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Abstract: This paper presents a simple yet effective method for improving the performance of
zero-shot learning (ZSL). ZSL classifies instances of unseen classes, from which no training data
is available, by utilizing the attributes of the classes. Conventional ZSL methods have equally
dealt with all the available attributes, but this sometimes causes misclassification. This is because
an attribute that is effective for classifying instances of one class is not always effective for another
class. In this case, a metric of classifying the latter class can be undesirably influenced by the
irrelevant attribute. This paper solves this problem by taking the importance of each attribute for
each class into account when calculating the metric. In addition to the proposal of this new method,
this paper also contributes by providing a dataset for pose classification based on wearable sensors,
named HDPoseDS. It contains 22 classes of poses performed by 10 subjects with 31 IMU sensors
across full body. To the best of our knowledge, it is the richest wearable-sensor dataset especially
in terms of sensor density, and thus it is suitable for studying zero-shot pose/action recognition.
The presented method was evaluated on HDPoseDS and outperformed relative improvement of 5.9%
in comparison to the best baseline method.

Keywords: zero-shot learning; wearable sensor; IMU; pose classification; action recognition;
time-series; CNN

1. Introduction

Human-action recognition (HAR) has wide range of applications such as life log, healthcare,
video surveillance, and worker assistance. The recent advances in deep neural networks (DNN) have
drastically enhanced the performance of HAR both in terms of recognition accuracy and coverage
of the recognized actions [1,2]. DNN-based methods, however, sometimes face difficulty in practical
deployment; a system user sometimes wants to change or add target actions to be recognized, but it is
not so trivial for DNN-based methods to do so since they require large amount of training data of the
new target actions.

Zero-shot learning (ZSL) has a great potential to overcome this difficulty of dependence on
training data when recognizing a new target class [3–5]. Whereas in normal supervised-learning
setting, the set of classes contained in test data is exactly the same as that in training data, it is not
the case in ZSL; test data includes “unseen” classes, of which instances are not contained in training
data. In other words, if Ytrain is a set of class labels in training data and Ytest is that in test data,
then Ytrain = Ytest in normal supervised-learning framework, while Ytrain 6= Ytest in ZSL framework.
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(more specifically, Ytrain ∩ Ytest = φ in some cases, and Ytrain ⊂ Ytest in other cases). Unseen classes
are classified using attribute together with a description of the class based on the attributes, which is
usually given on the basis of external knowledge. Most typically it is manually given by humans [6,7].
The attribute represents a semantic property of the class. A classifier to judge the presence of the
attribute (or the probability of the presence) is learnt using training data. For example, the attribute of
“striped” can be learnt using the data of “striped shirts”, while the attribute of “four-legged” can be
learnt using the data of “lion”. Then an unseen class “zebra” can be recognized, without any training
data of zebra itself, by using these attribute classifiers as well as the description that zebras are striped
and four-legged.

The idea of ZSL has been applied also to human action recognition [8–12]. Indeed they successfully
demonstrated a capability of recognizing unseen actions, but the attributes used in these studies are
relatively task-specific and not so fundamental as to be able to recognize wider variety of human
actions. The potential of recognizing truly wide variety of actions becomes substantially bigger if
more fundamental and general set of attributes are utilized. To this end, we believe the status of each
human-body joint is appropriate attribute since any kinds of human action can be represented using
the set of each body joint’s status.

There are sophisticated vision-based methods such as [13–15] for estimating the status of body
joint, but the problem of occlusion is essentially inevitable for those approach. Moreover, they are not
suitable for the applications in which the target person moves around beyond the range of camera
view. Thus we utilize wearable sensors, which are free from occlusion problem, to estimate the statuses
of all the major human body joints. We aim at developing a method that flexibly recognizes wide
range of human actions with ZSL. This study especially focuses on the classification of static actions,
or poses, as the first step toward that goal (Some of the poses are sometimes referred to as “action” in
prior works, but we use the term “pose” in this study).

The biggest challenge in zero-shot pose recognition is the intra-class variation of the poses.
The difficulty of intra-class variation in general action recognition was discussed in [8]. For example,
when “folding arm”, one may clench his/her fists while another may not. The authors introduced
a method to deal with the intra-class variation by regarding attributes as latent variables. However,
it was for normal supervised learning and their implementation in ZSL scenario was naive
nearest-neighbor-based method that does not address this problem. The intra-class variation becomes
an even severe problem in ZSL especially when fine-grained attributes like each body joint’s status are
utilized. This is because the value of all the attributes should be specified in ZSL even though some of
the attribute actually may take arbitrary values. It is difficult to uniquely define the status of hands
for “folding arm”, but the attribute “hands” cannot be omitted because it is necessary for recognizing
other poses such as “pointing”. Conventional ZSL methods have dealt with all the attributes equally
even though some of them are actually not important for some of the classes. This sometimes causes
misclassification because a metric (e.g., likelihood, distance) to represent that a given sample belongs
to a class can be undesirably influenced by irrelevant attributes. This paper solves the problem by
taking the importance of each attribute for each class into account when calculating the metric.

The effectiveness of the method is demonstrated on a human pose dataset collected by us that
is named Hitachi-DFKI pose dataset, or HDPoseDS in short. HDPoseDS contains 22 classes of poses
performed by 10 subjects with 31 inertial measurement unit (IMU) sensors across full body. To the
best of our knowledge, this is the richest dataset especially in terms of sensor density for human pose
classification based on wearable sensors. Due to its sensor density, it gives us a chance of extracting
fundamental set of attributes for human poses, namely the status of body joints. Therefore, it is the
first dataset suitable for studying wearable-based zero-shot learning in which wide variety of full-body
poses are involved. We make this dataset publicly available to encourage the community for further
research in this direction. It is available at http://projects.dfki.uni-kl.de/zsl/data/.

The main contribution of this study is two folds. (1) We present a simple yet effective method
to enhance the performance of ZSL by taking the importance of each attribute for each class into

http://projects.dfki.uni-kl.de/zsl/data/
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account. We experimentally show the effectiveness of our method in comparison to baseline methods.
(2) We provide HDPoseDS, a rich dataset for human pose classification suitable especially for studying
wearable-based zero-shot learning. In addition to these major contributions, we also present a practical
design for estimating the status of each body joint; while conventional ZSL methods formulate
attribute-detection problem as 2-class classification (whether the attribute is present or not), we estimate
it under the scheme of either multiclass classification or regression depending upon the characteristics
of each body joint.

2. Related Work

We review three types of prior works in this section, namely ZSL, wearable-based action and pose
recognition, and wearable-based zero-shot action and pose recognition.

2.1. Zero-Shot Learning

The idea of ZSL was firstly presented in [3] followed by [6] and [16]. The major input sources have
been images and videos, but there have been some studies based on wearable sensors as reviewed later
in this section. The most fundamental framework established in the early days is as follows. Firstly
a function f : X 7→ A is learnt using labeled training data, where X denotes an input (feature) space,
and A denotes an attribute space. The definition of unseen classes is given manually, and it represents
a vector in the attribute space A. Then a function g : A 7→ Y is learnt using the vectors in A and their
labels. Here Y denotes a label space. When test data are given, their labels are estimated by applying
the learnt functions f and g subsequently. In early days, SVM was frequently used for learning f ,
and it’s replaced by DNN-based method these days. One of the most common methods for learning g
has been nearest neighbors [8,16–18]. This study also uses a nearest-neighbor-based method.

Extensive efforts have been made to improve ZSL methods from various viewpoints.
Socher et al. [19] invented a method that does not need manual definition of unseen classes by
utilizing natural language corpora (word2vec). Jayaraman and Grauman [20] took the unreliability of
attribute estimation into account by a random-forest based method. Semantic representations were
effectively enriched by using synonyms in [21], and by using textual descriptions as well as relevant
still images in [22]. Qin et al. [23] extended the semantic attributes to latent attributes in order to obtain
more discriminative representation as well as more balanced attributes. Tong et al. [24] were the first
to introduce generative adversarial network (GAN) [25] in ZSL. A problem of domain shift that is
common in ZSL was effectively dealt with in [10] and [12]. Liu et al. [26] studied cross-modal ZSL
between tactile data and visual data. Our idea of incorporating each attribute’s importance for each
class was inspired by [20] as their idea of incorporating attributes’ unreliability is similar in terms of
dealing with the characteristics of attributes.

2.2. Wearable-Based Action and Pose Recognition

As reviewed in [27–29], the mainstream of action recognition methods before DNN-based methods
become popular has consisted of two-stage approach; firstly they apply a sliding window to time-series
data and extract time domain features such as mean and standard deviation as well as frequency
domain features such as FFT coefficients, and secondly apply various machine-learning method such
as hidden Markov model (HMM) [30], support vector machine (SVM) [31], conditional random field
(CRF) [32], and an ensemble method [33].

In recent years, DNN-based approaches have become increasingly popular as they showed
overwhelming results [2]. In [34–36], they introduced a way to employ convolutional neural networks
(CNN) to automatically extract efficient features from time-series data. Ordóñez et al. [37] proposed
a method to more explicitly deal with the temporal dependencies of the human actions by utilizing
long short-term memory (LSTM). Hammerla et al. [38] also introduced a LSTM-based method and
gave the performance comparison among DNN, CNN, and LSTM as well as the influence of the
network parameters in each method. Following the findings from these researches, we also utilize
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CNN for estimating the status of each body joint. The details of the implementation will be given in
the following section.

2.3. Wearable-Based Zero-Shot Action and Pose Recognition

One of the earliest attempts to apply the idea of ZSL to human activity recognition based on
wearable sensors is [17] and their subsequent work [9]. They firstly used nearest-neighbor-based
approach to recognize activities using attributes, and later enhanced the method to incorporate
temporal dependency by using CRF. Wang et al. [39] proposed a nonlinear compatibility based method,
where they first project the features extracted from sensor readings to a hidden space by a nonlinear
function, and then calculate the compatibility score based on the features in the hidden space and
prototypes in semantic space. Al-Naser et al. [40] introduced a ZSL model for recognizing complex
activities by using simpler actions and surrounding objects as attributes.

These prior works successfully showed a great potential of realizing zero-shot action recognition
based on wearable sensors. However, on one hand the attributes used in those studies are neither
fine-grained nor fundamental enough so as to represent truly wide variety of human actions or poses.
On the other hand, the methods used in those studies do not take the attributes’ importance into
account, which matters more especially when using fine-grained attributes to represent diverse poses.

3. Dataset: HDPoseDS

3.1. Sensor

Our goal is to use all the major human-body joints as attributes to represent full-body poses. Thus,
a very dense sensor set across full-body is required. Perception Neuron from Noitom Ltd. is ideal
for this purpose (https://neuronmocap.com/). It has 31 IMU sensors across full body; 1 on head,
2 on shoulders, 2 on upper arms, 2 on lower arms, 2 on hands, 14 on fingers, 1 on spine, 1 on hip,
2 on upper legs, 2 on lower legs, 2 on feet (Figure 1). Each IMU is composed of a 3-axis accelerometer,
3-axis gyroscope and 3-axis magnetometer. We use 10 dimensional data from each IMU including
3 acceleration data, 3 gyro data, and 4 quaternion data. This rich set of sensors are especially helpful in
applications where detailed full-body pose-recognition is desired. For example, in workers’ training,
novice workers can learn to avoid undesirable poses that can cause safety or quality issues with the
help of a pose recognition system.

Figure 1. Sensor displacement in Perception Neuron.

3.2. Target Poses

In order to test the generalization capability of zero-shot models, we constructed a human pose
dataset named HDPoseDS using Perception Neuron. We newly built the dataset because existing
wearable-sensor datasets are not collected with so densely-attached sensors as to be used for extracting
fundamental set of attributes for human poses, namely the status of each body joint. We defined 22 poses
such that various body parts are involved and thus the generalization capability of the developed method
in zero-shot scenario can be appropriately tested (see Figure 2 for appearance and Table 1 for names).

https://neuronmocap.com/
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Figure 2. Poses in HDPoseDS. The numbers under the figures correspond to the numbers in Table 1.

Table 1. Intra-class variation observed in data collection. Poses are sometimes represented in slightly
different manner depending on the subjects. L and R in the pose names means Left and Right.

ID Pose Variation Involved Body Joint

1 Standing no big variation -

2 Sitting hands on a table, on knees, or straight down elbows, hands

3 Squatting hands hold on to sth, on knees, or straight down elbows, hands

4, 5 Raising arm (L, R) a hand on hip, or straight down elbow, hand

6, 7 Pointing (L, R) a hand on hip, or straight down elbow, hand

8 Folding arm
wrist curled or straight,
hands clenched or normal

wrist,
hands

9 Deep breathing head up or front head

10 Stretching up head up or front head

11 Stretching forward waist straight or half-bent waist

12 Waist bending no big variation -

13, 14 Waist twisting (L, R)
head left (right) or front,
arms down or left (right)

head,
shoulders, elbows

15, 16 Heel to back (L, R)
a hand hold on to sth, straight down,
or stretch horizontally shoulder, elbow, hand

17, 18 Stretching calf (L, R) head front or down head

19 Boxing head front or down head

20 Baseball hitting head left or front head

21 Skiing head front or down head

22 Thinking
head front or down,
wrist reverse curled or normal,
hand clenched or normal

head,
wrist,
hands
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We had 10 subjects, and each subject performed all the 22 poses for about 30 s. All of the 10 subjects
were males, but from 4 different countries. The body heights of the subjects ranged from 160 cm to
185 cm. The ages were from 23 years old to 37 years old. To the best of our knowledge, this is the
richest dataset especially in terms of sensor density (31 IMU across full body). Therefore, it is the first
dataset suitable for studying wearable-based zero-shot learning in which wide variety of full-body
poses are involved. We make this dataset publicly available to encourage the community for further
research in this direction. It is available at http://projects.dfki.uni-kl.de/zsl/data/.

During the data collection, only brief explanation about each pose was given, and thus we
observed some intra-class variation in the dataset as summarized in Table 1.

4. Proposed Method

Following the standard scheme of ZSL, our approach also consists of two stages; attribute
estimation based on sensor readings, and class label estimation using estimated attributes. We explain
the two stages one by one in detail. In this section, we first explain the sensor to be used in our study,
then describe the two stages in detail.

4.1. Attribute Estimation

We use 14 major human-body joints as attributes to represent various poses as summarized in the
first column of Table 2. Unlike conventional ZSL methods, where 2-class classification is always used
(whether an attribute is present or not), we use either multiclass classification or regression depending
upon the characteristics of each body joint as shown in Table 2. For the joints that have only one degree
of freedom like knees (or at least whose major movement is restricted to one dimension), it is more
suitable and beneficial to use regression to estimate the status. This allows us to represent intermediate
status of the joint by just specifying an intermediate value, which enables to describe detailed status
of the joint, rather than just “straight” and “curl”, to represent more complicated poses in the future.
For the joints that have more than 2 degrees of freedom like head, we use multiclass classification. It is
indeed possible to replace this by 2-class classification on each status, but it’s more natural to formulate
this as a multiclass classification problem since each status are mutually exclusive (e.g., if head is “up”,
then it cannot be “down” at the same time).

We use CNN to deal with multivariate time-series data. Previous studies [34,37,38] first dealt
with different modalities individually by applying convolution only on temporal direction (a kernel
size of CNN is k× 1), and integrated the output from all the modality in fully connected layers that
appear right before the classification layer. However, as shown in Figure 3, we integrate the readings
from different sensor modalities in the earlier stage using CNN (a kernel size of CNN is k1 × k2)
since we experimentally found that it gives better performance. We construct one network per one
joint, resulted in 14 networks to estimate the status of all the joints.

Table 2. The 14 body joints used as attributes and the types and values to represent their status.
Note that each joint has left part and right part except head and waist.

Joint Type Value

head classification up, down, left, right, front
shoulder classification up, down, left, right, front
elbow regression 0 (straight)–1 (bend)
wrist regression 0 (reverse curl)–1 (curl)
hand classification normal, grasp, pointing
waist classification straight, bend, twist-L, twist-R
hip joint regression 0 (straight)–1 (bend)
knee regression 0 (straight)–1 (bend)

http://projects.dfki.uni-kl.de/zsl/data/
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The sliding window size in this study is 60, which corresponds to 1 s. The number of modality
(referred to as M in Figure 3) is s× 10, where s is the number of used IMU for each joint. We use
4 convolution layers with 25, 20, 15, and 10 channels. One fully connected layer with 100 nodes
is inserted before the final classification or regression layer. The activation function is leaky ReLU
throughout the network but the regression layer has sigmoid activation to squash the values to [0, 1].
We use cross entropy loss for multiclass classification, and mean absolute loss for regression. They are
optimized using MomentumSGD with momentum value of 0.9. Batch normalization and drop out is
used for regularization. The kernel size in convolution layers are 3× 10 for hands and 3× 3 for all the
rest. We use the wider kernel for hands because the number of IMU used for classifying hands’ status
is significantly larger than that for other joints.

Figure 3. Architecture of time-series CNN for basic pose recognition (attribute estimation).

4.2. Pose Classification with Attributes’ Importance

4.2.1. Naive Formulation

We use nearest-neighbor-based method for zero-shot pose classification. The input to pose
classification is the output from attribute estimation explained in Section 4.1. The output dimension
from the networks for each joint is the number of classes if the joint’s status is estimated by
multiclass classification, and 1 if it is by regression, resulting in a 33 dimensional vector in total.
Let a(n) = {a(n)1 , · · · , a(n)D } be an attribute vector of n’th sample (D = 33 in this study). Please note that

∀a(n)d ∈ [0, 1] since we squash the values by softmax and sigmoid function for multiclass classification
and regression, respectively. For ZSL, we need extra information for estimating pose labels using
vectors in attribute space. Following some of the previous works [6,7,9,17], we simply use a manually
defined table for this as shown in Table 3 and convert them to corresponding 33-dimensional vectors
(one-of-K representation is used for multiclass classification part).

For normal nearest-neighbor-based method, a given test data x is first converted to an attribute
vector a using the learnt attribute estimation networks, and then the distance between a and the ith
training data v(i) is calculated as follows.

d(a, v(i)) = (
D

∑
d
|ad − v(i)d |

p)1/p, (1)

where D is the dimension of an attribute space, and xd denotes the d’th element of vector x. For seen
classes, v(i) ∈ RD is a training data mapped to the attribute space using the learnt attribute estimation
networks, while for unseen classes it is a vector created based on the pose definition table (Table 3).
p is usually 1 or 2. Then the given data x is classified to the following class.

C(arg min
i

d(a, v(i))), (2)

where C(i) gives the class to which ith training data belong.
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Table 3. Definition of the poses in HDPoseDS. (L) denotes left part and (R) denotes right part. For joints,
He: Head, S: Shoulder, E: Elbow, Wr: Wrist, Ha: Hand, Wa: Waist, HJ: Hip Joint, K: Knee. For joint
status, F: Front, U: Up, D: Down, L: Left, R: Right, N: Normal, G: Grasp, P: Pointing, S: Straight, B: Bend,
TwL (R): Twist to Left (Right).

Pose\Joint He S(L) S(R) E(L) E(R) Wr(L) Wr(R) Ha(L) Ha(R) Wa HJ(L) HJ(R) K(L) K(R)

1 Standing F D D 0 0 0.5 0.5 N N S 0 0 0 0
2 Sitting F D D 0 0 0.5 0.5 N N S 0.5 0.5 0.5 0.5
3 Squatting F D D 0 0 0.5 0.5 N N S 1 1 1 1
4 Raising arm (L) F U D 0 0 0.5 0.5 N N S 0 0 0 0
5 Raising arm (R) F D U 0 0 0.5 0.5 N N S 0 0 0 0
6 Pointing (L) F F D 0 0 0.5 0.5 P N S 0 0 0 0
7 Pointing (R) F D F 0 0 0.5 0.5 N P S 0 0 0 0
8 Folding arm F D D 0.5 0.5 0.5 0.5 N N S 0 0 0 0
9 Deep breathing F L R 0 0 0.5 0.5 N N S 0 0 0 0
10 Stretching up F U U 0 0 0 0 N N S 0 0 0 0
11 Stretching forward F F F 0 0 0 0 N N S 0 0 0 0
12 Waist bending F D D 0 0 0.5 0.5 N N B 0 0 0 0
13 Waist twisting (L) L L L 0 0.5 0.5 0.5 N N TwL 0 0 0 0
14 Waist twisting (R) R R R 0.5 0 0.5 0.5 N N TwR 0 0 0 0
15 Heel to back (L) F D D 0 0 0.5 0.5 G N S 0 0 1 0
16 Heel to back (R) F D D 0 0 0.5 0.5 N G S 0 0 0 1
17 Stretching calf (L) F F F 0 0 0 0 N N S 0 0.3 0 0.3
18 Stretching calf (R) F F F 0 0 0 0 N N S 0.3 0 0.3 0
19 Boxing F D D 1 1 0.5 0.5 G G S 0 0 0 0
20 Baseball hitting L D D 0.5 0.5 0.5 0.5 G G S 0.5 0 0.5 0
21 Skiing F D D 0.5 0.5 0.5 0.5 G G S 0.3 0.3 0.3 0.3
22 Thinking F D D 0.5 1 0.5 0 N N S 1 1 0.5 0.5

4.2.2. Incorporating Attributes’ Importance

As summarized in Table 1, sometimes there is intra-class variation in the poses. In normal
supervised learning setting, this intra-class variation can be naturally learnt as training data cover
various instances of the given class. However, it is not possible to do so in ZSL since there is no training
data other than a definition table of the unseen classes. In this situation, it is not appropriate to equally
deal with all the attribute because not all the attributes are equally important for classifying a particular
class. For example, for “squatting” class, the status of hip joints and knees are important, and the
values are expected to be always 1 (bent). On the other hand, the status of elbows are not important
since it is still “squatting” regardless of the status of elbows; the values may be 1 (bent in order to
hold on to something or to put hands on knees) or 0 (straight down to the floor). In other words,
the attribute values of elbows do not matter to tell whether given test data belong to squatting class or
not. Please note that we cannot simply omit the attribute “elbow” because it is indeed necessary for
other poses such as “folding arm”. Therefore, we need to design a new distance metric so that we can
incorporate each attributes’ importance for each class.

We formulate this as follows.

d(a, v(i)) =
1

W(i)
ai

(
D

∑
d

wai(d, i)wrc(d)|ad − v(i)d |
p)1/p + λ

1

W(i)
ai

, (3)

W(i)
ai = ∑

j
w′ai(j, i), (4)

wrc(d) =

{
1 if d’th attribute is given by regression

0.5 otherwise,
(5)
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where w′ai(j, i) denotes the importance of joint j for the class C(i). It is given manually in this study
as shown in Table 4. It may be indeed an extra work to manually define the attribute importance,
but actually it does not require too much extra time because anyway the attribute table (Table 3) should
be manually defined as it was the case in many previous works. In addition, it is neither difficult
because it is natural to assume that the person, or the system user, who defines the attribute table
(Table 3) has enough knowledge not only on the definition of the target poses but also on which
attribute (body-joint status) is important for each pose. It may be also possible to infer the attributes’
importance either from training data or external resources (e.g., word embedding) rather than manually
defining them, but it lies beyond the scope of this study at this moment.

We use binary values for attributes’ importance for simplicity, but it is easy to extend it to
continuous numbers. wai(d, i) is the importance of attribute d for the class C(i) and the value of it is
copied from w′ai(j, i), where d’th attribute comes from joint j . Please note that it depends not only on d
but also on C(i). wrc(d) is 0.5 if the d’th attribute is calculated using multiclass classification because the
total distance with regards to the joint j from which the d’th attribute comes from (∑d∈jointj |ad − v(i)d |)
ranges from 0 to 2, whereas the distance with regard to the joint whose status is estimated using
regression ranges from 0 to 1. Wai can be interpreted as the total number of “valid” joints to be
used for classification of class C(i). Therefore, the first term on the right-hand side in Equation (3)
can be interpreted as the average distance between a and v(i) over “valid” attribute that comes
from “valid” joints. The second term is introduced to penalize the class that uses too few attributes.
If test data have the same distance to two classes that have different numbers of important attributes,
this term encourages to classify the data to the class which has larger number of important attributes,
which indicates more detailed definition of the pose. We use λ = 0.1 and p = 1 in this study. Note that
the increase of the computational cost compared to the naive formulation (Equation (1)) is trivial
because we just multiply constant numbers when calculating the distances.

Table 4. Attributes’ importance.

Pose He S(L) S(R) E(L) E(R) Wr(L) Wr(R) Ha(L) Ha(R) Wa HJ(L) HJ(R) K(L) K(R)

1 Standing 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 Sitting 1 1 1 0 0 0 0 0 0 1 1 1 1 1
3 Squatting 1 1 1 0 0 0 0 0 0 1 1 1 1 1
4 Raising arm (L) 1 1 1 1 0 1 0 1 0 1 1 1 1 1
5 Raising arm (R) 1 1 1 0 1 0 1 0 1 1 1 1 1 1
6 Pointing (L) 1 1 1 1 0 1 0 1 0 1 1 1 1 1
7 Pointing (R) 1 1 1 0 1 0 1 0 1 1 1 1 1 1
8 Folding arm 1 1 1 1 1 0 0 0 0 1 1 1 1 1
9 Deep breathing 0 1 1 1 1 1 1 1 1 1 1 1 1 1
10 Stretching up 0 1 1 1 1 1 1 1 1 1 1 1 1 1
11 Stretching forward 1 1 1 1 1 1 1 1 1 0 1 1 1 1
12 Waist bending 0 0 0 0 0 0 0 0 0 1 1 1 1 1
13 Waist twisting (L) 1 0 0 0 0 0 0 0 0 1 1 1 1 1
14 Waist twisting (R) 1 0 0 0 0 0 0 0 0 1 1 1 1 1
15 Heel to back (L) 1 1 0 1 0 0 0 0 0 1 1 1 1 1
16 Heel to back (R) 1 0 1 0 1 0 0 0 0 1 1 1 1 1
17 Stretching calf (L) 0 1 1 1 1 1 1 1 1 1 1 1 1 1
18 Stretching calf (R) 0 1 1 1 1 1 1 1 1 1 1 1 1 1
19 Boxing 0 1 1 1 1 1 1 1 1 1 1 1 1 1
20 Baseball hitting 0 0 0 1 1 0 0 1 1 1 1 1 1 1
21 Skiing 0 1 1 1 1 1 1 1 1 0 1 1 1 1
22 Thinking 0 1 1 0 1 0 0 0 0 0 1 1 1 1
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5. Experiment

5.1. Evaluation Scheme

We use HDPoseDS for evaluation. The evaluation procedure is as follows.

(1). All the input data are converted to attribute vectors using the neural networks explained in
Section 4.1. The sliding window size is 60, which corresponds to 1 s, and it’s shifted by 30 (0.5 s).
This ends up with roughly 590 (= (30/0.5− 1)× 10) attribute vectors per pose since HDPoseDS
contains data from 10 subjects and each subject performed roughly 30 s for each pose.

(2). For each class c, we construct a set of training data by combining the data from all the other classes
than c and the pose definition of c based on attributes (Table 3). We use class c’s data as test data.

(3). The labels of the test data are estimated using the method explained in Section 4.2.
(4). We repeat this for all the 22 classes.
(5). We calculate the F-measure for each class based on the precision and recall rate.

Please note that we do not assume that the possible output classes are only unseen (test) classes;
we assume that the seen (training) classes are also potential output classes during testing. Since we do
not use instances of seen (training) classes in testing, this evaluation scheme is not exactly the same as
the generalized zero-shot learning (G-ZSL) [41,42], in which the instances of seen classes are also used
in testing. It is, however, more similar to G-ZSL than normal ZSL in a sense that the target classes in
testing include not only unseen (test) classes but also seen (training) classes.

In addition to this, we also investigate how the proposed method works in few-shot learning
scenario, where only a small number of training data are available. The evaluation procedure is the
same as the ZSL case except the step (2); instead of including the attribute definition of c in the training
data, we include k samples from class c’s data in k-shot learning scenario, and all the other data of class
c are used for testing. To choose the k samples, firstly we randomly permutate class c’s data. Then we
use the l’th (l = 1, 2, ..., bNc/kc) k samples for training and the remaining (Nc − k) samples for testing,
where Nc is the number of class c’s data. Then we proceed to step 3 The estimation result for class c is
averaged, and then we proceed to step (4).

The performance of the proposed method is compared with three baseline methods. The first
one is one of the most frequently used method in ZSL studies, which is called “direct attribute
prediction (DAP)” introduced in [7]. Please note that we did not compare with indirect attribute
prediction (IAP) that is also introduced in [7]. This is because, as the authors of [7] stated, IAP is
not appropriate for the case where training classes are also potential output class during testing.
The other two baseline methods are nearest-neighbor-based, which is also common in ZSL studies.
The proposed method is also based on a nearest-neighbor method. The first nearest-neighbor-based
baseline is a naive nearest-neighbor-based method, in which the distance between samples are
calculated using Equation (1) with weights wrc(d). The second nearest-neighbor-based baseline
is the one that uses random attributes’ importance. We randomly generate either 0 or 1 for each w′ai(j, i)
in Equation (4). For this baseline method, we test 1000 times using different random weights and
report the average F-measure of the 1000 tests. For both of the proposed and the baseline methods,
we use a prototype representation (mean vector) of each class introduced in [43], rather than all the
training data themselves, in order to deal with the severe imbalance of number of training samples.
We tested all the method using a single desktop PC with Intel R© CoreTM i7-8700K CPU and NVIDIA
GeForce GTX 1080 GPU.

5.2. Results and Discussion

The result of ZSL is summarized in Table 5. The details are given in Appendix A. As shown in the
table, our proposed method outperformed all the baseline methods in average F-measure. In addition,
the proposed method could run at about 20 Hz, which is near real-time. The comparison with the
naive nearest-neighbor-based method (without attributes’ importance) shows the effectiveness of the
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attributes’ importance. The performance of the baseline that uses random attributes’ importance shows
that the attributes’ importance should be carefully designed. In other words, our method enables users
to incorporate appropriate domain knowledge on the target classes so that the performance of the
model is enhanced. Compared to DAP [7], the proposed method showed more stable performance on
different poses.

The improvement compared to the best baseline (nearest neighbor without attributes’ importance)
was 4.55 points, which corresponds to 5.91% relative improvement. In addition, the proposed method
achieved higher scores in majority of the poses compared to this baseline. Especially a big improvement
was observed in “Stretching calf(L)” and “Stretching calf(R)” poses. This was because there were
unignorable number of subjects who faced down when performing these poses though they were
supposed to face forward according to the definition of the pose given in Table 3. Our method could
successfully deal with this intra-class variation simply by ignoring the status of head and focusing
more on the other important attributes.

On the other hand, there are some poses whose F-measure dropped by incorporating the attributes’
importance. Among those, the biggest drop was observed in pose “Folding arm”. This was caused
by the low estimation accuracy of the important attributes for folding-arm pose; the statuses of
shoulders in folding-arm pose were sometimes estimated as “front” while they had to be “down”,
probably because arms were slightly pulled forward to make the space for hands at underarms.
Incorporating attributes’ importance means focusing more on the important attributes for each
pose and ignoring the other attributes. Therefore, in case the attribute estimation accuracy is not
good for those important attributes, the pose classification is done by relying too much on the
unreliable attributes. This problem may be addressed by integrating attributes’ unreliability that
was introduced in [20].

Table 5. The evaluation result (F-measure) of ZSL. Abbreviations are as follows. DAP: direct attribute
prediction, NN: nearest neighbor, AI: attributes’ importance. The bold numbers represent the best score
or the one close to the best (the difference is less than 0.01) for each pose.

Pose DAP [7] NN w/o AI NN w/random AI NN w/AI (Proposed)

Standing 0.7148 0.6953 0.3639 0.6944
Sitting 0.4072 0.6796 0.4567 0.7438
Squatting 0.8922 0.9745 0.7637 1.0000
RaiseArmL 1.0000 0.9791 0.4212 0.9854
RaiseArmR 0.9973 0.9662 0.4250 0.9522
PointingL 0.9937 0.9541 0.4090 0.9721
PointingR 0.9629 0.9991 0.4688 0.9947
FoldingArm 0.4773 0.5345 0.2206 0.4387
DeepBreathing 0.9061 0.9734 0.4457 0.9804
StretchingUp 0.9913 0.9861 0.5947 1.0000
StretchingForward 0.3703 0.8778 0.3625 0.8707
WaistBending 1.0000 0.9735 0.3795 0.9612
WaistTwistingL 0.4241 0.2171 0.0995 0.2642
WaistTwistingR 0.3639 0.1547 0.1150 0.2928
HeelToBackL 1.0000 1.0000 0.5458 0.9787
HeelToBackR 0.9931 0.8710 0.4042 0.9729
StretchingCalfL 0.6647 0.5463 0.4160 0.8068
StretchingCalfR 0.9570 0.5956 0.4498 0.8897
Boxing 0.6549 0.6748 0.5434 0.7494
BaseballHitting 0.5856 0.6957 0.4328 0.7739
Skiing 0.5277 0.7977 0.6334 0.7830
Thinking 0.8241 0.7801 0.6420 0.8230

avg. 0.7595 0.7694 0.4361 0.8149
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The result of few-shot learning is shown in Figure 4. Here we only compared the proposed
method with the best performed baseline, which is a nearest-neighbor-based method without attribute
importance. It shows that incorporating attributes’ importance consistently improves the performance
also in few-shot learning scenario. The improvement is especially bigger when number of shots
(training data) is less, and the impact of attributes’ importance becomes smaller as number of available
training data increases. This is because the intra-class variation is reflected more in the training data
as the number of available training increases and the classifier can naturally learn which attribute
is actually important. Another interesting observation is that the F-measure in ZSL scenario was
better than that in one-shot learning scenario regardless of with or without attributes’ importance.
This implies that under a situation where only extremely limited number of training data is available,
human knowledge (pose definition table) can give a better compromise than just relying on the small
number of training data.

Figure 4. The results of few-shot learning.

6. Conclusions

This paper has presented a simple yet effective method for improving the performance of ZSL.
In contrast to the conventional ZSL methods, the proposed method takes the importance of each
attribute for each class into account, which becomes more critical when using a set of fine-grained
attributes in order to represent wide variety of human poses and actions. The experimental results on
our dataset HDPoseDS have shown that the proposed method is effective not only for ZSL scenario,
but also for few-shot learning scenario. The results as well as the provided dataset are expected to
promote further researches toward practical development of human-action-recognition technology
under the situation of limited training data.
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Appendix A. Detailed Evaluation Results

We show the confusion matrices of the 4 methods mentioned in Section 5.
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Table A1. The confusion matrix of the DAP [7]. The numbers in the first row and the first column
correspond to the pose IDs shown in Table 1. T denotes total number in rows and columns. P and
R denote precision and recall, respectively. The number in the bottom right is the accuracy (sum of
diagonal elements divided by the total numbers). Please note that this is different from the F-measure.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T R

1 584 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 584 1.00

2 48 135 126 0 0 0 0 71 13 0 0 0 0 0 0 0 0 0 0 19 6 110 528 0.26

3 0 0 538 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 542 0.99

4 0 0 0 540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 540 1.00

5 0 0 0 0 548 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 548 1.00

6 0 0 0 0 0 553 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 553 1.00

7 0 0 0 0 0 0 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 571 1.00

8 0 0 0 0 0 0 0 257 0 0 0 0 0 0 0 0 154 0 169 0 0 0 580 0.44

9 0 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 531 1.00

10 0 0 0 0 0 0 0 0 0 569 0 0 0 0 0 0 0 0 0 0 0 0 569 1.00

11 0 0 0 0 0 0 0 0 0 10 127 0 0 0 0 0 419 0 0 0 0 0 556 0.23

12 0 0 0 0 0 0 0 0 0 0 0 522 0 0 0 0 0 0 0 0 0 0 522 1.00

13 197 0 0 0 3 0 44 77 11 0 3 0 148 0 0 0 0 0 27 0 31 0 541 0.27

14 221 0 0 0 0 0 0 88 86 0 0 0 9 121 0 0 0 0 19 0 0 0 544 0.22

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 527 0 0 0 0 0 0 0 527 1.00

16 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 512 0.99

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 568 0 0 0 0 0 568 1.00

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 568 0 0 0 0 568 1.00

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 539 0 0 0 539 1.00

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 110 219 127 0 507 0.43

21 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 243 3 291 0 541 0.54

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 106 513 619 0.83

T 1050 135 664 540 551 560 615 497 641 579 130 522 157 121 527 505 1141 619 1107 241 562 626 12,090

P 0.56 1.00 0.81 1.00 0.99 0.99 0.93 0.52 0.83 0.98 0.98 1.00 0.94 1.00 1.00 1.00 0.50 0.92 0.49 0.91 0.52 0.82 0.78

Table A2. The confusion matrix of the nearest-neighbor-based baseline without attributes’ importance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T R

1 543 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 584 0.93

2 0 316 22 0 0 0 0 57 0 0 0 0 0 0 0 0 0 0 0 1 72 60 528 0.60

3 0 1 536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 542 0.99

4 0 0 0 540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 540 1.00

5 9 0 0 0 515 0 0 0 0 8 11 0 5 0 0 0 0 0 0 0 0 0 548 0.94

6 0 0 0 2 0 551 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 553 1.00

7 0 0 0 0 1 0 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 571 1.00

8 0 0 0 0 0 0 0 306 0 0 33 0 65 0 0 0 0 0 176 0 0 0 580 0.53

9 0 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 531 1.00

10 0 0 0 0 0 0 0 0 0 569 0 0 0 0 0 0 0 0 0 0 0 0 569 1.00

11 0 0 0 0 0 0 0 0 0 8 535 0 0 0 0 0 13 0 0 0 0 0 556 0.96

12 0 0 0 0 0 0 0 0 0 0 0 495 0 3 0 0 9 12 0 0 3 0 522 0.95

13 195 0 0 11 2 0 0 60 17 0 0 0 108 121 0 0 0 0 27 0 0 0 541 0.20

14 165 0 0 10 0 0 0 51 12 0 4 0 190 56 0 0 0 0 56 0 0 0 544 0.10

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 527 0 0 0 0 0 0 0 527 1.00

16 66 0 0 0 0 51 0 0 0 0 0 0 0 0 0 395 0 0 0 0 0 0 512 0.77

17 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 298 217 0 0 0 0 568 0.52

18 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 203 338 0 0 0 0 568 0.60

19 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0 0 0 0 496 0 0 0 539 0.92

20 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 170 272 16 1 507 0.54

21 0 4 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 6 1 485 0 541 0.90

22 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 99 438 619 0.71

T 978 402 558 563 518 602 570 565 560 585 663 495 454 180 527 395 523 567 931 275 675 504 12,090

P 0.56 0.79 0.96 0.96 0.99 0.92 1.00 0.54 0.95 0.97 0.81 1.00 0.24 0.31 1.00 1.00 0.57 0.60 0.53 0.99 0.72 0.87 0.78
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Table A3. The confusion matrix of the nearest-neighbor-based baseline with random
attributes’ importance. The numbers are the average of 1000 times. The precision and recall were
calculated based on these averaged numbers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T R

1 331 0 0 42 49 30 40 6 14 7 5 13 12 4 12 11 2 1 5 0 0 0 584 0.57

2 17 206 78 31 8 13 4 28 3 1 1 5 5 4 7 4 1 4 8 8 42 48 528 0.39

3 8 35 437 6 2 2 2 3 1 0 0 1 1 0 8 5 0 0 1 1 5 24 542 0.81

4 56 0 1 303 24 41 17 9 15 27 11 4 8 3 3 8 3 2 4 0 0 0 540 0.56

5 66 0 0 26 293 19 39 5 11 25 21 14 7 3 8 2 5 3 1 0 0 0 548 0.53

6 69 1 1 77 26 245 18 16 22 15 14 5 11 6 8 8 2 3 7 1 0 0 553 0.44

7 69 0 0 25 57 21 291 9 23 6 20 10 12 5 6 7 5 3 3 1 0 0 571 0.51

8 42 2 2 46 28 33 20 109 19 13 43 4 38 19 7 8 13 7 103 11 13 1 580 0.19

9 45 0 0 50 45 32 36 12 225 12 16 9 16 8 5 6 5 4 3 2 0 0 531 0.42

10 14 0 0 46 29 13 7 3 5 354 53 4 1 1 5 2 18 11 0 0 0 0 569 0.62

11 21 0 0 23 35 17 28 7 9 54 233 6 3 1 3 2 74 40 0 1 0 0 556 0.42

12 78 1 0 27 55 16 29 4 14 9 12 168 20 12 25 10 20 14 3 1 3 0 522 0.32

13 118 1 1 44 44 30 36 37 32 8 14 26 41 43 12 15 4 4 24 4 4 0 541 0.08

14 83 0 1 38 43 36 31 41 33 11 17 26 62 42 15 16 7 4 26 8 4 1 544 0.08

15 72 2 6 32 28 24 13 5 9 11 6 23 8 3 263 6 3 4 6 3 1 0 527 0.50

16 92 2 7 40 29 37 26 9 27 9 11 17 11 3 11 162 8 4 6 0 1 0 512 0.32

17 8 0 0 7 11 5 9 1 4 27 134 8 1 1 2 2 232 116 0 0 0 0 568 0.41

18 6 0 0 8 9 4 6 2 5 26 109 7 2 1 2 1 143 234 0 1 0 0 568 0.41

19 16 1 1 11 5 13 8 51 6 2 1 3 12 7 5 3 0 0 360 17 17 1 539 0.67

20 7 5 3 7 3 6 4 34 3 4 5 3 7 8 21 1 2 10 138 165 57 15 507 0.32

21 10 29 4 6 4 5 4 12 1 1 1 7 9 4 7 4 1 0 64 15 343 9 541 0.63

22 7 87 61 5 2 2 4 6 1 0 1 2 2 1 3 5 0 2 24 16 50 340 619 0.55

T 1236 373 603 900 829 643 669 407 480 622 728 365 290 178 437 288 548 473 787 254 541 439 12,090

P 0.27 0.55 0.72 0.34 0.35 0.38 0.43 0.27 0.47 0.57 0.32 0.46 0.14 0.23 0.60 0.56 0.42 0.50 0.46 0.65 0.63 0.77 0.44

Table A4. The confusion matrix of the proposed method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T R

1 526 0 0 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0 0 0 0 0 584 0.90

2 8 421 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0 1 0 4 12 36 528 0.80

3 0 0 542 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 542 1.00

4 0 0 0 540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 540 1.00

5 16 0 0 0 498 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 548 0.91

6 0 0 0 1 0 523 0 0 0 0 0 0 28 1 0 0 0 0 0 0 0 0 553 0.95

7 0 0 0 0 0 0 565 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 571 0.99

8 0 0 0 5 0 0 0 188 0 0 0 0 179 120 0 0 0 0 88 0 0 0 580 0.32

9 0 0 0 0 0 0 0 0 525 0 0 0 6 0 0 0 0 0 0 0 0 0 531 0.99

10 0 0 0 0 0 0 0 0 0 569 0 0 0 0 0 0 0 0 0 0 0 0 569 1.00

11 0 0 0 0 0 0 0 0 0 0 478 0 2 0 0 0 72 4 0 0 0 0 556 0.86

12 36 0 0 0 0 0 0 0 0 0 0 483 0 0 0 0 0 0 0 0 3 0 522 0.93

13 193 0 0 10 0 0 0 10 9 0 0 0 191 191 0 0 0 0 1 0 0 0 605 0.32

14 103 0 0 0 0 0 0 5 3 0 6 0 291 136 0 0 0 0 0 0 0 0 544 0.25

15 22 0 0 0 0 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 0 527 0.96

16 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 485 0 0 0 0 0 0 512 0.95

17 0 0 0 0 0 0 0 0 0 0 51 0 2 0 0 0 449 66 0 0 0 0 568 0.79

18 0 0 0 0 0 0 0 0 0 0 7 0 24 1 0 0 24 512 0 0 0 0 568 0.90

19 0 0 0 0 0 0 0 28 0 0 0 0 37 0 0 0 0 0 474 0 0 0 539 0.88

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 163 344 0 0 507 0.68

21 0 69 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 34 388 0 541 0.72

22 0 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 458 619 0.74

T 931 604 542 556 498 523 565 277 540 569 542 483 905 449 505 485 545 583 726 382 450 494 12,154

P 0.56 0.70 1.00 0.97 1.00 1.00 1.00 0.68 0.97 1.00 0.88 1.00 0.21 0.30 1.00 1.00 0.82 0.88 0.65 0.90 0.86 0.93 0.81
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