 0.20 0.16
|J′-J| 0.73 0.01 0.26 0.24

4.2. Processing Speed Comparison

This section presents the processing time as the size of satellite image increases, and evaluates
processing speed of the FPGA-based orthorectification method and the Matlab-based method.

The processing time have been recorded as an average of 10 runs of the RPC orthorectification
algorithm for each image. The average processing time for difference size of image is presented in
Table 8. A plot of the image size vs. processing time is shown in Figure 19. The speed-up of the
method can be defined as the Matlab time taken divided by the time taken on the FPGA for the
performance of the RPC algorithm [45]. In the image case considered, the maximum speed-up is
acquired from a size of 1024 × 1024 pixels, where the speed-up is about 11,095.8709. From the results
in Table 8, it can be demonstrated that the speed increases with the size of image.

Table 8. Average processing time for RPC orthorectification implementation on Matlab and FPGA.

No. Image Size (Pixels) Matlab Time (s) FPGA Time (ms) Speed-Up
1 256 × 256 1.0515 0.09686 10,855.8745
2 512 × 512 4.2461 0.3875 11,008.8151
3 1024 × 1024 17.1986 1.5500 11,095.8709

Figure 19. Image size vs. time taken to perform RPC orthorectification algorithm: (a) Matlab-based
platform; and (b) FPGA-based platform.

The processing speed is one of the most importance indicators for evaluating on-board
processing. To evaluate and compare the speed of the proposed FPGA-based orthorectification
method and the Matlab-based method, the throughput, which is a normalized metric, is used, and
represents the capacity in terms of the number of pixels processed per second. For the proposed
method, the average throughput is approximately 675.67 Mpixels/s. However, for the Matlab-based
method, the average throughput is approximately 61,677.49 pixels/s. This means that the proposed
FPGA-based method has higher processing capacity than the Matlab-based method.

4.3. Resource Consumption

Besides the speed of processing, the utilization ratio of each type of resource is also a key
indicator when assessing the quality of a method. As is well known, it can be determined whether a
selected device meets the requirement of a design scheme by analyzing the utilization ratio of
hardware resource. If the utilization ratio of a type of resource reaches 60–80%, the selected device
satisfies the requirement of the design scheme.

Figure 19. Image size vs. time taken to perform RPC orthorectification algorithm: (a) Matlab-based
platform; and (b) FPGA-based platform.

The processing speed is one of the most importance indicators for evaluating on-board processing.
To evaluate and compare the speed of the proposed FPGA-based orthorectification method and the
Matlab-based method, the throughput, which is a normalized metric, is used, and represents the
capacity in terms of the number of pixels processed per second. For the proposed method, the average
throughput is approximately 675.67 Mpixels/s. However, for the Matlab-based method, the average
throughput is approximately 61,677.49 pixels/s. This means that the proposed FPGA-based method
has higher processing capacity than the Matlab-based method.

4.3. Resource Consumption

Besides the speed of processing, the utilization ratio of each type of resource is also a key indicator
when assessing the quality of a method. As is well known, it can be determined whether a selected

Sensors 2018, 18, 2511 21 of 24

device meets the requirement of a design scheme by analyzing the utilization ratio of hardware
resource. If the utilization ratio of a type of resource reaches 60–80%, the selected device satisfies the
requirement of the design scheme.

Thus, after implementing the proposed method, some important resources, such as look-up tables
(LUTs), registers, and total pins are analyzed. As shown in Table 9, the slice logics contain slice LUTs
and slice registers. The utilization ratios of LUTs and registers are 44.42% and 5.59%, respectively.
The utilization of input and output (IO) is 368, which is 73.60% of the total IOs.

In short, according to the above comprehensive utilization ratios for resources, it can be
demonstrated that the resources of the selected FPGA can meet the design requirement of the proposed
FPGA-based orthorectification method.

Table 9. Utilization ratio of resources for the proposed FPGA-based orthorectification.

Utilization Available Utilization Ratio (%)

Slice logic Slice LUTs 90,634 203,800 44.42
Slice registers 22,798 407,600 5.59

IO 368 500 73.60

5. Conclusions

This paper proposes an orthorectification method, namely, the field-programmable gate array
(FPGA)-based fixed-point (FP) rational polynomial coefficient (RPC) method (FPGA-based FP-RPC
method) to perform the process of orthorectification on board spacecraft/satellite to accelerate the
orthorectification processing speed for remotely sensed (RS) images. The proposed FPGA-based
FP-RPC method contains three main submodules, Read_parameter_mod, Coordinate_transform_mod,
and Interpolation_mod, based on the bilinear interpolation algorithm.

To validate the orthorectification accuracy, an orthophoto that was orthorectified by a PC-based
platform (Matlab 2012a) was used as a reference. Two datasets, IKONOS and SPOT-6 images, were used
to validate the proposed FPGA-based FP-RPC method. The root-mean-square error (RMSE), which is
associated with the maximum, minimum, standard deviation (STD), and mean of row and column
coordinates’ differences, was used. The experimental results show that the STD of the row and column
coordinates’ differences are 0.19 pixels and 0.18 pixels, respectively, for the first study area, while
they were 0.16 pixels and 0.24 pixels, respectively, for the second study area. The RMSE of the row
coordinate (∆I), column coordinate (∆J) and the distance ∆S are 0.35 pixels, 0.30 pixels, and 0.46 pixels,
respectively, for the first study area, while they are 0.27 pixels, 0.36 pixels, and 0.44 pixels, respectively,
for the second study area. It can be concluded from these quantitative analyses that the proposed
method can meet the demand of orthorectification in practice.

Moreover, a comparison of the processing speed was also performed for the proposed FPGA-based
FP-RPC method and PC-based RPC methods. The throughput of the FPGA-based FP-RPC method
and PC-based RPC method are 675.67 Mpixels/s and 61,070.24 pixels/s, respectively. Therefore, it can
be shown that the processing speed of the FPGA-based FP-RPC method is faster (by approximately
11,000 times) than the processing speed of the Matlab-based RPC method. In terms of the resource
consumptions, it can be found that the utilization ratios of ALUTs, registers, and IO are 44.42%, 5.59%,
and 73.60%, respectively.

Author Contributions: G.Z. (Guoqing Zhou) contributed the most to the manuscript. He contributed the whole
idea of this manuscript, designed the experiments and reviewed and revised the manuscript. R.Z. performed the
experiments and analyzed the data. R.Z. wrote the paper. G.Z. (Guangyun Zhang), X.Z. and J.H. contributed to
editing and reviewed the manuscript.

Funding: This paper was financially supported by the National Natural Science of China under Grant numbers
41431179, 41601365, ; Guangxi Innovative Development Grand Grant, entitled, “Research and Development of
Bathymetric Mapping LiDAR under the number 2018AA13005, the National Key Research and Development
Program of China under Grant numbers 2016YFB0502501; GuangXi Natural Science Foundation under grant

Sensors 2018, 18, 2511 22 of 24

numbers 2015GXNSFDA139032; Guangxi Science & Technology Development Program under the Contract
number GuiKeHe 14123001-4; GuangXi Key Laboratory of Spatial Information and Geomatics Program (Contract
Nos. GuiKeNeng 163802506 and 163802530); the Natural Science Foundation of Tianjin (Grant No. #:
14JCYBJC41700); the National Natural Science Foundation of China (grant No. 41601446); and Tianjin Natural
Science Foundation (grant No.16JCQNJC01200).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. French, J.C.; Balster, E.J. A fast and accurate orthorectification algorithm of aerial imagery using integer
arithmetic. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1826–1834. [CrossRef]

2. Zhou, G.Q.; Chen, W.; Kelmelis, J.; Zhang, D.Y. A comprehensive study on urban true orthorectification.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 2138–2147. [CrossRef]

3. Zhou, G.Q. Near real-time orthorectification and mosaic of small UAV video flow for time-critical event
response. IEEE Trans. Geosci. Remote Sens. 2009, 47, 739–747. [CrossRef]

4. Aguilar, M.A.; Saldaña, M.D.M.; Aguilar, F.J. Assessing geometric accuracy of the orthorectification process
from GeoEye-1 and WorldView-2 panchromatic images. Int. J. Appl. Earth Obs. 2013, 21, 427–435. [CrossRef]

5. Marsetič, A.; Oštir, K.; Fras, M.K. Automatic orthorectification of high-resolution optical satellite images
using vector roads. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6035–6047. [CrossRef]

6. Habib, A.; Xiong, W.; Yang, F.; HeH, L.; Crawford, M. Improving orthorectification of UAV-based pushbroom
scanner imagery using derived orthophotos from frame cameras. IEEE J.-STARS 2017, 10, 262–276. [CrossRef]

7. Warpenburg, M.R.; Siegel, L.J. SIMD image resampling. IEEE Trans. Comput. 1982, 31, 934–942. [CrossRef]
8. Wittenbrink, C.M.; Somani, A.K. 2D and 3D optimal parallel image warping. In Proceedings of the Seventh

International Parallel Processing Symposium, Newport, CA, USA, 13–16 April 1993; pp. 331–337.
9. Liu, H.; Yang, J.; Liu, H.; Zhang, J. A new parallel ortho-rectification algorithm in a cluster environment.

In Proceedings of the Third International Congress on Image and Signal Processing, Yantai, China, 16–18
October 2010; pp. 2080–2084.

10. Dai, C.; Yang, J. Research on orthorectification of remote sensing images using GPU-CPU cooperative
processing. In Proceedings of the International Symposium on Image and Data Fusion, Tengchong, China,
9–11 August 2011; pp. 1–4.

11. Reguera-Salgado, J.; Calvino-Cancela, M.; Martin-Herrero, J. GPU geocorrection for airborne pushbroom
imagers. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4409–4419. [CrossRef]

12. Quan, J.; Wang, P.; Wang, H. Orthorectification of optical aerial images by GPU acceleration. Opt. Precis. Eng.
2016, 24, 2863–2871. [CrossRef]

13. Halle, W.; Venus, H.; Skrbek, W. Thematic data processing on board the satellite BIRD. In Proceedings of the
SPIE 4132, Imaging Spectrometry VI, Toulouse, France, 15 November 2000; pp. 412–419.

14. Eadie, D.; Shevlin, F.; Nisbet, A. Correction of geometric image distortion using FPGAs. In Proceedings of
the SPIE—The International Society for Optical Engineering, Galway, Ireland, 19 March 2003.

15. Kumar, P.R.; Sridharan, K. VLSI-efficient scheme and FPGA realization for robotic mapping in a dynamic
environment. IEEE Trans. VLSI Syst. 2007, 15, 118–123. [CrossRef]

16. Escamilla-Hernández, E.; Kravchenko, V.; Ponomaryov, V.; Robles-Camarillo, D.; Ramos, L.E. Real time
signal compression in radar using FPGA. Científica 2008, 12, 131–138.

17. Kate, D. Hardware implementation of the huffman encoder for data compression using Altera DE2 board.
Int. J. Adv. Eng. Sci. 2012, 2, 11–15. [CrossRef]

18. Tomasi, M.; Vanegas, M.; Barranco, F.; Diaz, J.; Ros, E. Real-time architecture for a robust multi-scale stereo
engine on FPGA. IEEE Trans. VLSI Syst. 2012, 20, 2208–2219. [CrossRef]

19. Pal, C.; Kotal, A.; Samanta, A.; Chakrabarti, A.; Ghosh, R. An efficient FPGA implementation of optimized
anisotropic diffusion filtering of images. Int. J. Reconfig. Comput. 2016, 2016, 3020473. [CrossRef]

20. Wang, E.; Yang, F.; Tong, G.; Qu, P.; Pang, T. Particle filtering approach for GNSS receiver autonomous
integrity monitoring and FPGA implementation. TELKOMNIKA 2016, 14, 1321–1328. [CrossRef]

21. Zhang, C.; Liang, T.; Mok, P.K.T.; Yu, W. FPGA implementation of the coupled filtering method.
In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Shenzhen, China, 15–18 December 2016; pp. 435–442.

http://dx.doi.org/10.1109/JSTARS.2013.2292009
http://dx.doi.org/10.1109/TGRS.2005.848417
http://dx.doi.org/10.1109/TGRS.2008.2006505
http://dx.doi.org/10.1016/j.jag.2012.06.004
http://dx.doi.org/10.1109/TGRS.2015.2431434
http://dx.doi.org/10.1109/JSTARS.2016.2520929
http://dx.doi.org/10.1109/TC.1982.1675902
http://dx.doi.org/10.1109/TGRS.2012.2192938
http://dx.doi.org/10.3788/OPE.20162411.2863
http://dx.doi.org/10.1109/TVLSI.2007.891100
http://dx.doi.org/10.1109/TENCON.1996.608445
http://dx.doi.org/10.1109/TVLSI.2011.2172007
http://dx.doi.org/10.1155/2016/3020473
http://dx.doi.org/10.12928/telkomnika.v14i4.4196

Sensors 2018, 18, 2511 23 of 24

22. Ontiveros-Robles, E.; Gonzalez-Vazquez, J.L.; Castro, J.R.; Castillo, O. A hardware architecture for real-time
edge detection based on interval type-2 fuzzy logic. In Proceedings of the 2016 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 804–810.

23. Ontiveros-Robles, E.; Vázquez, J.G.; Castro, J.R.; Castillo, O. A FPGA-based hardware architecture approach
for real-time fuzzy edge detection. In Nature-Inspired Design of Hybrid Intelligent Systems; Melin, P.,
Castillo, O., Kacprzyk, J., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 519–540,
ISBN 978-3-319-47054-2.

24. Li, H.H.; Liu, S.; Piao, Y. Snow removal of video image based on FPGA. In Proceedings of the 5th
International Conference on Electrical Engineering and Automatic Control; Huang, B., Yao, Y., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 207–215, ISBN 978-3-662-48768-6.

25. Li, H.; Xiang, F.; Sun, L. Based on the FPGA video image enhancement system implementation.
In Proceedings of the International Conference on Electronic Information Technology and Intellectualization,
Hong Kong, China, 24–26 June 2016; pp. 427–434.

26. Huang, J.; Zhou, G. On-board detection and matching of feature points. Remote Sens. 2017, 9, 601. [CrossRef]
27. Huang, J.; Zhou, G.; Zhou, X.; Zhang, R. A new FPGA architecture of fast and BRIEF algorithm for on-board

corner detection and matching. Sensors 2018, 18, 1014. [CrossRef] [PubMed]
28. Zhou, G.; Baysal, O.; Kaye, J.; Habib, S.; Wang, C. Concept design of future intelligent earth observing

satellites. Int. J. Remote Sens. 2004, 25, 2667–2685. [CrossRef]
29. Fraser, C.S.; Hanley, H.B.; Yamakawa, T. Three-dimensional geopositioning accuracy of IKONOS imagery.

Photogramm. Rec. 2002, 17, 465–479. [CrossRef]
30. Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials.

Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [CrossRef]
31. Wang, H.; Ellis, E.C. Spatial accuracy of orthorectified IKONOS imagery and historical aerial photographs

across five sites in China. Int. J. Remote Sens. 2005, 26, 1893–1911. [CrossRef]
32. Hoja, D.; Schneider, M.; Müller, R.; Lehner, M.; Reinartz, P. Comparison of orthorectification methods suitable

for rapid mapping using direct georeferencing and RPC for optical satellite data. In Proceedings of the ISPRS
Conference 2008, Peking, China, 3–11 July 2008; pp. 1617–1624.

33. Zhang, G.; Qiang, Q.; Luo, Y.; Zhu, Y.; Gu, H.; Zhu, X. Application of RPC model in orthorectification of
spaceborne SAR imagery. Photogramm. Rec. 2012, 27, 94–110. [CrossRef]

34. Yang, G.D.; Zhu, X. Ortho-rectification of SPOT 6 satellite images based on RPC models. Appl. Mech. Mater.
2013, 392, 808–814. [CrossRef]

35. Yang, G.; Xin, X.; Wu, Q. A study on ortho-rectification of SPOT6 image. In Proceedings of the 2017
International Conference on Mechanical and Mechatronics Engineering (ICMME 2017), Bangkok, Thailand,
26–27 March 2017.

36. Ferrer, M.A.; Alonso, J.B.; Travieso, C.M. Offline geometric parameters for automatic signature verification
using fixed-point arithmetic. IEEE Trans. Pattern Anal. 2005, 27, 993–997. [CrossRef] [PubMed]

37. Balster, E.J.; Fortener, B.T.; Turri, W.F. Integer computation of lossy JPEG2000 compression. IEEE Trans.
Image Process. 2011, 20, 2386–2391. [CrossRef] [PubMed]

38. Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing.
Photogramm. Eng. Remote Sens. 2001, 67, 1347–1357.

39. Zhou, G.; Jiang, L.; Huang, J.; Zhang, R.; Liu, D.; Zhou, X.; Baysal, O. FPGA-based on-board geometric
calibration for linear CCD array sensors. Sensors 2018, 18, 1794. [CrossRef] [PubMed]

40. Shi, W.; Shaker, A. Analysis of terrain elevation effects on IKONOS imagery rectification accuracy by using
non-rigorous models. Photogramm. Eng. Remote Sens. 2003, 69, 1359–1366. [CrossRef]

41. Reinartz, P.; Müller, R.; Lehner, M.; Schroeder, M. Accuracy analysis for DSM and orthoimages derived from
SPOT HRS stereo data using direct georeferencing. ISPRS J. Photogramm. Remote Sens. 2006, 60, 160–169.
[CrossRef]

42. Schowengerdt, R.A. CHAPTER 7—Correction and Calibration. In Remote Sensing, 3rd ed.; Academic Press:
Cambridge, MA, USA, 2007; p. 285-XXIII, ISBN 978-0-12-369407-2.

43. Schowengerdt, R.A. CHAPTER 8—Image Registration and Fusion. In Remote Sensing, 3rd ed.; Academic
Press: Cambridge, MA, USA, 2007; ISBN 978-0-12-369407-2.

http://dx.doi.org/10.3390/rs9060601
http://dx.doi.org/10.3390/s18041014
http://www.ncbi.nlm.nih.gov/pubmed/29597331
http://dx.doi.org/10.1080/0143116031000101558
http://dx.doi.org/10.1111/0031-868X.00199
http://dx.doi.org/10.14358/PERS.69.1.59
http://dx.doi.org/10.1080/01431160512331326684
http://dx.doi.org/10.1111/j.1477-9730.2011.00667.x
http://dx.doi.org/10.4028/www.scientific.net/AMM.392.808
http://dx.doi.org/10.1109/TPAMI.2005.125
http://www.ncbi.nlm.nih.gov/pubmed/15943430
http://dx.doi.org/10.1109/TIP.2011.2114353
http://www.ncbi.nlm.nih.gov/pubmed/21324784
http://dx.doi.org/10.3390/s18061794
http://www.ncbi.nlm.nih.gov/pubmed/29865253
http://dx.doi.org/10.14358/PERS.69.12.1359
http://dx.doi.org/10.1016/j.isprsjprs.2005.12.003

Sensors 2018, 18, 2511 24 of 24

44. Richards, J.A.; Jia, X. Remote sensing digital image analysis: An introduction. In Remote Sensing Digital Image
Analysis: An Introduction; Richards, J.A., Jia, X., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 39–74,
ISBN 978-3-642-30062-2.

45. Senthilnath, J.; Sindhu, S.; Omkar, S.N. GPU-based normalized cuts for road extraction using satellite imagery.
J. Earth Syst. Sci. 2014, 123, 1759–1769. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12040-014-0513-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	RPC-Based Orthorectification Using an FPGA Chip
	Proposed RPC Algorithm
	Parallel Computation of Orthorectification Using an FPGA
	Read Parameter Module
	Coordinate Transformation Module
	Interpolation Module

	Integration On-Board System

	Experiments
	Software and Hardware Environment
	Dataset
	Results

	Discussion
	Error Analysis
	Processing Speed Comparison
	Resource Consumption

	Conclusions
	References

