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Abstract: This paper proposes a novel underwater dexterous hand structure whose fingertip is
equipped with underwater tactile force sensor (UTFS) array to realize the grasping sample location
determination and force perception. The measurement structure, theoretical analysis, prototype
development and experimental verification of the UTFS are purposefully studied in order to achieve
accurate measurement under huge water pressure influence. The UTFS is designed as capsule
shape type with differential pressure structure, and the external water pressure signal is separately
transmitted to the silicon cup bottom which is considered to be an elastomer with four strain elements
distribution through the upper and lower flexible contacts and the silicone oil filled in the upper
and lower cavities of UTFS. The external tactile force information can be obtained by the vector
superposition between the upper and lower of silicon cup bottom to counteract the water pressure
influence. The analytical solution of deformation and stress of the bottom of the square silicon cup
bottom is analyzed with the use of elasticity and shell theory, and compared with the Finite Element
Analysis results, which provides theoretical support for the distribution design of four strain elements
at the bottom of the silicon cup. At last, the UTFS zero drift experiment without force applying under
different water depths, the output of the standard force applying under different water depth and
the test of the standard force applying under conditions of different 0 ◦C–30 ◦C temperature with
0.1 m water depth are carried out to verify the performance of the sensor. The experiments show that
the UTFS has a high linearity and sensitivity, and which has a regular zero drift and temperature drift
which can be eliminated by calibration algorithm.

Keywords: underwater tactile force sensor; water pressure compensation; silicon cup; Finite Element
Analysis; experiment

1. Introduction

The underwater manipulator is an indispensable part of the underwater vehicle, performing the
tasks such as biological samples collection, underwater salvage and so on [1–3]. However, due to the
huge water pressure, uncertain operation object and lack of force perception, it will bring over operation
or miss operation to limit the task efficiency [4,5]. The underwater sight of the task area is easily
influenced by the rotation of the propeller, which disturbs the observation of the underwater camera,
and the underwater manipulator will perform local search if force measurement acquired [6]. Nearly
all underwater manipulators of current generation, which are controlled by the handle operation
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with camera observe, are not equipped with UTFS. As shown in Figure 1, the pilots manipulate the
manipulator to implement the sample collection; however, it may miss or hurt the sample, and easily
fail to grasp the moving creature without the tactile force measurement. As a result, the development of
the underwater dexterous hand incorporating force or torque sensing is a direction for the underwater
intelligent grasping. The basic feature of an underwater dexterous hand is to imitate human finger skin,
consisting of high density force perception components to sense external force information. The tactile
sensor array is distributed on the surface of the finger, and the position determination and tactile
force measurement of the grasping target are realized, so that the tactile force sensor is the core of
the measurement.

Figure 1. The task diagram of underwater manipulator without force sensor.

Recently, many scholars have proposed various types of two-dimensional or multi-dimensional
force sensors based on different principles that convert the mechanical deformation to the electrical
signal [7–10]. The typical measurement method is with the use of the resistance strain whose
component consistent of elastic structure body and semiconductor sensitive element with the
Micro-Electro-Mechanical System (MEMS) development [11]. As a result, there exist lots of force
sensors in the non-underwater environment [12,13], however, the sensors employed in the underwater
environment with few species have to be redesigned differently with the reason of high water pressure
and wide measurement range. Additionally, the salinity and density of seawater bring anticorrosion,
sealing and insulation problems to UTFS design, and the water fluid resistance and inertial force bring
disturbance to the measurement of UTFS. Therefore, it is important to study the measurement principle
and structure design for the UTFS of underwater dexterous hand array sensor to achieve intelligent
grasping under complex environment.

Different underwater tactile force measurement approaches and the structure design have
been studied for many years. The basic measurement principle is to measure the elastomer strain
information caused by the tactile force under the condition that the external water pressure is
balanced on the surface of the elastomer. The most important and reliable underwater tactile sensor is
a multi-dimensional force-torque sensor with beam structure elastomer [7–10], whose force feedback
output is abundant without static water pressure disturbance and the sealing problems [11]; however,
it cannot determine the location of tactile force and the complex elastic shape of parallel mechanical
structure may cause the cross sensitivity problem. The tactile sensor based on the strain gauge
has realized the tactile force measurement under the water pressure balance [14,15], but each strain
gauge needs to correspond to a Wheatstone bridge [16], which causes the problem of complex circuit,
additionally the strain gauge’s paste process has an impact on signal output. Paper [17,18] proposed
optoelectronic type force sensor and Paper [19,20] introduced fiber bragg grating (FBG) force sensor,
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while the light attenuation may affect the output with long time use and the sensor light is susceptible
to the external cover light.

The tactile force sensor can be used for material recognition [21], object shape perception [22] and
pose estimation [23] in addition to tactile perception.The optoelectronic device [24] and fiber optics
tactile array probe [25] are also important tactile measurement equipment. Kampmann et al. [26,27]
designed an underwater dexterous hand, where the piezoelectric sensors and fiber optic sensor array
are mounted on the end-effector with a planar surface, and the joint connection are equipped with the
force-torque sensors in order to acquire the tactile information as much as possible. There is an indirect
sensing method to measure the liquid pressure or the electric current information for the hydraulically
actuated manipulator [28,29] or motor-actuated underwater manipulator [30] avoiding water pressure
disturbance, but hardly obtain the true force feedback value. Qiaokang Liang designed an underwater
manipulator prototype with a novel 4-D fingertip force sensor with an E-type membrane [31,32],
and the prototype has abundant force/torque information output with good linearity and high
sensitivity. In paper [33], a conceptual design of a novel tactile sensor with capacitive transduction,
and used as artificial skin for a deep-sea manipulator is presented. In [34], the tactile sensing for
an underwater operation system based on multi-finger sensors information fusion is presented,
and the strain-gauges are used to achieve force measurement. D.J.O.Brien and D.M.Lane designed and
employed a dexterous hand named AMADEUS [35,36], and force and slip information were gained
with strain gauge force sensor and PVDF (Polyvinylidene Fluoride) piezoelectric film-based vibration
sensor, while the whole structure couldn’t judge the slip directions in the single fingertip and ignored
the temperature influence. Much work such as structure design, temperature compensation, zero-point
compensation and calibration equipment design can be done in order to realize the accuracy and
stability output of underwater tactile force measurement under water pressure disturbance.

To accurately determine the grasping position and the force feedback value measurement of
the underwater manipulator sample collection process under the influence of water static pressure,
we propose a structure of an underwater dexterous hand with an array of UTFSs for each fingertip.
The distribution of tactile force sensor array on the finger of dexterous hand is purposefully introduced
to determine the position of grasping sample, and the tactile force sensor which makes up the sensor
array is studied emphatically. Consequently the force sensing principle, the structure design, assembly
and experimental verification of tactile force sensor are purposefully studied. The position distribution
theory of four strain elements on the surface of silicon cup elastomer is analyzed, and Finite Element
Analysis is implemented for the sensor’s high resolution and high sensitivity output. This paper is
organized as follows: In Section 2 the dexterous hand structure and the UTFS structure with differential
pressure are designed. In Section 3 the strain and stress of the silicon-cup bottom elastomer under
uniform pressure is analyzed for the four strain elements distribution on elastomer surface. In Section 4
the Finite Element Analysis is employed for the silicon-cup bottom under uniform pressure is achieved
and compared with analytical solution method; In Section 5 the analysis of the silicon cup measurement
with linear output is carried out; In Section 6 the experiment is done for the designed UTFS verification
and discuss the experiment and conclude the paper in Sections 7 and 8, respectively.

2. The Structures of Dexterous Hand and UTFS

The detail of the dexterous hand structure is shown in Figure 2, according to the human fingertip
structure and the principle of sensory sensation of human skin. The dexterous hand is designed
with three fingers, and each finger contains three degree of freedom (DOF) because dexterous hand
mainly depends on the function of pinching and grasping to realize underwater sample collection.
Each finger is driven by a servo motor which is mounted in the palm of the hand and connected
to the finger joints, and the fingers grasping and releasing motion of the manipulator is achieved
through the forward and reverse direction rotation of the servo motor. A low density UTFS array is
mounted on the front and side views of the Distal Interphalangeal Point (DIP) joint of each finger
for the dexterous hand intelligent grasping. The UTFS array consists of two kinds of force sensors,
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and one of which composed of eight force sensors can measure the force information of the fingertip
inner surface. The other kind of UTFS can obtain the information of grasping force on the side, and the
left and right side are composed of four force sensors respectively. The force measurement principle is
that the upper hemispherical flexible contact as cover transfers the external water pressure and tactile
force information to silicon cup elastomer through silicon oil, at the same time, the low hemispherical
flexible contact also as cover transfers the external water pressure to the other side of the silicon cup
elastomer through silicon oil to balance the water pressure, which makes the silicon cup elastomer
directly measure the external tactile force signal by water pressure vector superposition. The screw
holes are machined in the bottom of the dexterous hand to connect with the robot arm.

UTFS

Array

Figure 2. The structure of underwater dexterous hand with UTFS array.

The ideal UTFS can be considered as a part of the dexterous hand finger different from the
commercially available sensor core, because the silicon-cup elastomer is directly mounted in the
machining hole of the fingertip, and the inner wall of the machining hole is directly used as the shell
of UTFS. What is more, the flexible contact is connected with the machining hole through the thread
and the seal ring, so that the design method is beneficial to reduce the volume of the finger and more
UTFSs may be distributed on the fingertip. However, with the reason of the processing technology
and cost requirements, the actual developed UTFS has its own shell and commercial silicon-cup sensor
core to achieve basic verification.

According to the measurement requirement of the UTFS under complex underwater environment,
a capsule-shaped UTFS including two flexible contacts is designed referring to principle of strain
piezoresistive silicon sensor measuring liquid pressure. The structure diagram of the UTFS is shown
in Figure 3, and the UTFS consists of flexible contacts, silicone oil, fixture, silicon cup, wire, silicon
board, etc. The UTFS displays the capsule shape, and the silicon-cup type elastomer is embedded in
the fixing device, which divides the UTFS into upper and lower parts containing a cavity filled with
silicone oil separately. The upper and lower part respectively has a spherical flexible contact which
can sense the external force and isolates the external water environment and the internal silicone oil
environment. The flexible contact is made of the mixture of Nitrile Butadiene Rubber (NBR) and silica
gel, which is soft and keeps the hemisphere shape easily to contact with the external target, and can
transmit the external contact deformation information to the internal silicone oil pressure information
without any loss. Through the internal silicone oil, the pressure information is transmitted to the upper
and lower sides of the silicon-cup bottom elastomer so as to realize the purpose of sensing tactile force
information under the static pressure vector overlay of the water.
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Figure 3. The structure diagram of capsule UTFS.

Therefore, the differential pressure capsule-shaped UTFS transforms the external tactile force
into the pressure of silicone oil inside the sensor, and the silicone oil pressure is uniformly loaded on
the silicon cup bottom elastomer containing four strain elements to deform, so that the four strained
elements constituting the full bridge are realized to the tactile force measurement. The fabrication
process of silicon cup and the distribution of strain element in the bottom of the silicon cup play an
important role in the nonlinearity and sensitivity of the signal output.

3. Mathematical Model of the Force Analysis of Silicon Cup Bottom

The core of the silicon cup bottom elastomer composed of four strain elements is the main
component of force measurement technique. The fabrication process of silicon cup elastomer is
to sputter the protective film (such as SiO2 and Si3N4) on the front surface of the monocrystalline
silicon [37], and the position of the strain element is determined by the lithography technology of the
protective film, then the vacuum sputtering force sensitive material protection film (such as Ti) and
the force sensitive material (such as Au) are realized, and the production of four strain elements is
achieved by stripping and cleaning the force-sensitive material [38]. The positive cavity of cup body is
formed by lithography and anisotropic etching with corrosive liquid (such as KOH) on the bottom
of monocrystalline silicon, and the whole silicon cup elastomer system of silicon cup is completed.
The four strain elements on the silicone elastomer are led out to the outside through a wire to form
a Wheatstone Bridge, and the silicone elastomer and the protective shell form the core of the sensor
core, which can be purchased on the commercial market. The pressure measurement is achieved by
the linear relationship between the strain and the output of Wheatstone Bridge, so that the strain and
stress analysis at the bottom of the silicon-cup elastomer is the core of the whole measurement.

The silicon cup bottom elastomer containing four strain elements is subjected to the pressure of
the top side and the bottom side, and which can be regarded as a square thin plate with four sides
fixed and a thickness smaller than the side length. The stress and strain distribution of the square thin
plate under uniform pressure loading can be analyzed by elasticity and plate shell theory, which is of
theory support for the arrangement of the strain element on the high stress region of the square thin
plate to achieve high resolution and sensitivity signal output.

3.1. Mathematical Model of Silicon Cup Bottom

Suppose the square thin plate size as a× b× h, which is shown in Figure 4. The deflection is much
smaller than the diaphragm thickness, which satisfies the Kirchhoff hypothesis so that the square thin
plate can be considered to satisfy the small deflection theory under the uniform pressure p0. Combined
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with the thin plate bending theory, the stress component of any point in the thin plate can be expressed
by the thin plate deflection with the equilibrium differential equation of elasticity, geometric equation
and physical equation [39]. The bending stress and shear stress of any point in the thin plate are
illustrated as: 

σx = − Ez
1−µ2 (

∂2w
∂x2 + µ ∂2w

∂y2 )

σy = − Ez
1−µ2 (

∂2w
∂y2 + µ ∂2w

∂x2 )

τxy = − Ez
1+µ

∂2w
∂x∂y

(1)

where w represents the deflection of any point in the thin plate, and z represents the ordinate of the xOy
surface. σx, σy, τxy represent the transverse stress, the longitudinal stress and shear stress, respectively.
E and µ represent elastic modulus and Poisson ratio of the thin plate, respectively.

y

x

z

b

a

h

Figure 4. The square diaphragm with four fixed sides.

3.2. Stress Analysis of the Square Thin Plate

The deflection and stress distribution of the thin plate are analyzed by the Ritz method, which is
an approximate analysis method based on the principle of minimum potential energy [40]. The basic
principle is to take the finite term of the series expansion of displacement, and to make the infinite
number of position parameters become finite polynomial as well as to apply the stationary condition
of potential energy according to the principle of minimum potential energy. To solve the deflection w
of the four-side fixed square plate under uniform load p0 by the method of the Ritz, with Figure 4 the
boundary condition of the thin plate is expressed as:

w|x=0 = 0; w|y=0 = 0;
w|x=a = 0; w|y=b = 0;
∂w
∂x |x=0 = 0; ∂w

∂y |y=0 = 0;
∂w
∂x |x=a = 0; ∂w

∂y |y=b = 0;

(2)

An infinite degree of freedom system is replaced by a finite degree of freedom system, and the
approximate solution is solved according to the principle of minimum potential. For the square thin
plate shown in Figure 4, the triple triangular series expansion of any point of deflection satisfying the
boundary condition is shown in Equation (3):

w =
∞

∑
m=1

∞

∑
n=1

Kmn(1− cos
2mπx

a
)(1− cos

2nπy
b

) (3)

where a and b are the length and width of the square thin plate respectively, and (x, y) represents the
coordinate of any point on the thin plate with the range of 0 ≤ x ≤ a and 0 ≤ y ≤ b, and Kmn is the
triple triggering coefficient expansion coefficient independent of x and y under the uniform load p0.
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It is obvious that each item of the series in Equation (3) can satisfy the fixed boundary condition in
Equation (2), and the elastic deformation energy of the plate can be expressed as:

U =
D
2

∫∫
A

(
∂2w
∂x2 +

∂2w
∂y2 )2dxdy

=
D
2

∫ a

0

∫ b

0

{
∞

∑
m=1

∞

∑
n=1

4π2Kmn

[
m2

a2 cos
2mπx

a
(1− cos

2nπy
b

) +
n2

b2 cos
2nπy

b
(1− cos

2mπx
a

)

]}2

dxdy

= 2Dπ4ab

{
∞

∑
m=1

∞

∑
n=1

[
3

(
m4

a4

)
+ 3

(
n4

b4

)
+ 2

(
m2

a2

)(
n2

b2

)]
K2

mn

+
∞

∑
m=1

∞

∑
r=1

∞

∑
s=1,r 6=s

2(
m4

a4 )KmrKms +
∞

∑
r=1

∞

∑
s=1,r 6=s

∞

∑
n=1

2(
n4

b4 )KrnKsn

}
(4)

where A represents the thin plane area of the plate, and D represents the bending stiffness of the thin
plate [41] which can be expressed as

D =
Ez3

12(1− µ2)
(5)

where z is the thin plate thickness.Under the action of uniform load p0, the external potential energy V
can be expressed as:

V =−
∫ a

0

∫ b

0
p0

∞

∑
m=1

∞

∑
n=1

Kmn(1− cos
2mπx

a
)(1− cos

2nπy
b

)dxdy

=− p0ab
∞

∑
m=1

∞

∑
n=1

Kmn

(6)

The total potential energy Π with Equations (4) and (6) can be expressed as: Π = U + V. By the
minimum potential energy principle the choice of Kmn should meet ∂Π/∂Kmn = 0, according to Π’s
taking the extreme conditions it can be obtained:

4π4Dab
{[

3
(

m4

a4

)
+ 3

(
n4

b4

)
+ 2

(
m2

a2

) (
n2

b2

)]
Kmn

+
m
∑

r=1,r 6=n
2
(

m4

a4

)
Kmr+

n
∑

r=1,r 6=m
2
(

n4

b4

)
Krn

}
− p0ab = 0

(7)

where set m = 1, n = 1 and the first item in Equation (7) can be obtained:

K11 =
p0a4b4

4π4D(3b4 + 3a4 + 2a2b2)
(8)

Substituting Equation (8) with Equation (3) and the deflection of the plate is obtained with the
first term of the series expressed as:

w =
p0a4b4(1− cos 2πx

a )(1− cos 2πy
b )

4π4D(3b4 + 3a4 + 2a2b2)
(9)

where w will obviously obtain the maximum value when x = a/2 and y = b/2.
The integral stress distribution at the bottom of silicon cup is analyzed by Von-Mises equivalent

stress. The Von-Mises equivalent stress refers to a physical quantity that measures the yield state of
a material by comparing the stress combination with the yield limit of the stress state the condition of
complex stress and expressed as:
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σV−M =([(σx − σy)
2 + (σy − σz)

2 + (σz − σx)
2

+ 6(τxy + τyz + τzx)
2]/2)

1
2

(10)

where σx, σy and σz are corresponding to the stress in the direction of the x, y, z axis respectively,
and τxy, τyz and τzx are corresponding to the shear stress on the xOy, yOz and zOx surface respectively.
According to the characteristics of the thin plate, making σz = τyz = τzx = 0 and substituting
Equation (1) with Equation (10) and it can be obtained the Von-Mises equivalent stress which can be
expressed as:

σV−M =
Ez

1− µ2 ((µ
2 − µ + 1)[(

∂2w
∂x2 )

2 + (
∂2w
∂y2 )

2]

+ (−µ2 + 4µ− 1)
∂2w
∂x2

∂2w
∂y2 + 3(1− µ2)(

∂w
∂x

∂w
∂y

)2)
1
2

(11)

4. Finite Element Analysis of Silicon Bottom

The Finite Element Analysis software ANSYS Workbench 14.0 is used to analyze the bottom of
the silicon cup under uniform load [42]. Simultaneously, the strain and Von-Mises stress with the Ritz
method are calculated and plotted in Matlab software to realize the comparison of the Finite Element
Analysis method, and the distribution of stress and strain at the bottom of the silicon cup is obtained.

The side view of the silicon cup structure is shown in Figure 5. The width, the edge width and the
height of the silicon cup are expressed as: L × L = 4.3 × 4.3 mm, l = 1 mm and T = 0.39 mm.
According to the characteristics of the silicon cup corrosion process, the thickness of the strain
diaphragm on the silicon cup is h = 0.09 mm. As a result of the bottom of the square, the side length is
a = 1 mm. It is assumed that the silicon-cup bottom is under uniform pressure and silicon-cup material
is of uniform property, and the structure is symmetrical and the mathematical model is established for
the whole silicon cup.

l

a

T

L

l

h

l

a

T

L

l

h

Figure 5. The side view diagram of the silicon cup.

The material properties are added to the model of the silicon cup geometry. The elastic modulus
is set as 190 GPa and the Poisson ratio is 0.28. Employing Solid186 hexahedral element mesh method
and the model is divided into 154,530 nodes and 33,786 units. The model mesh, the constraint and
load applied are shown in Figure 6. It is applied fixed constraints in the region of A, B, C, D, E and
1 MPa uniform load is applied at the bottom of the cup in the F region.
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A

B

C

DE

F

Figure 6. The model mesh of the silicon cup with load and constraint.

The deformation nephogram and the Von-Mises equivalent stress nephogram of the silicon cup
bottom employing the Finite Element Analysis method are shown in Figures 7 and 8.
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Figure 7. The deformation nephogram of silicon cup with Finite Element Analysis.

Figure 8. The Von-Mises stress nephogram of silicon cup with Finite Element Analysis.
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The same with the Finite Element Analysis method, the material properties, the geometric size
and the pressure value of the silicon cup bottom are substituted into Equations (9) and (11), and the
analytical solution of the deflection and the Von-Mises stress of the silicon cup bottom can be obtained.
The analytical solution of the deflection and Von-Mises equivalent stress in the Matlab software is
calculated and plotted as shown in Figures 9 and 10.

Figure 9. The Matlab nephogram of silicon cup deflection analytical solution.

Figure 10. The Matlab nephogram of silicon cup Von-Mises stress analytical solution.

According to the comparison between Figures 7 and 9, the finite element deformation nephogram
of the silicon cup bottom is consistent with that of the analytical solution of Matlab software, and the
deflection increases gradually from the surrounding to the center, and the deflection is the largest at the
center of the silicon cup bottom [43]. The maximum deflection error of the two methods is within 18%.

According to the comparison between Figures 8 and 10, it is concluded that the finite element
Von-Mises equivalent stress nephogram at the silicon cup bottom is consistent with the basic value of
the stress analytical solution Matlab nephogram, and the stress at the midpoint of four side and the
central position is the largest. The maximum error of the two methods is within 25%.

There are errors between the results of Finite Element Analysis method and Matlab theoretical
calculation method, of which the main reason is with different modeling method. The Finite Element
Analysis method is based on the real geometry model of silicon cup, and the result is solved by
dividing the body unit grid. The Matlab analytical solution method is equivalent to the bottom of the
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silicon cup as a solid plate model, ignoring the thickness of the shear stress and shear stress. So that
the error is reasonable, and the results of the two methods can be verified to each other.

5. Analysis of the Silicon Cup Measurement

To obtain the maximum value of the transverse and longitudinal stress difference at the bottom of
the silicon cup, the theoretical basis is provided for the distribution of the force sensing element in
the bottom of the cup. The term σx − σy is calculated according to Equations (1) and (9) which can be
obtained as:

σx − σy =
−Ez
1 + µ

(
∂2w
∂x2 −

∂2w
∂y2 )

=
−3p0a2(1− u)

2π2z2 (cos
2πx

a
− cos

2πy
a

)

(12)

The material properties, the geometric size and the pressure value of the bottom of the silicon cup
are substituted into the Equation (12), and the distribution nephogram of the stress difference of the
silicon cup bottom can be obtained and shown in Figure 11.

Figure 11. The MATLAB nephogram of σx − σy distribute.

It is concluded from Figure 11 that the midpoint of a pair of edges is subjected to the largest
transverse stress, which shows positive strain under the condition of uniform pressure, on the other
hand, the longitudinal stress at the midpoint of the other pair is the largest, showing a negative strain,
and the maximum and minimum values of σx−σy are respectively 27.019 and −27.019 MPa. If the
force sensing element is distributed in the region of high stress at the silicon cup bottom, the output
signal with high sensitivity is obtained.

Referring to the literature [44] the four strain elements mounted in the silicon-cup bottom will
constitute the Wheatstone bridge which is shown in Figure 12, according to the piezoresistive effect of
silicon chip and suppose Wheatstone full arm bridge resistance as Ri(i = 1, 2, 3, 4). When the strain of
the strain gauge is achieved, the change rate of resistance value of the bridge arm is expressed as:{

∆R1
R1

= ∆R3
R3

= π44
2 (σx − σy)

∆R2
R2

= ∆R4
R4

= π44
2 (σy − σx)

(13)

where σx and σy are transverse and longitudinal stresses respectively, and π44 is shear piezoresistive
coefficient. According to the relationship between the longitudinal and transverse stress distribution
in the silicon cup bottom, a pair of opposite sides are mainly subjected to longitudinal stress, and the
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other pair of edges are mainly subjected to transverse stress, so that the two groups of force sensing
element coefficient are opposite. As a result, the four strain elements form a Wheatstone bridge in the
full arm bridge performance, enabling high resolution and sensitivity signal measurements, and the
signal output has a linear relationship with the applied load [45].

1
R

2
R

3
R

4
R

out
V

+ -
in

U

Figure 12. The silicon cup full-bridge circuit with four force-sensitive components.

6. Experiment and Test of the UTFS

6.1. UTFS Assembly

The processing technology and assembly process of the sensor have an important influence on
the output performance of the sensor. The UTFS is designed and manufactured according to the
previously described measurement principle of the UTFS, and the designed UTFS profile is shown in
Figure 13. Considering the underwater sealing, the power supply and the signal output of the sensor
core, the parts of UTFS mainly include the flexible contact, the sealing ring, the shell, the sensor core,
snap rings, the Poly Tetra Fluoroethylene (PTFE) pad and so on, which is similar with the previously
described principles of the sensor structure in Figure 3. The sensor core whose measurement center is
silicon-cup with four strain elements is waterproof proceed, mounted to the sensor housing from the
lower end hole. The sensor core circuit board is covered with a PTFE insulation mat to prevent the
circuit damage, consequently the sensor core is fixed and pressed with a snap ring. The selected sensor
core parameters are shown at Table 1.

Table 1. The selected sensor core parameters.

Item Nonlinear Repeatability Hysteresis Zero Output Full-Scale Output

Typical value ±0.15 ±0.05 ±0.05 ±2
Maximum ±0.25 ±0.075 ±0.075
Minimum 45

Unit %FS, BFSL %FS %FS mV DC mV DC

The sensor core wire is led to the outside of the sensor shell through the guide hole in the shell,
the sensor core hole conducts the lower cavity and the silicon-cup elastomer, which transmits the
cavity oil pressure to the surface of the silicon-cup elastomer, and the epoxy AB glue is used to pour
sealing and fix the wire, and also to fix the guide hole. The gap between the upper shell of the sensor
core and the inner shell of the UTFS is also sealed by epoxy AB glue. The cavity between the end of
the sensor core and the flexible contact is filled with silicon oil to transmit the oil pressure to the other
surface of the silicon-cup elastomer to construct differential performance.
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Figure 13. The schematic diagram of underwater UTFS assembly. (Note: 1. Flexible contact; 2. Sensor
shell; 3. Snap ring; 4. Sensor core; 5. O sealing ring; 6. Epoxy Resin AB glue; 7. Glue filling cavity).

The flexible contact includes the flexible part and the stainless steel metal sleeve, and flexible part
consistent of silicone and NBR is vulcanized and adhered to the stainless steel metal sleeve, which
has the characteristics of good sealing and corrosion resistance, and the stainless steel metal sleeve is
fixed on the shell of the UTFS through the thread. The assembly process of the flexible contacts and
the UTFS shell housing is completed in the silicone oil environment, which ensures the silicone oil
is fully filled with the upper and lower cavities. The thread between the flexible contact and UTFS
shell has a large tolerances, which realizes the silicone oil to discharge to the outside of the housing
shell to avoid generating the additional pressure when rotation assembly. The two flexible contacts
are equipped with the shell at the same time to keep the up and down cavities pressure equivalent,
and the seal ring is employed to prevent silicone oil from escaping. The photo of UTFS and part
components are shown in Figure 14. The selected sensor core can be directly purchased on the market,
which avoids the production of a sensor core or a strain gauge, ensuring the accuracy requirements
and linear output of the UTFS. During the experiment, the Wheatstone bridge of the sensor core is
directly powered and the output signal is measurement.

(a) (b)

1 2

3 4

Figure 14. The photo of UTFS and part components. (a): UTFS; (b): part components (Note: 1. Flexible
contact; 2. Sensor shell; 3. Sensor core; 4. Snap ring).
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6.2. UTFS Zero Point Output at Different Depth

The sensor core of UTFS measurement circuit can be regarded as a full arm bridge performance of
Wheatstone bridge [46], and the output signal sensitivity is higher than the single arm, half-bridge
signal output. The full bridge circuit is shown in Figure 12, and the measurement signal output is
achieved under Uin = 7.4 V voltage Power supply.

To detect the water pressure influence to the UTFS output, the zero point output experiment
under different depths is realized. The UTFS is placed at different water depth ranging from 0 m to
6 m, and the output of the Wheatstone bridge is measured without any tactile force load. The zero
output curves at different water depth are shown in Figure 15, which can be seen that the sensor zero
point output increases linearly with water depth, from 6 mV at 0 m water depth to 6.9 mV at 6 m
water depth.

0 1 2 3 4 5 6
6

6.2

6.4

6.6

6.8

7
The sensor zero output  under different depth 

zero pot output

Figure 15. Zero output voltage at different depths.

The main reason for the zero point drift at different water depth is that the volume of the upper
and lower cavities are different and the volume of the filled silicon oil of the two cavities are also
different, so that the upper and lower silicon oil pressure are different with the deformation extrusion
of the flexible contacts under the effect of equal external water pressure. The installation process is the
secondary cause of the UTFS zero point drift. Because of the linear zero point drift, and the output
signal influence due to water depth can be diminished with the data fusion calibration algorithm with
water depth measurement.

6.3. UTFS Experiment at Different Water Depth

The UTFS generates interactive force for the external grasping target with the hemispherical
flexible contact, and an force applying experiment under different water depth is designed for the
UTFS output characteristics study. With the capacity of adjustable standard force applying and
adjustable water depth supply and also adjustable temperature supply, the UTFS applying device is
different from the non-underwater environment one. To realize the application of adjustable tactile
force under adjustable water depth, an experimental applying device is designed as shown in Figure 16.
Four rail stents are fixedly connected by a vertical device and the extremity is mounted on the base.
The UTFS is installed at the end side of the rail stent through the mounting holes and is located above
the base in order to achieve the maximum depth of the water environment. The force transmission
stent is connected with the pull and press force gauge with the nut and thread, which achieves contact
with the upper flexible contact extremity of UTFS through the vertical device to be vertical, ensures
the operator apply the force on the pull and press force gauge to the UTFS in the vertical direction
contact. To realize the water depth adjustment of the UTFS task environment, and the rail stent can be
extended by the connection with another rail stent by the screw thread and the nut, so that the force
transmission stent can also be extended with the same way. The operator can do the UTFS experiment
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at different water depth by operating the experimental device on the surface of the water, realizing the
different depths and different tactile force supplies.

Force Sensor

Vertical Device

Base

Connecting Nut

Force Transmission 

Stent

Vertical 

Device

Pull and Press 

Force Gauge

Rail Stent

Figure 16. The schematic diagram of underwater standard force loading.

In the experimental process of UTFS measurement at any water depth, the sensor is placed in
the depth environment of 0 m, 2 m, 4 m and 6 m respectively, and the UTFS is applied with different
force to measure the sensor output. The water 0 m depth indicates out of the water, and the water
temperature is 17 ◦C. The pool experiment photo is shown in Figure 17, and the UTFS output curves at
different depths are shown in Figure 18.

As shown in Figure 18, the output of the UTFS remains approximately linear with the increase
of the standard tactile force signal applied under water depth conditions of 0 m, 2 m, 4 m, and 6 m
respectively, and the maximum nonlinear error of the tactile force sensor is 0.21% F.S. The UTFS has
the overall linear migration of output value with the increase of water depth affecting the sensor’s
zero point drift, and the calibration algorithm can be employed to eliminate the effects of the water
depth. Therefore, the UTFS can be data post-processed to avoid the influence of the water pressure,
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which directly measures the signal of the tactile force. The flexible contact ensures the application of
the force signal and the hydraulic balance of the sensor.

Figure 17. Photo: the pool experiment of UTFS.
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Figure 18. UTFS output with standard force loading at different depths.

6.4. UTFS Experiment with Temperature Influence

The silicon cup sensor core is susceptible to the temperature drift. In order to achieve the reliability
and stability of the UTFS to ensure the application of underwater temperature range of 0 ◦C–30 ◦C,
a temperature test experiment has been done for the designed UTFS output character. The UTFS is
placed in the basin with 0.1 m water depth environment, and the water temperature is set to 0 ◦C, 17 ◦C,
and 30 ◦C respectively with ice and water mixture or thermal and cool water mixture, and 17 ◦C water
temperature is the indoor natural water temperature. The sensor output is measured under different
tactile force load, and the sensor output curves diagram at different temperature is shown in Figure 19.
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Figure 19. The diagram of UTFS output under different temperature.

As can be seen in Figure 19 that the UTFS output is affected by the temperature, and the
output with the same tactile force applying is different under different temperature environment.
The maximum temperature drift occurs at the zero point, and the UTFS output is shifted from 2.48 mV
to 8.63 mV when the water temperature changes from 0 ◦C to 30 ◦C. However, the UTFS still maintains
good linearity at each fixed temperature point, and the slope of different regression linear with
different temperature is different. The temperature influence can be eliminated by the temperature
compensation with data-fitting algorithm [47,48].

7. Discussion

The main advantage of UTFS is the structure of isolating physical contact with the sensor from
water pressure under different water depths. Due to the depth limitation of the pool, the UTFS can only
be tested under 6 m depth environment.The UTFS has a 31.5 mm shell length and the flexible contact
radius of 25 mm, and realizes the force measurement with sensor core of silicon-core type elastomer
under the differential pressure structure. The UTFS maintains the linear output under the condition of
the hemispherical flexible contacts interacting with the outside target. The UTFS has the zero drift with
different water pressure; however, the force-electric performance output of the sensor linear regression
equation on each water pressure point has an almost equal slope. If the accuracy is not high enough
in the application, the actual tactile force value can be directly calculated by the zero point output
under water pressure and the force applying output. On the contrary, in order to obtain a higher
tactile force signal, a backpropagationt (BP) neural network including three input layers consisted
force measurement value, temperature measurement value, water pressure measurement value and
one output layer consisted the true applied force value may be established, which can be established to
calibrate the UTFS by off-line training algorithm to meet the precision tactile force output requirement.

The designed UTFS does not need to attach the strain gauge or to produce a silicon cup type
elastomer, which only needs to install the sensor core. The UTFS production reduces the effect of
the manufacturing process on the sensor output; however, this kind of structure design method
cannot realize the high density array distribution of underwater robot dexterous hand because of
the big volume restriction. The silicon cup elastomer of the sensor core can be directly mounted on
the dexterous hand finger to realize the miniaturization of force measurement. In the measurement
experiment, the UTFS output has a higher resolution and sensitivity character when the applying force
point is the vertices of hemispherical flexible contact and vertical contact or the output will be biased if
the applying force on the side of the hemisphere flexible contact.

The UTFS’s nonlinear error, repeatability and hysteresis are respectively 0.21% F.S, 0.02% F.S,
0.02% F.S, and the UTFS’s sensitivity is 0.47 mV/N, which is priority to Yong xin Guo’s force sensor [49].
The tactile force sensor has a reasonable structure and is easy to assemble. The full arm Wheatstone
bridge achieves high sensitivity of the output signal and can be well applied to underwater tactile force
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measurement. Compared with Qinxin’s work [16], it reduces the complexity of the circuit, and it save
the structural design cost compared to Yi’s fiber optic tactile force sensor [19]. The main experiment is
under the still water to measure the character of the sensor, and the water fluctuation may affect the
sensor output when considering the complexity of seawater environment. Because the hemispherical
flexible contact realizes the isolation of the external seawater from the internal silicone oil and the
tactile force signal will have a small threshold value, which will have a certain effect on the sensor
when the seawater affection is more than the threshold for the sensor information. The sensor can also
be used to achieve underwater object properties judgment.

8. Conclusions

In this paper, the UTFS used in the array distribution of underwater dexterous hand to realize
tactile force measurement and grasping position determination is analyzed. The capsule structure
of UTFS is introduced, which realizes the vector superposition of water static pressure on the upper
and lower side of the sensor core to achieve the tactile force measurement with the influence of water
pressure eliminated. The stress and strain character of silicon cup elastomer is analyzed and verified
by Finite Element Analysis to support the strain element distribution on the surface of silicon cup.
To verify the performance of the designed UTFS, the zero point output at different depth experiment,
the different water depth arbitrary force applying experiment, and the temperature influence output
experiment were implemented under the condition of 6 m water depth environment. The results
show that: The structure of the capsule shape with differential pressure technology makes the UTFS to
eliminate the water static pressure. The silicon cup measurement structure satisfies the characteristics
of high sensitivity and large output stress. The error of the tactile force measurement sensor is small
and the linearity is high. If the designed sensor array is distributed on the finger of the proposed
underwater dexterous hand, it is easy to determine the grasping position of the underwater target.
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