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Abstract: In this paper, a generalized L-shaped nested array based on the fourth-order difference
co-array is proposed for two-dimensional (2D) directions’ estimation. The new structure framework
makes full use of the physical sensor locations to form a virtual uniform rectangular array (URA)
as large as possible. As it utilizes the fourth-order difference instead of the traditional second-order
difference result, this structure framework can acquire a much higher degree-of-freedom (DOF) than
the existing 2D sparse arrays. The proposed structures have two advantages. One is that the subarrays
can be chosen as any nested-class arrays, which makes the sparse array design more flexible. We can
choose arbitrary subarray structures for DOF enhancement purposes. Another advantage is that the
relative position of two subarrays can be set as any integral multiple of half wavelength. This means
that two subarrays can be located as far as possible so that the relative influence between two physical
subarrays can be ignored. The DOFs of several typical generalized L-shaped nested arrays (GLNAs)
are compared in this paper. By setting the subarrays as different types and the relative position as a
special value, a special GLNA is presented. Simulations show that GLNAs have obvious superiority
in 2D direction-of-arrival estimation.

Keywords: fourth-order difference; two-dimensional sparse array; quasi-stationary signal

1. Introduction

In the past decades, two-dimensional (2D) planar arrays have been widely used in the field of
beamforming, imaging, communication and radar [1]. The traditional configurations people usually
use are the uniform rectangular arrays (URAs) and hexagonal arrays. Such kinds of arrays have
physical sensors uniformly located on the rectangular grids, so that the 2D subspace estimation
algorithms, such as the 2D ESPRIT method [2], can be directly applied on the received data. Although
URA can obtain robust direction-of-arrival (DOA) estimation, the number of detectable sources is
limited in the order of O(N). The mutual coupling effect between the adjacent sensors influences the
performance of URAs seriously, as well. Therefore, the sparse arrays with larger spacings between the
adjacent sensor pairs have attracted much attention in the last five years.

The nested array [3] and coprime array [4,5] are important one-dimensional (1D) sparse arrays
based on the concept of the second-order difference co-array (SODC), which can detect O(N2) sources
with only N sensors. To further reduce the mutual coupling arising from the dense uniform linear
array (ULA) in the nested array, a super nested array [6,7] is proposed to remove the dense physical
sensors from the sparse ULA area. For the purpose of degree-of-freedom (DOF) enhancement and
mutual coupling reduction, augmented nested arrays [8] are proposed, as well. Based on the coprime
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array, the DOF of which is much lower than that of the nested array, several optimized structures are
proposed and verified to be effective in increasing DOF, such as the coprime array with compressed
inter-element spacing (CACIS) [9], the coprime array with displaced subarrays (CADiS) and the
coprime array with multi-period subarrays (CAMpS) [10].

Inspired by the 1D sparse array design, a few planar sparse arrays (PSAs) have been proposed
recently for 2D sub-sampling and signal recovery. Some well-known PSA geometries include the
L-shaped nested array [11,12], 2D coprime array, 2D nested array [13,14], billboard arrays, open box
arrays [15] and hourglass arrays [16]. Among all these structures, the L-shaped nested array and
2D co-prime array are provided mainly to resolve the ambiguity problem and implement fast DOA
estimation. The other PSA structures make use of the SODC concept to acquire the hole-free virtual
planar array with DOF increasing from O(M + N) to O(MN). Although the performance is improved
significantly, there is still much space for DOF enhancement.

Recently, the fourth-order difference co-array (FODC) concept was proposed and utilized for 1D
DOA estimation [17], which is verified to be effective in DOF enhancement. The new sparse arrays
based on the 2qth-order cumulant [18] and especially the fourth-order cumulant [19] are the 2q-level
nested array and sparse array extension with the fourth-order difference co-array enhancement based
on the two-level nested array (SAFOE-NA). Another algorithm that can generate FODC makes use of
the quasi-stationary (QS) signal properties to acquire the virtual FODC array. As many speech and
audio signals have been proven to be quasi-stationary, such an FODC construction scheme has great
practical significance. It is verified that by exploiting the FODC methods, the DOF of the 1D sparse
arrays can be increased significantly. Nowadays, the four-order difference concept is only used in 1D
sparse array design. For the 2D sparse array, there has been no study conducted so far.

In this paper, the generalized L-shaped nested arrays (GLNAs) based on the FODC concept are
proposed for DOF enhancement. The new 2D configuration is a generalized framework including
two nested-class subarrays positioned at an arbitrary distance. The nested-class arrays guarantee
that a cross-shaped structure can be formed in SODC. Therefore, a virtual URA with the center at
the origin is constructed in the FODC. As the FODC concept instead of SODC is utilized in the new
GLNA construction, the number of detectable sources will be increased greatly. Since the subarrays
can be chosen as any kind of existing nested arrays, more choices are provided in sparse array design.
By setting the subarrays with a large 1D virtual consecutive range and sparse array structure, GLNA
can achieve a high number of DOFs. Another advantage of GLNA is that the relative 2D position
of the subarrays can be chosen as any integer times the minimum spacial interval d. Since relative
distance can be set as large as possible, the influence between two physical subarrays can be greatly
reduced. To make complete comparisons among all GLNAs, we provide the expressions of URA size
and list the values of several different GLNAs. Furthermore, a special GLNA with the highest number
of DOFs is presented and analyzed.

This paper is organized as follows. The QS signal model and FODC concept are presented
in Section 2. The proposed generalized L-shaped nested array is proposed in Section 3. The DOF
characteristics are summarized. Several GLNAs are compared to other SODC-based PSAs in the
aspect of DOF. In Section 4, a special GLNA (sGLNA) is developed and analyzed, showing its great
performance improvement in DOF enhancement. Simulation results are shown in Section 5, and the
conclusions are drawn in Section 6. Notations: We denote vectors and matrices by using lower-case
and upper-case bold characters, respectively. Specifically, (.)∗ denotes complex conjugate, whereas
(.)T and (.)H respectively denote the transpose and conjugate transpose of a matrix or vector. vec(.)
implies the vectorization operator, which turns a matrix into a column vector. E(.) is the statistical
expectation operator. |.|`2 is the Frobenius norm of the 2D vector in it.

2. Signal Model

Consider D uncorrelated narrowband QSsignals si(t), i = 1, · · · , D from direction (θi, φi)

impinging on an N-sensor planar array with physical sensors located at S = [n1; n2; · · · ; nN ]d.
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nj = (njx, njy) is the j-th normalized sensor location for j = 1, 2, · · · , N. d is the unit spacing between
two sensors, which is also the length unit of the x and y Cartesian axes, where the arrays are placed.
The value of d is set to be half the minimal wavelength λ. For convenience, d is omitted in the following
discussions. Assume that the source signals si(t), i = 1, · · · , D are wide-sense quasi-stationary within
the frame length P̃. Denote si(p, k) as the i-th source signal at the k-th snapshot within the p-th
frame. Then, the power σ2

p,i = E{si(p, k)s∗i (p, k)} for k ∈ {p · P̃, p · P̃ + 1, · · · , (p + 1) · P̃− 1} can be
approximated by [20]:

σ2
p,i ≈

1
P̃

(p+1)·P̃−1

∑
k=p·P̃

si(p, k)s∗i (p, k) (1)

Then, the received signals from N sensors at the k-th snapshot within the p-th frame can be
represented as:

xS(p, k) =
D

∑
i=1

aS(θi, φi)si(p, k) + wS(p, k), (2)

where the element of aS(θi, φi) for the i-th source impinging on the grid (njx, njy) is

ej2πd/λ(sinθicosφinjx+sinθisinφinjy); wS(p, k) is the wide-sense stationary noise vector.
By taking all the K snapshots in the p-th frame into consideration, the correlation matrix is

given by:

Rxx(p) = E{xS(p, k)xS(p, k)H} = ARss(p)AH + σ2
nI, (3)

where A = [aS(θ̄1, φ̄1), · · · , aS(θ̄D, φ̄D)] is the array manifold; Rss(p) = diag{σ2
p,1, σ2

p,2, · · · , σ2
p,D} is

the source covariance matrix; σ2
n is the noise power; I ∈ CN×N is the identity matrix. Vectorizing

Rxx(p) yields:

z(p) = vec{Rxx(p)} = (A∗ ⊗A)s̃(p) + lN(p), (4)

where s̃(p) = [σ2
p,1, σ2

p,2, · · · , σ2
p,D]

T can be viewed as the virtual source vector; lN(p) = vec{σ2(p)I} ∈
CN2×1 is the noise vector. Assume two sensor location matrices as S1 = [n11; n12; · · · ; n1N1 ] and
S2 = [n21; n22; · · · ; n2N2 ], the numbers of sensors if which are N1 and N2, respectively. Define
the sensor location difference operation as Di f f (S1 − S2) = [(n11 − n21); (n11 − n22); · · · ; (n11 −
n2N2); (n21 − n21); (n21 − n22); · · · ; (n21 − n2N2); · · · ; (n1N1 − n21); (n1N1 − n22); · · · ; (n1N1 − n2N2)].
Then, the Kronecker product (A∗ ⊗A) is an equivalent manifold matrix, whose virtual sensors are
located at C̄ = Di f f (S− S). It is actually an SODC with the virtual elements at the difference positions
of the physical sensor locations.

As the assumption given by [20], σ2
p,i, i = 1, · · · , D are wide-sense stationary and uncorrelated

with each other. Denote the self-correlation of σ2
p,i as σ̃2

i = E{(σ2
p,i − E{σ2

p,i})2}. Then, SODC can be
conducted again to form FODC after the zero-mean equivalent impinging sources have been generated.

Denote the expectation over P frame as E[z(p)]. We have:

E[z(p)] = (A∗ ⊗A)E[s̃(p)] + lN(p), (5)

Subtracting the above result from z(p), we can obtain:

z̄(p) = z(p)− E[z(p)] ≈ Ãs̄(p), (6)

where Ã = (A∗ ⊗A) with the i-th column as a(θ̄i, φ̄i) and s̄(p) = s̃(p)− E[s̃(p)].
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As s̄(p) can be viewed as a zero-mean virtual signal vector, the difference co-array concept can be
applied again. Similarly to (3), the correlation matrix of the virtual received signals z̄(p) over P frames
can be represented as:

Rzz = E{z̄(p)z̄H(p)} = ÃRs̄s̄Ã
H , (7)

where Rs̄s̄ = diag{σ̃2
1 , · · · , σ̃2

D}.
Performing the vectorization again, one has:

y = vec{Rzz} = (Ã∗ ⊗ Ã)ŝ, (8)

where (Ã∗ ⊗ Ã) is the virtual manifold matrix with the virtual sensors located at Ĉ = Di f f (C̄− C̄);
ŝ = vec(Rs̄s̄) = [σ̃2

1 , · · · , σ̃2
D]

T , is the equivalent source signal vector. Perform the 2D spatial smoothing
algorithm [21] and the 2D subspace algorithms such as 2D unitary-ESPRIT [22] and 2D MUSIC [23]
directly on y; 2D DOA estimations can be obtained.

3. The Proposed L-Shaped Nested Arrays

Different from the existing L-shaped nested array [11,12] and other second-order difference
co-array-based structures [13,14,16], the new 2D sparse arrays proposed in this paper are based on the
fourth-order difference co-array concept. That means as long as a consecutive URA can be extracted
from FODC, the 2D spatial smoothing algorithm can be made use of directly on it. Therefore, in this
paper, we focus on designing a kind of 2D sparse array that can generate a URA area as large as
possible in FODC.

Since the 2D sparse arrays we will develop can be grouped into a unified framework, we first
introduce the generalized concept and then compare the DOF of several sub-structures in the
framework. For convenience, in the following sections, we use the normalized sensor locations
to represent the actual physical positions, i.e., d is omitted in the following discussions.

3.1. Generalized L-Shaped Nested Array

Note that d is omitted in the following discussions for convenience. Then, the generalized
L-shaped nested array can be described by the definition shown below.

Definition 1. (Generalized L-shaped nested array (GLNA)): Given two 1D nested-class arrays described by the
matrix Ch and Cv, where Ch = [sh1; sh2; · · · ; shNx ] and Cv = [sv1; sv2; · · · ; svNy ], the sensor numbers of these
two arrays are Nx and Ny, respectively. Assume N = Nx + Ny, then a generalized L-shaped nested array is an
N-sensor 2D planar sparse array located on the grids, which is denoted as follows:

SGLNA = [H;V] (9)

where H = [(sh1, 0); (sh2, 0); · · · ; (shNx , 0)] and V = [(Lx, Ly + sv1); (Lx, Ly + sv2); · · · ; (Lx, Ly + svNy)].
Lx and Ly can be any integers.

It can be summarized from the definition that a GLNA consists of two 1D nested-class arrays
located in the horizontal and vertical direction, respectively. H and V are the sensor locations of
two subarrays, which can be any kind of aforementioned nested array, such as the classic nested
arrays (CNAs), super nested arrays (SNAs) and augmented nested arrays (ANAs). The relative
position parameter pair in this definition, (Lx, Ly), of the two subarrays is arbitrary. To have
a better idea of the GLNA configuration, we take an example by setting CNAs as subarrays.
As shown in Figure 1, two 1D CNAs with Ch = Cv = [1; 2; 3; 4; 5; 10; 15; 20; 25] are distributed
on the x-axis, and line x = −6. The reference points of the two subarrays are (0, 0) and (−6, 6)
with the relative displacement as (Lx, Ly) = (−6, 6). Therefore, the vertical sensors are located on
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V = [(−6, 7); (−6, 8); (−6, 9); (−6, 10); (−6, 11); (−6, 16); (−6, 21); (−6, 26); (−6, 31)]. The horizontal
subarray lies on positions H = [(1, 0); (2, 0); (3, 0); (4, 0); (5, 0); (10, 0); (15, 0); (20, 0); (25, 0)]. The total
number of sensors in this GLNA is 18. Note that in the following structure, as length unit d is defined
to be the half-wavelength, it is clear that the units of the x and y Cartesian axes of the array geometry
are also in half wavelengths.

subarray 1

subarray 2

0 x/d

y/d

Ly=6
Lx=-6

5 10 15 20 25

(-6,11)

(-6,7)

(-6,16)

(-6,21)

(-6,26)

(-6,31)

1

Figure 1. A generalized L-shaped nested array (GLNA) with two classic nested arrays (CNAs)
(GLNA-CNA) having the same parameters (Nd, Ns) = (4, 5) distributed in the x, y directions with
(0, 0) and (−6, 6) as the reference. The circles represent physical sensors. The cross is a hole.

Denote the second-order and fourth-order self-difference of any sparse array S as
C̄S = Di f f (S− S) and ĈS = Di f f (C̄S − C̄S), respectively. The SODC and FODC of GLNA have
the following conclusions.

Property 1. For two 1D subarrays Ch and Cv of GLNA defined by (9), their second-order self-differences
are denoted as C̄Ch and C̄Cv . If there exists consecutive lags in their self-difference arrays, i.e., [−Lh; (−Lh +

1); · · · ; (Lh− 1); Lh] is a part of C̄Ch and [−Lv; (−Lv + 1); · · · ; (Lv− 1); Lv] is a part of C̄Cv , then the SODC
of GLNA must include a cross-shaped structure distributed at Sd = [Sh;Sv] with Sh = [(−Lh, 0); (−Lh +

1, 0); · · · ; (Lh − 1, 0); (Lh, 0)] and Sv = [(0,−Lv); (0,−Lv + 1); · · · ; (0, Lv − 1); (0, Lv)]. The FODC of
GLNA contains a central URA with a minimum aperture of (2Lh + 1)× (2Lv + 1).

Proof. First, let us consider the SODC of GLNA. According to the expression of GLNA in (9), SODC
can be written as:

C̄S = [Dh;Dv;Dhv;Dvh], (10)

with Dh = Di f f (H − H) and Dv = Di f f (V − V) as the self-differences of subarrays H and V.
[Dhv,Dvh]

T is the cross-difference. As H is a nested-class array located on the x-axis, its self-difference
is still a linear array with the form of Dh = [C̄Ch ,~0]. Since the assumption that there exist consecutive
lags in the self-difference arrays of each subarray, we conclude that Sh = [(−Lh, 0); (−Lh + 1, 0); · · · ;
(Lh − 1, 0); (Lh, 0)] is a part of matrix Dh. Similarly, the self-difference result of V is a linear structure at
the y-axis located at Dv = [~0, C̄Cv ]. Its array geometry also has a consecutive segment included in the
center, i.e., the matrix Sv = [(0,−Lv); (0,−Lv + 1); · · · ; (0, Lv− 1); (0, Lv)] is a part of Dv. Then, we turn
to Dvh. From the definition of H and V, it is not difficult to obtain that Dvh is a matrix, the elements of
which can be denoted as (−sh,i + Lx, sv,j + Ly). Here, sh,i and sv,j are the i-th and the j-th elements of
the matrix Ch and Cv, respectively. Such a matrix is the position of the cross-difference array, which is
in fact several copies of the vertical subarray with the i-th reference points positioned at (−sh,i + Lx, Ly)

where sh,i is the i-th element of the matrix Ch. Another cross-difference matrix Dhv is the reverse of Dvh.
Therefore, it generates the same number of vertical subarrays symmetrically. In conclusion, no matter
what type of subarray in GLNA is, as long as each of them can generate a consecutive segment by
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making the self-difference, it is definite that SODC will contain a cross-shaped structure at the x-axis
and y-axis, i.e., matrix [Sv,Sh] is a part of matrix C̄S.

Then, we extract the cross structure out and make the difference again to generate part of
FODC. Let Sd = [Sv;Sh]. Again, we have matrix Di f f (Sd − Sd) = [Di f f (Sv − Sv); Di f f (Sh −
Sh); Di f f (Sv − Sh); Di f f (Sh − Sv)] is a part of ĈS = Di f f (C̄S − C̄S). From the form of Sh and
Sv, we deduce that Di f f (Sh − Sh) = [(−2Lh, 0); (−2Lh + 1, 0); · · · ; (2Lh − 1, 0); (2Lh, 0)], Di f f (Sv −
Sv) = [(0,−2Lv); (0,−2Lv + 1); · · · ; (0, 2Lv − 1); (0, 2Lv)] and Di f f (Sv − Sh) = Di f f (Sh − Sv) =

[(−Lh,−Lv); (−Lh,−Lv + 1); · · · ; (−Lh, Lv); (−Lh + 1,−Lv); · · · ; (Lh, Lv)]. It contains a URA with the
size of (2Lh + 1)× (2Lv + 1).

Figure 2 illustrates the SODC and FODC of GLNA in Figure 1. As the two subarrays in GLNA are
the same classic nested arrays with the self-difference being hole-free, i.e., C̄Ch = C̄Cv = [−Lh;−Lh + 1;
· · · ; Lh] with Lh = 24, the SODC in Figure 2a possesses a cross-shaped structure with two 49-element
ULAs at the x-axis and y-axis in the range of [−24, 24]. The top left and lower right parts are the
cross-difference results, which are in fact copies of the original vertical subarray. The starting points
of the top left copies are (−7,7), (−8,7), (−9,7), (−10,7), (−11,7), (−16,7), (−21,7), (−26,7) and (−31,7).
The FODC configuration is shown in Figure 2b. It is obvious that a URA with the size of 49× 49 is
located in the center. The URA part can be extracted to perform the 2D spatial smoothing algorithm on
it. In this case, at most 49× 49 far field uncorrelated sources can be detected, which is much more than
that of the existing PSAs based on the SODC concept.

0

Lx

Lx

Ly

Ly

Cross-difference part

Self-difference part

(Cross Array)

(a)

24 elements

24 elements

Equivalent

URA part

(b)

Figure 2. Difference co-arrays of the GLNA in Figure 1. (a) second-order difference co-array (SODC)
(b) fourth-order difference co-array (FODC) (note that the unit of length in this figure is d). URA,
uniform rectangular array.
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Remark 1. According to the above analysis, the new structures possess two advantages. First, any 1D subarray
geometry having consecutive segments in its self-difference co-array can be adopted. This means that the types
of the subarrays can be different, as long as each can generate an equivalent ULA in the self-difference result.
This enables us to choose any existing nested-class arrays as needed for further DOF enhancement or mutual
coupling reduction. Second, the relative position of the two subarrays can be flexibly set. This is because the
cross-shaped section in SODC is generated from the self-difference of subarrays. No matter where the subarrays
are located, the difference result would have no change. This inspires us to separate the two subarrays with the
parameters (Lx, Ly) as large as possible, if lower mutual coupling is desired in the GLNA design. When the
relative locations grow large enough, the influence between two subarrays can be ignored. Note that in this
case, qualitative analysis instead of quantitative analysis for mutual coupling effect is considered. Therefore, we
assume that the mutual coupling between subarray can be ignored because of the long relative distance and the
mutual coupling inside each subarray is fully calibrated. In the following subsection, we would only compare the
DOF of different GLNAs with different types of subarrays.

3.2. DOF Comparisons

For convenience, in this subsection, we set the two subarrays in GLNA as the same type,
e.g., the classic nested array [3] and augmented nested array [8]. The minimum DOF that GLNA can
obtain is calculated. As a contrast, the DOF of two PSAs, i.e., the hourglass array [16] and 2D nested
array [13,14], are compared, as well. Definitions of these structures can be seen in the relative references.

First, assume that subarrays in GLNA-CNA are both classic nested arrays. The number of physical
sensors in the dense part and sparse part of the horizontal CNA is Nxd and Nxs. The corresponding
values for the vertical CNA are Nyd and Nys. Take the horizontal CNA as an example. It is the union of
the matrices Cinner = [1; 2; ...; Nxd] and Couter = [(Nxd + 1); 2(Nxd + 1); · · · ; Nxs(Nxd + 1)]. The CNA
can be denoted as:

CCNA = [Cinner; Couter] = [1; 2; ...; Nxd; (Nxd + 1); 2(Nxd + 1); · · · ; Nxs(Nxd + 1)]. (11)

Its SODC is a ULA with 2Nxd(Nxs + 1)− 1 elements positioned at [−Lh, Lh] = [1− Nxd(Nxs + 1),
Nxd(Nxs + 1) − 1]. Therefore, we have Lh = Nxd(Nxs + 1) − 1. Similarly, for the vertical CNA,
the parameter Lv = Nyd(Nys + 1)− 1. According to Property 1, the central URA has the minimum
aperture of (2Lh + 1)× (2Lv + 1). Therefore, the minimum DOF of GLNA-CNA is:

DOFGLNA−CNA = [2Nxd(Nxs + 1)− 1][2Nyd(Nys + 1)− 1]. (12)

For the GLNA with augmented nested arrays as subarrays (GLNA-ANA), we use ANAI-2 [8] as
the subarrays. For ANAI-2, its definition is:

CANAI−2 = [L1; M1; R1] (13)

with L1 = [1; 2; 4; · · · ; 2k1 + 2], M1 = [0; (Nd + 1); 2(Nd + 1); · · · , (Ns + 1)(Nd + 1)], R1 = [(Nd + 1)
Ns + Nd − 2; (Nd + 1)Ns + Nd − 4; · · · ; (Nd + 1)N2 + Nd − 2k2; · · · ; (Nd + 1)Ns]. Here, Nd and Ns

are the sensor numbers of the dense part and sparse part of its original classic nested array, respectively.
k1 and k2 are the parameters with k1 ∈ [0, Rb(N1 − 1)/2c] and k2 ∈ [1, RbN1/2c]. Rbαc round the
value to the nearest integer, where Rbαc ≤ α. In this case, ANAI-2 instead of other kinds of augmented
nested array is chosen, as it has similar parameters as other nested arrays, so that it is easier for us
to compare.

Assume the array parameters as (Nxd, Nxs), which denote (Nd, Ns) on the x-axis, and (Nyd, Nys)m
which is (Nd, Ns) in the y-axis direction. Based on the properties in [8], it is not difficult to find that the
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consecutive parameters in SODC are Lh = (Nxd + 1)Nxs + Nxd − 3 and Lv = (Nyd + 1)Nys + Nyd − 3.
Therefore, the minimum DOF of GLNA-ANA is:

DOFGLNA−ANA = [2(Nxd + 1)Nxs + 2Nxd − 5][2(Nyd + 1)Nys + 2Nyd − 5]. (14)

For fair comparisons, we consider the 2D nested array (2D-NA) and perform the fourth-order
difference algorithm on it for DOF analysis. Denote Nxd and Nxs as the number of dense and sparse
elements on the x-axis. Ndy and Nsy are the corresponding parameters on the y-axis. Then, the dense
and sparse URAs in 2D-NA have NxdNyd and NxsNys physical sensors, respectively. According to the
results in [13,14], the SODC of 2D-NA is a URA with the size of NxdNxs × (2NydNys − 1). Perform the
difference again. Then, the URA region in FODC has the aperture of:

DOF2D−NA = (2NxdNxs − 1)× (4NydNys − 3). (15)

For the hourglass array (HA), the related definition and properties are provided in [16]. Consider
Nx sensors located in the horizontal direction. 2Ny − 2 sensors are distributed on the vertical lines.
Then, its SODC is proven to be a URA with the size of (2Nx − 1)(2Ny − 1). The FODC is definitely
a URA with the DOF of:

DOFHA = (4Nx − 3)(4Ny − 3). (16)

For better understanding, we take the aforementioned PSAs with the same number of sensors
which is 18 as an example. The minimum DOFs of GLNAs and other two PSAs are summarized in
Table 1. The relative position of two subarrays in GLNAs is set as (Lx, Ly) = (−6, 6). As can be seen,
all GLNAs can acquire a much higher number of DOF than the other two PSAs. This is because 2D-NA
and HA are proposed for second-order difference design. When the fourth-order difference concept
is applied on the two PSAs, much difference redundancy exists. As for the two kinds of GLNAs,
the GLNA-ANA has the largest URA in FODC, since ANAI-2 has more consecutive lags in SODC than
CNA. Meanwhile, GLNA-CNA is a little worse than the GLNA-ANA. The better the 1D sparse array
we choose, the higher the DOF we obtain.

Table 1. Comparisons of DOF with the number of sensors as N = 18. HA, hourglass array; ANA,
augmented nested array; sGLNA, special GLNA.

Array Structures Parameters DOF

HA (Nx, Ny) = (6, 7) 525
2D-NA (Nxd, Nxs, Nyd, Nys) = (3, 3, 3, 3) 561

GLNA-CNA (Nxd, Nxs, Nyd, Nys) = (4, 5, 4, 5) 2401
GLNA-ANA (Nxd, Nxs, Nyd, Nys) = (4, 5, 4, 5) 2809

sGLNA (Nxd, Nxs, Nyd, Nys) = (4, 5, 4, 5) 3127

4. A Special GLNA Configuration with Enhanced DOF

For convenient analysis, GLNAs discussed in the above subsection are chosen as PSAs with the
same type of subarrays. However, for the generalized structure defined by (9), the two subarrays are
allowed to be totally different types. In this subsection, we will provide a special GLNA with a nested
array and an augmented nested array, ANAI-2, as subarrays. By setting their relative position (Lx, Ly)

as specific values, the special GLNA can acquire a much higher DOF than the aforementioned GLNAs.
We use sGLNA to represent this kind of GLNA in this paper.

First, observe the SODC structure of GLNA-CNA in Figure 2a. The virtual ULAs Dh and Dv on the
x-axis and y-axis are generated from the self-difference of subarrays. As long as the nested-class arrays
are chosen, the cross-shaped ULAs can be obtained. For the sparse elements in the second and fourth
quadrants, they come from the cross-difference Dvh and Dhv. The location of this part is determined
by the relative position (Lx, Ly). Note that in the definition of GLNA in the above section, Lx and Ly
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are set to be arbitrary integers. However, if (Lx, Ly) is chosen as special values, the cross-difference
parts will probably move to make one of the consecutive lags in this area connected to the virtual ULA
at the y-axis. As a result, the length of the cross-shaped structure in the y-direction will be extended.
The size of FODC will be enlarged, as well.

Motivated by the above strategy, we use one of the four augmented nested array structures called
ANAI-2 [8] as the subarray in the x-direction and another classic nested array in the y-direction to
form sGLNA. Here, ANAI-2 instead of other kinds of augmented nested arrays is chosen as it has
similar parameters as other nested arrays, so that it is easier for us to compare. In order to define this
special GLNA, (Lx, Ly) are chosen as special values. Ly = Nys(Nyd + 1)− 1, and let the value of Lx be
equal to the abscissa of subarray H, i.e., Lx is an element of Sh Then, we have the following property.

Property 2. For sGLNA with ANAI-2 and classic nested array being the horizontal and vertical subarray
having parameters Nxd, Nxs and Nyd, Nys, the cross-shaped structure in SODC is located at [Sv;Sh] with
Sv = [(0,−Lv); (0,−Lv + 1); · · · ; (0, Lv − 1); (0, Lv)] where Lv = Nys(Nyd + 1) + Nyd − 1 and Sh =

[(−Lh, 0); (−Lh + 1, 0); · · · ; (Lh − 1, 0); (Lh, 0)] where Lh = (Nxd + 1)Nxs + Nxd − 3. The size of FODC is
[2(Nxd + 1)Nxs + 2Nxd − 5]× [2Nys(Nyd + 1) + 2Nyd − 1].

Proof. Since the horizontal subarray is an ANAI-2, the 1D physical sensors’ locations are given
according to the definition of augmented nested arrays in [8] and Equation (13). According to [8],
its self-difference is a hole-free ULA. Therefore, Dh = Sh = [(−Lh, 0); (−Lh + 1, 0); · · · ; (Lh −
1, 0); (Lh, 0)] with Lh = (Nxd + 1)Nxs + Nxd − 3.

For the vertical subarray, as it is a nested array, the 1D sensor location is Cv = [L1; R1] with
L1 = [1; 2; · · · ; Nyd] and R1 = [(Nyd + 1); 2(Nyd + 1); · · · ; Nys(Nyd + 1)]. Its self-difference is hole-free,
as well, with the one-side consecutive length as Lv1 = Nys(Nyd + 1)− 1.

Now, let us see the second-order cross-difference Dvh. From the analysis in the proof of Property 1,
we have the Dvh is a matrix, the elements of which can be denoted as (−sh,i + Lx, sv,j + Ly). Here,
sh,i and sv,j are the i-th and the j-th elements of the matrices Ch and Cv, respectively. Since for
sGLNA, Lx is an element of Ch and Ly = Nys(Nyd + 1) − 1, it can be deduced that Lx must be
equal to one of the horizontal coordinates of ANAI-2. Therefore, there must be cross difference
array in SODC, the j-th element of the matrix of which can be denoted as (0, sv,j + Ly), which is
located on the y-axis. As a ULA part exists in the Cv, the consecutive lags in the above matrix will
become [(0, Nys(Nyd + 1)); (0, Nys(Nyd + 1) + 1); (0, Nys(Nyd + 1) + 2); · · · ; (0, Nys(Nyd + 1) + Nyd −
1)]. As a result, the consecutive length is Lv2 = Nyd. Combined with the self-difference result, the
consecutive length in the vertical direction is Lv = Lv1 + Lv2 = Nys(Nyd + 1)− 1 + Nyd.

As for FODC, URA is in the part (2Lv + 1)× (2Lh + 1). Therefore, the size of URA is [2(Nxd +

1)Nxs + 2Nxd − 5]× [2Nys(Nyd + 1) + 2Nyd − 1].

Figure 3 illustrates an sGLNA with the horizontal subarray as an ANAI-2 having parameters
as (Nxd, Nxs) = (4, 5). The vertical subarray is a nested array with parameters as (Nyd, Nds) = (4, 5).
The relative position is (Lx, Ly) = (15, 24). As can be seen, the subarray 2 is aligned with one of the
sensors in Subarray 1. Such an arrangement guarantees that one copy of Subarray 2 is located at the
y-axis in SODC, which can connect to the virtual ULA from 1 to 24, generated from the self-difference
of Subarray 2. As such, the consecutive lags extend from the original range of [−24,24] to [−29,29].
Since Subarray 1 is an ANAI-2, its self-difference is hole-free, located in the range of [−26, 26]. We obtain
that the URA in FODC has dimensions of (2× 26 + 1)(2× 29 + 1) = 3127.

For comparison, the DOF of sGLNA is listed in Table 1. We conclude that sGLNA has the highest
number of DOFs among all GLNAs. That is because one of subarrays in sGLNA is ANAI-2, which
possesses the best performance in DOF enhancement. Besides, another subarray is a nested array.
Although its DOF is less than that of ANAI-2, it has a dense ULA part, which can be used to enlarge
the consecutive range in the cross-shaped structure of SODC. The values of Lx and Ly make sure that
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the copy of the nested array can be connected to the virtual ULA at the y-axis in SODC. The extended
consecutive range leads to the great enhancement of DOF.

subarray 1

subarray 2

0 x/d

y/d

Ly=24

Lx=15

5 15 25 27

(15,25)

4

2

1

10 20

(15,29)

(15,34)

(15,39)

(15,49)

(15,44)

Figure 3. An example of sGLNA with (Nxd, Nxs, Nyd, Nys) = (4, 5, 4, 5) and (Lx, Ly) = (15, 24).
The circles represent physical sensors. The cross is a hole.

5. Numerical Experiments

In this section, simulation results are presented to compare the performance of GLNA-CNA,
GLNA-ANA and sGLNA. The hourglass array and 2D nested array are also simulated as a contrast.
In the experiments, we assume the number of sensors to be 18. The parameters for GLNA-CNA,
GLNA-SNA, GLNA-ANA and sGLNA are (Nxd, Nxs, Nyd, Nys) = (4, 5, 4, 5). The relative position
is defined by Lx and Ly. (Lx, Ly) = (5, 29). For the 2D nested array and the hourglass array,
the configurations are quite different from GLNAs. To make sure the total number of sensors is the same
as that of GLNAs, we choose the parameters as (Ndx, Ndy, Nsx, Nsy) = (3, 3, 3, 3) and (Nx, Ny) = (6, 7),
respectively. The QS signals with P = 10 frames are used.

In the first experiment, D = 20 uncorrelated sources with the directions (θ, φ) are distributed
at (−34◦,45◦), (−26◦,63◦), (26◦,−63◦), (34◦,−45◦), (−26◦,26◦), (−16◦,45◦), (16◦,−45◦), (26◦,−26◦),
(0◦,−23◦), (0◦,−11◦), (0◦,11◦), (0◦,23◦), (−26◦,−26◦), (−16◦,−45◦), (16◦,45◦), (26◦,26◦), (−34◦,−45◦),
(−26◦,−63◦), (26◦,63◦), (34◦,45◦). They are assumed to impinge on 2D-NA, HA, GLNA-CNA,
GLNA-ANA and sGLNA. These source angles are selected randomly. The SNR is 20 dB.
P̃ = 100 snapshots in each frame, in total K = P̃× P = 1000, are sampled for Rxx(p) construction.
The DOA estimation results are examined and compared in Figure 4. For each configuration, the root
mean square error (RMSE) is defined as:

RMSE = [(1/(DÑ)
Ñ

∑
n=1

D

∑
i=1

( ˆθin − θin)
2 + (φ̂in − φin)

2]1/2 (17)

where (θ̂, φ̂) and (θ, φ) are the estimated DOAs and the true DOAs; Ñ is the number of trials. In this
experiment, Ñ = 30. As can be concluded from Figure 4a, 2D-NA fails to estimate some directions with
RMSE = 8.0128◦. The situation becomes better for HA. However, there are still obvious estimation errors
with RMSE = 2.5737◦. In contrast, as Figure 4c–e illustrate, all GLNAs can estimate DOAs correctly.
The sGLNA has the lowest RMSE = 0.5441◦, compared to the GLNA-CNA with RMSE = 1.1827◦ and
GLNA-ANA with RMSE = 0.5488◦.
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-50 0 50

-50

0

50

2D-NA
True DOAs
Estimated DOAs

(a)

-50 0 50

-50

0
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HA
True DOAs
Estimated DOAs

(b)

-50 0 50

-50

0

50

GLNA-CNA
True DOAs
Estimated DOAs

(c)

-50 0 50

-50

0

50

GLNA-ANA
True DOAs
Estimated DOAs

(d)

-50 0 50

-50

0

50

sGLNA
True DOAs
Estimated DOAs

(e)

Figure 4. DOA estimations of different PSAs (a) 2D-NA, RMSE = 8.0128◦; (b) HA, RMSE = 2.5737◦;
(c) GLNA-CNA, RMSE = 1.1827◦; (d) GLNA-ANA, RMSE = 0.5488◦; (e) sGLNA, RMSE = 0.5441◦.

In the second experiment, we compare the RMSE results of the five kinds of PSAs mentioned
above at different SNRs and snapshots. D = 20 sources distributed in the same normalized directions
as the first experiment are used in this experiment. Figure 5a depicts the RMSE versus SNR results.
Ñ = 100 independent trials are conducted for each SNR. The snapshot number is set as K = 100× 100.
The SNR varies from −10 dB to 30 dB. Figure 5b provides the RMSE comparisons with the snapshot
number varying from 50× 100 to 350× 100. The SNR is 10 dB in this case. As can be seen, for both
figures, that sGLNA has the lowest estimation error among all five sparse arrays. This is because sGLNA
can acquire the highest number of DOF. For other PSAs, GLNA-ANA has a slightly worse performance
than sGLNA, followed by GLNA-CNA, 2D-NA and HA. Therefore, GLNAs can achieve better DOA
performance than the second-order-based PSAs. This result coincides with the conclusion in Table 1.
The reason why sGLNA is less robust than ALNA-ANA in Figure 5b is that the robustness performance
of one PSA is determined by the distribution of its difference redundancy. Note that for sGLNA, it has
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12 redundancy functions not less than two, and for GLNA-ANA, it has 14 redundancy functions not less
than two. ALNA-ANA has more redundancy. Therefore, it is more robust than sGLNA.

-10 0 10 20 30
SNR(dB)

100

101

R
M

S
E

(a)
HA
2D-NA
GLNA-CNA
GLNA-ANA
sGLNA

50 100 150 200 250 300 350
Snapshot( 100)

10-1

100

R
M

S
E

(b)
HA
2DNA
GLNA-CNA
GLNA-ANA
sGLNA

Figure 5. DOA estimation comparisons. (a) RMSE as a function of SNR; (b) RMSE as a function
of snapshot.

6. Conclusions

In this paper, a generalized L-shaped nested array framework is proposed. The expressions of the
dimensions of the cross-shaped structure in SODC and URA size in FODC are provided and verified.

Several GLNAs, such as GLNA-CNA and GLNA-ANA, are analyzed and compared in the DOF
aspects. For DOF improvement, a special GLNA configuration is proposed and compared to other
PSAs. In conclusion, GLNAs enjoy closed-form sensor locations and large URA sections in FODC.
They can acquire much higher DOFs than any other SODC-based PSAs by choosing the subarrays
and setting the distance between them properly. Meanwhile, note that for the GLNA framework,
as a sparse array structure can be constructed and a low difference redundancy can be achieved,
the mutual coupling effect is reduced and can be quantitatively analyzed in the future. Several
numerical experiments indicate that these structures perform better than the existing PSAs.
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