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Abstract: The convolutional neural network (CNN) has made great strides in the area of voiceprint
recognition; but it needs a huge number of data samples to train a deep neural network. In practice,
it is too difficult to get a large number of training samples, and it cannot achieve a better convergence
state due to the limited dataset. In order to solve this question, a new method using a deep migration
hybrid model is put forward, which makes it easier to realize voiceprint recognition for small samples.
Firstly, it uses Transfer Learning to transfer the trained network from the big sample voiceprint dataset to
our limited voiceprint dataset for the further training. Fully-connected layers of a pre-training model
are replaced by restricted Boltzmann machine layers. Secondly, the approach of Data Augmentation is
adopted to increase the number of voiceprint datasets. Finally, we introduce fast batch normalization
algorithms to improve the speed of the network convergence and shorten the training time. Our new
voiceprint recognition approach uses the TLCNN-RBM (convolutional neural network mixed restricted
Boltzmann machine based on transfer learning) model, which is the deep migration hybrid model that
is used to achieve an average accuracy of over 97%, which is higher than that when using either CNN
or the TL-CNN network (convolutional neural network based on transfer learning). Thus, an effective
method for a small sample of voiceprint recognition has been provided.

Keywords: voiceprint identification; small sample; convolutional neural network; transfer learning;
restricted Boltzmann machine; fast batch normalization; data augmentation

1. Introduction

Voiceprint identification is a biometric technique [1] that identifies the speaker through voiceprint
features. With the advent of deep learning, convolutional neural networks (CNN) are widely applied in
speech recognition [2–4]. When trained with a large number of voice data, the voiceprint identification
model uses the deep neural network, which can automatically learn a wide range of acoustic features
(spectrum, pitch, formant, etc.), which greatly improves the accuracy of voiceprint recognition.
However, for small samples, the accuracy of voiceprint recognition is not optimistic [5]. Training a deep
neural network requires a large number of training samples to learn millions of network parameters [6].
If we only use a small sample of voices as a training set to train a deep neural network, it will be easy
to overfit, resulting in low recognition accuracy of voiceprints. The voiceprint identification of small
samples is still not mature, and has much room for improvement.

At present, the methods for voiceprint identification include the traditional machine learning
method and deep learning method.
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In the traditional machine learning method, feature selection is crucial for recognition accuracy.
Currently, the most common feature extraction includes linear predictive cepstral coefficients [7],
mel frequency cepstral coefficients [8], and the i-vector [9]. After the features are extracted, the
machine learning method is used to train the Gaussian mixture model [10], the Gaussian mixture
model-universal background model [11], and the support vector machine [12]. The voiceprint feature
of learning through these methods may lose some key features, which would lead to a decrease in
voiceprint recognition accuracy, especially in a noisy background.

Compared with the traditional machine learning method, the deep learning method can extract
high-level features [13,14]. Currently, the deep neural network of deep learning has made great
achievements in the area of speech recognition [15,16]; furthermore, speaker recognition has made
great strides [17,18]. Bidirectional long short-term memory (BLSTM) acoustic models provide a
significant word error rate reduction compared to their unidirectional counterpart, as they model both
the past and future temporal contexts [19]. However, a large amount of data is required to train a
network. In practice, it is difficult to get a large number of training samples.

Transfer learning is the core technology used to deal with small samples. Transfer learning refers
to the application of acquired knowledge in a particular domain to different and related fields [20–22].
However, in the transfer process, differences between the source and target data sets are unavoidable,
resulting in low recognition rate.

The restricted Boltzmann machine is a kind of generative neural network proposed by Hinton
and Sejnowsk [23,24] that has strong unsupervised learning ability [25], which can quickly learn the
target data sets’ high-order statistical features in view of the maximum logarithmic likelihood. In this
paper, the CNN network, which is learned from large data sets, is used as the bottom and middle
feature extractor. Then, the fully connected layers were modified by the self-adaptive feature layer.
During the training process, only the self-adaptive layer was trained. Therefore, we used the restricted
Boltzmann machine layers instead of the traditional full connection layers to solve the differences
between the voiceprint data sets.

LeCun proposed that data normalization might speed up network convergence [26]. Inspired by
batch normalization (BN) [27], the fast batch normalization algorithm, referred to as FBN, was
introduced. By using small sample voiceprints on the basis of transfer learning, FBN can be used to
accelerate the convergence of the network. Until now, few researchers have applied transfer learning
to small sample voiceprint identification. Therefore, we have proposed a voiceprint identification
method for small samples under the deep migration hybrid model.

The contributions of this paper are summarized as follows:

• We propose a TLCNN-RBM model, with high-accuracy and low computational cost for small
voiceprint samples, which consists of 5-layer CNN, 2-layer RBM, and the Softmax layer.

• There are differences between voiceprint data sets during the transfer process. To deal with this
difficultly, we use RBM and the Softmax classifier to replace the fully connected layers of the CNN
network; the RBM and the Softmax classifier are re-trained with the target samples.

• We introduce a novel algorithm to speed up and simplify training of the network. By careful
design, the CNN network with FBN reduces 48.04% of the training time compared with the one
without FBN, on the benchmark NIST 2008 SRE.

• We develop a software for voiceprint identification using the proposed algorithm and make an
intelligent mailbox that unlocks based on voiceprint identification.

The remainder of this paper is organized as follows: Section 2 introduces the small sample
voiceprint identification algorithm, including the network architecture of our TLCNN-RBM; Section 3
contains a comparison and discussion based on the experiment by hold-out validation; Section 4
presents the experiment in real scenes and the application results. The paper ends with our conclusion
and suggested future work.
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2. Small Sample Voiceprint Identification Algorithm

When the small sample voiceprint was used to train the CNN network, the recognition accuracy
of the voiceprint was low because of the small amount of voiceprints and the differences between the
voiceprint data sets. In order to improve the performance of small sample voiceprint identification,
the pre-trained CNN model was transferred, in which fast batch normalization was added. Based on
this, to improve the quality of features, RBM layers were used to replace the CNN network’s full
connected layers. These RBM layers not only integrated all of the voiceprint feature maps under the
convolutional layer, but also could learn more about the higher-level voiceprint features owned by
the small samples from the feature maps. Therefore, more voiceprint features could be extracted,
improving the recognition rate. The flow of the algorithm is shown in Figure 1.
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2.1. Pre-Processing

Before using audio training or testing model, due to the short-time invariability of speech signal,
a speech signal x (t) was first divided into x (m, n) (n was frame length, m was the number of frames),
and we got X (m, n) through the short time Fourier transform. The periodogram Y (m, n) was obtained
from X (m, n) using the formula (Y (m, n) = X (m, n) × X (m, n)’) and then by taking 10 × lgY(m, n).
Finally, m was transformed into the scale M according to the time, n was transformed into the scale
N according to the frequency, and a two-dimensional graph (the speech spectrogram) was drawn
according to (M, N, 10 × lgY(m, n). The speech spectrogram (b) was generated by the original speech
signal (a), as shown in Figure 2.
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2.2. Pre-Training CNN Network Based on the Source of Large Sample Voiceprint Data

The CNN-FBN network used in this paper consists of five convolutional layers and three
fully connected layers. The FBN was added to the convolutional layer before the activation
function. This network model was used to process the 227 × 227 dimension of the speech
spectrogram. The convolutional layer CONV1 used 96 × 11 × 11 × 3 convolution kernels to
slide the 227 × 227-dimension of the input speech spectrogram image with a sliding step of 4 pixel.
The convolutional layer CONV2 used 256 × 3 × 3 convolution kernels to process 96 feature maps
that CONV1 output, and the convolutional layers CONV3–CONV4–CONV5 sequentially used
384 × 3 × 3 × 256, 384 × 3 × 3 × 384, and 256 × 3 × 3 × 384 convolution kernels. The number of
neurons in FC6-FC8 was 4096, 4096, and 200 successively. CONV1–CONV5 have the maximum
pooling for the obtained feature map, and finally the fully connected layers are used to classify the
voiceprint. The structure of the network is shown in Figure 3.
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The parameters of the network were learned through the forward propagation. In each layer, the
input features are calculated as follows:

netl+1
j = Wl

jx
l
j + bl+1

j (1)

xl+1
j = s(FBN(netl+1

j )) (2)

x(l)j denotes the j-th feature map of the l-th layer, x(l+1)
j denotes the j-th feature map of the (l+1)-th layer,

W(l+1)
j and b(l+1)

j are the weight matrix and the biases of the feature map x(l+1)
j , respectively. s(•) is

the ReLU function, FBN(•) is the fast batch normalization algorithm we introduced.
Since the FBN algorithm is applied to each activation independently, we focus on a particular

activation e(k) (k ∈ [1, t]) of a layer with t-dimensional input. Taking a mini-batch Bg = {e1 . . . s}
with size s for this activation as an example, the normalized values are Bg = {g1 . . . s}, which obey the
N(0,1) distribution.

We refer to the transform
FBN : e1...s → g1...s (3)

as the fast batch normalization algorithm. The details are as follows:
The mini-batch mean is:

µ =
1
s

s

∑
i=1

ei. (4)

The mini-batch variance is:

σ2 =
1
s

s

∑
i=1

(ei − µ)
2

. (5)
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The normalized value is:
gi =

ei − µ

σ
. (6)

Update the global mean:
µB = (1− ξ) ∗ µB + ξ ∗ µ. (7)

Update the global variance:

σB
2 = (1− ζ) ∗ σB

2 + ζ ∗ σ2. (8)

Update the momentum value ξ:

ξ = ξ− γ
∂L
∂ξ

. (9)

Update the momentum value ζ:

ζ = ζ− γ
∂L
∂ζ

. (10)

In the FBN algorithm, µB and σB
2 are respectively initialized as 0 and 1. For the learning rate γ,

we initialize it as 0.01. Moreover, it is related to ξ and ζ, which are learned from the mini-batch data.
Therefore, the combination coefficients ξ and ζ realize the self-adaption for each activation. In the
verification process, the final training results of µB and σB

2 are adopted.
During the training process, we need to backpropagate the gradient of loss L and compute the

gradients with regard to the parameters of the FBN. The chain rule is applied, as follows:

∂L
∂σ2 = −1

2∑s
i=1

∂L
∂gi

(ei − µ)(σ2)
− 3

2 , (11)

∂L
∂µ

= (∑s
i=1

∂L
∂gi

−1
σ

) +
∂L
∂σ2
−2∑s

i=1 (ei − µ)

s
, (12)

∂L
∂ei

=
∂L
∂gi

1
σ
+

∂L
∂σ2

2(ei − µ)

s
+

1
s

∂L
∂µ

. (13)

Given the output loss function L, we can learn the combination coefficients ξ and ζ. The back
propagation for this learning is given by:

∂L
∂ξ

=
∂L

∂µB

∂µB
∂ξ

=
∂L

∂µB
(µ− µB), (14)

∂L
∂ζ

=
∂L

∂(σB
2)

∂(σB
2)

∂ζ
=

∂L
∂(σB

2)
(σ2 − σB

2). (15)

For the setting of each mini-batch, the training procedure should be related to the whole training
data, and it is the whole set that should be used to normalize. However, this was impractical and
difficult to realize. Moreover, the FBN performed in single dimension independently was more effective
than in all dimensions, according to the theory of parallel computing of the GPU. Therefore, the
simplification we made makes sense. Firstly, the FBN algorithm was applied in each mini-batch.
Meanwhile, each mini-batch was used to estimate the mean and variance for the whole set. The entirety
and the parts were linked by applying Equations (7) and (8). In the training process, we found that the
recovery operation in Batch Normalization was useless to enhance the nonlinear expression ability.
To further reduce the resource occupation and improve the performance, the recovery operation was
safely removed from the FBN algorithm.

By normalizing activations throughout the network, FBN effectively solved the problems caused
by Internal Covariate Shift [27]. Much higher learning rates could be used without considering the risk
of overfit, thus greatly accelerating the training of the network.
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2.3. Data Augmentation

In order to avoid the over-fitting caused by the limited dataset, the data augmentation algorithm
is used to increase the sample capacity. In the CNN networks, we often use a method of data
augmentation to effectively avoid over-fitting. Data augmentation is a method wherein a series of
geometric transformations are added into the original speech spectrograms [28]. It mainly includes
scale cutting, contrast, zoom, shift, and noise. In this paper, we increased the small sample set by using
data augmentation based on convex lens imaging [29].

The speech spectrogram enhancement algorithm based on convex lens imaging is shown in the
following steps.

(1) Input audio data file.
(2) Use the short time Fourier transform to generate the speech spectrogram.
(3) According to the principle of convex lens imaging, the image obtained by taking P point location

L1 (F < L1 < 2F) is larger than the original image, as shown in Figure 4a.
(4) The image obtained by taking p position L2 (L2 = 2F) is as large as the original image, as shown

in Figure 4b.
(5) The image obtained by taking p position L3 (L3 > 2F) is smaller than the original image, as shown

in Figure 4c.
(6) Multiple speech spectrograms can be obtained through three kinds of transformations, and finally,

all image scales are normalized to 227 × 227 as the input of the convolutional neural network.
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In preprocessing, we increased the target sample set by using data augmentation based on the
principle of convex lens imaging. The mathematical formula is as follows:

1
u
+

1
v
=

1
f

. (16)

u represents object distance, v represents image distance, and f represents focal length.

2.4. Re-Training the TLCNN-RBM Hybrid Model Based on the Target of Voiceprint Data

The pre-trained CNN model was migrated to a small target set, and we retrained the hybrid model
of combining CNN with RBM. Then, the BP algorithm is used to fine tune the parameters of RBM and
Softmax classifier. As shown in Figure 5, when the hybrid model was retrained, the fully connected
layer (FC6–FC8) in the pre-trained CNN model was removed and replaced by the R6–R7 layer and
the new Softmax layer. The extracted features from the RBM layer were output to Softmax Classifier.
In order to combine all the features of the convolutional layer activation, the RBM layer played the
role of full connection. In this paper, we concatenated the 256 6 × 6 features of CONV5 output into
a feature map of 1536 × 6, and then the feature map was input into the RBM layer. The R6 of RBM
model had 1536 × 6 nodes in the visible layer, 6000 nodes in the hidden layer, and 1000 hidden nodes
in the R7 layer. The 1000-dimensional vector was input into the Softmax classifier layer and calculated
before the voiceprint could then be found, corresponding to the maximum probability. The structure
of the TLCNN-RBM hybrid model is shown in Figure 5.
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2.4.1. Restricted Boltzmann Machine Retraining 

In this paper, the restricted Boltzmann machine layers were added to the model when the 
model migrated; one was to play the role of full connection, and the other was to learn the potential 
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2.4.1. Restricted Boltzmann Machine Retraining

In this paper, the restricted Boltzmann machine layers were added to the model when the
model migrated; one was to play the role of full connection, and the other was to learn the potential
characteristics of the target set from the input speech spectrogram.

The RBM network consisted of a number of visible nodes and hidden nodes; ∀ i j, vi, hj ∈ {0, 1}, vi,
and hj represent visual nodes and hidden nodes, respectively, with 0 or 1 representing whether the
node was activated. The energy of the combination of the visible and hidden nodes in the RBM layers
can be defined as

Eθ(v, h) = −
m

∑
i=1

aivi −
n

∑
j=1

bjvj −
m

∑
i=1

n

∑
j=1

wijvihj, (17)

in which θ = (wij, ai, bj), wij denotes the weight between the visible and hidden nodes, ai denotes the
bias of the visible node, bj denotes the bias of the hidden node, m denotes the number of visible nodes,
and n denotes the number of hidden nodes. The joint probability distribution of (v, h) was obtained
through the given parameters of the model:

Pθ(v, h) =
e−Eθ(v,h)

Zθ
, (18)

Zθ = ∑
v,h

e−Eθ(v,h). (19)

Zθ denotes the normalization factor. When the parameters were determined and based on the
energy relationship, the mapping probability distributions of the neurons in the visible layer and the
neurons in the hidden layer were obtained:

Pθ(hj = 1|v) = s(bj + ∑
i

viwij), (20)

Pθ(vi = 1|h) = s(ai + ∑
j

hjwij). (21)

The RBM was trained using layers of iteration, and finally, the learning parameter θ = (w, a, b) was
obtained to fit the given training data. The parameter θ was calculated using the maximum logarithmic
likelihood estimation function. The maximum likelihood function formula can be defined as
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Pθ(v) =
∑
h

e−Eθ(v,h)

Zθ
. (22)

The iterative formula of the parameter θ can be defined as

θ = θ+ λ
∂lnL
∂θ

. (23)

λ represents the learning rate of the pre-training. In order to avoid time depletion caused by
the large number of RBM sampling steps, the RBM fast learning algorithm proposed by Hinton
was adopted, namely, the contrast divergence [30], which uses the maximum logarithmic likelihood
estimation function with the stochastic gradient up algorithm. The parameters were updated according
to the following formulas:

∆Wij = (ξ < vihj >data − < vihj >recon),
∆ai = (ξ < vi >data − < vi >recon),
∆bj = (ξ < hj >data − < hj >recon)

(24)

ξ denotes the learning rate, <·>data denotes the distribution of the definition for the training
sample, and <·>recon denotes the distribution of the definition for the reconstructed model.

2.4.2. TLCNN-RBM-FBN Hybrid Model Self-Adaptability

In order to make the new network adapt to the trained data, we used a BP algorithm [31]
to inversely adjust the network parameters. In the experiment, we found that using the variance
loss function had the disadvantage of updating network parameters slowly. Thus, we introduced a
cross-entropy loss function [32] to solve this problem. Supposing N denotes the capacity of the training
dataset, we defined the cross-entropy cost function as the following formula:

Γ(θ) = − 1
N

N

∑
i=1

[y(i) log(o(i)) + (1− y(i)) log(1− o(i))], (25)

in which y(i) and o(i) respectively denote the category label corresponding to the x(i) and the actual
output. Finally, we obtained the back propagation gradient of the parameters w and b:

∂

∂w(i)
Γ(θ) =

1
N

N

∑
i=1

x(i)(o(i) − y(i)), (26)

∂

∂b(i)
Γ(θ) =

1
N

N

∑
i=1

(o(i) − y(i)). (27)

The CNN network parameters were updated using the gradient descent method, and the loss is
minimized. $ is the learning rate. The calculation formulas of the updated parameters w(i) and b(i) are
as follows:

w(i) = w(i) − $
∂

∂w(i)
Γ(θ), (28)

b(i) = b(i) − $
∂

∂b(i)
Γ(θ). (29)



Sensors 2018, 18, 2399 9 of 22

2.5. Voiceprint Identification

For the input of x = (x1, x2, x3 . . . ), the probability of its i-th class is Pi, and Zi is the input of the
Softmax layer. The Formula (30) was applied to calculate in the Softmax layer, and the recognition
result was the corresponding voiceprint category of the maximum probability.

Pi =
exp(Zi)

∑T
i=1 exp(Zi)

(i = 1, 2, 3, ..., k) (30)

3. Experiment by Hold-Out Validation

3.1. Dataset

The experiment adopted the NIST 2008 SRE dataset (8conv condition) [33] and the TIMIT
database [34] of the National Standard Technology Bureau of the United States.

The NIST 2008 SRE dataset as a source dataset of voiceprint, which contains 395 speakers. For each
target speaker, eight two-channel telephone conversations are provided, each of these conversations
contains about 5-min. We use one 5-min recording per speaker, and the entire 5-min segment is
intercepted by a number of 2-s fragments. Finally, each speech fragments corresponds to a speech
spectrogram, as shown in Figure 6.
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The TIMIT dataset is a target speech dataset, which contains 630 people from different regions
of the United States (10 sentences per person). In this dataset, we only chose 30 male and 30 female
speakers, respectively. For each person, we intercepted 20 2-s wav format speech fragments.
Each speech segment corresponded to a speech spectrum, as shown in Figure 7, and finally each
speech spectrogram generated 10 images based on the data augmentation algorithm.Sensors 2018, 18, x FOR PEER REVIEW  10 of 22 
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3.2. Experiment Settings

3.2.1. Experimental Operation Platform and Experiment Settings

The experiments were carried out in the operating system of ubuntu1604, with a NVIDIA
GEFORCE GTX 1080 GPU, memory size of 16 GB, software platform on python3.5, and tensorflow1.2.1,
the interface software for cross-platform Qt machine. The network settings for the CNN, CNN+FBN,
and TLCNN-RBM are given in Table 1.

Table 1. Proposed network architectures and settings.

CNN CNN + BN CNN + FBN TLCNN − RBM + FBN

Learning rate 0.01 0.05 0.05 0.05
Dropout 0.5 — — —

Weight decay 10−3 10−3 10−3 10−3

Momentum 0.9 0.9 0.9 0.9
No. of epochs 80 20 20 20

Activation function RELU RELU RELU RELU
Cost function Cross-entropy Cross-entropy Cross-entropy Cross-entropy

No. of Conv. layers 5 5 5 5
No. of RBM layers 0 0 0 2

Input sizes 227 × 227 227 × 227 227 × 227 227 × 227
Dataset NIST 2008 SRE NIST 2008 SRE NIST 2008 SRE TIMIT

In Table 1, dropout represents a technique that can prevent model over-fitting, in which “—”
means that the network with BN and FBN does not require Dropout, because batch normalization
prevents model over-fitting [27]. “No. of epoch” represents the number of iterations. In the training of
four networks, the activation functions we use are all RELU, the loss function is cross-entropy, the first
three network models (CNN, CNN + BN, and CNN + FBN) are the pre-training model, the last model
(TLCN − RBM + FBN) is the training model after migration.

In this paper, the accuracy and equal error rate (EER) will be applied to assess the performance of
the algorithm.

3.2.2. Experimental Procedure

In this paper, we introduce a new model for the voiceprint identification of small samples,
and it mainly works as follows: (1) Pre-training the CNN network on the source speech dataset;
(2) Migrating the pre-trained CNN network to our limited speech dataset, retaining the parameters
of the convolutional layer CONV1-CONV5, replacing the full connection layer with the RBM layer,
and combining RBM with Softmax to form a new (TLCNN-RBM) model, which is shown in Figure 5.
Further details of the training process are given below:

Step 1: Read the dataset of NIST SRE 2008 and perform data preprocessing (the original speech
signal is transformed into a spectrogram through the short time Fourier transform).

Step 2: Pre-train model and test whether the model achieves good convergence. Based on whether
the loss value tends to be stable and the test results are good or bad, we can judge whether the model
has reached a good state of convergence.

Step 3: Introduce the pre-trained CNN model on the source speech dataset, extract the
convolutional layers CONV1–CONV5, and migrate to the TIMIT speech dataset of small sample.

Step 4: Introduce the RBM instead of the full connection layer for training and use the RBM layer
and the soft-max regression layer for supervised learning. Finally, the network parameters are updated
through multiple iterations.

Step 5: Test whether the model is suitable for voiceprint identification of small samples.
In addition, we give an experimental flowchart, as is shown in Figure 8.



Sensors 2018, 18, 2399 11 of 22

Sensors 2018, 18, x FOR PEER REVIEW  11 of 22 

 

Step 2: Pre-train model and test whether the model achieves good convergence. Based on 
whether the loss value tends to be stable and the test results are good or bad, we can judge whether 
the model has reached a good state of convergence. 

Step 3: Introduce the pre-trained CNN model on the source speech dataset, extract the 
convolutional layers CONV1–CONV5, and migrate to the TIMIT speech dataset of small sample. 

Step 4: Introduce the RBM instead of the full connection layer for training and use the RBM 
layer and the soft-max regression layer for supervised learning. Finally, the network parameters are 
updated through multiple iterations. 

Step 5: Test whether the model is suitable for voiceprint identification of small samples. 
In addition, we give an experimental flowchart, as is shown in Figure 8. 

Experimental 
process

Pre-training 
and testing the 

pre-trained 
model

Retraining and 
testing the 

TLCNN-RBM 
model

Comparison of recognition performance 
based on the source dataset(NIST 2008 SRE)

Comparison of network pre-training time 
and convergence speed

Comparison of recognition performance 
based on the target dataset(TIMIT)

Comparison of the accuracy based on the 
different number of target training sample

Comparison of recognition performance for 
RBM and FC

 
Figure 8. Experimental flowchart. 

3.3. Pre-Training and Testing Results 

3.3.1. Comparison of Recognition Performance Based on the Source Dataset (NIST 2008) 

As for the proposed CNN-FBN network in this paper, NIST voice database was used for 
pre-training and testing. This method is compared with GMM and DNN, which are commonly used 
in speaker identification. The above spectrograms were used to train the CNN and CNN + FBN 
network, respectively, training set: test set = 7:3. Take the recognition Accuracy and EER, as shown 
in Table 2. 

Table 2. Comparison of accuracy and EER for each method based on TIMIT speech database. 

Methods Accuracy (%) EER (%) 
GMM [17] 92.91 2.96 
DNN [17] 96.65 1.29 

CNN 96.14 1.34 
CNN + FBN 97.80 1.12 

It can be seen from the experimental results that the recognition rate of voiceprint based on 
deep learning is higher than that of the common recognition model. At the present stage of 

Figure 8. Experimental flowchart.

3.3. Pre-Training and Testing Results

3.3.1. Comparison of Recognition Performance Based on the Source Dataset (NIST 2008)

As for the proposed CNN-FBN network in this paper, NIST voice database was used for
pre-training and testing. This method is compared with GMM and DNN, which are commonly
used in speaker identification. The above spectrograms were used to train the CNN and CNN + FBN
network, respectively, training set: test set = 7:3. Take the recognition Accuracy and EER, as shown in
Table 2.

Table 2. Comparison of accuracy and EER for each method based on TIMIT speech database.

Methods Accuracy (%) EER (%)

GMM [17] 92.91 2.96
DNN [17] 96.65 1.29

CNN 96.14 1.34
CNN + FBN 97.80 1.12

It can be seen from the experimental results that the recognition rate of voiceprint based on deep
learning is higher than that of the common recognition model. At the present stage of voiceprint
identification based on deep learning, the model automatically learns potential features in the data
by training large amounts of data, including MFCC features, anatomical acoustic features (cepstrum,
formant), prosodic features, channel information, and so on. While the traditional recognition model
learns a single feature of speech, it is difficult for it to guarantee the quality of the extracted speech
features and it may even lose some important features. Compared with the traditional recognition
model, the deep model can extract more potential acoustic features, thus improving the voiceprint
recognition rate and reducing the error rate.
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The training epoch number of CNN-FBN network inevitably affects accuracy and EER.
As displayed in Table 3, as the number of iterations increases, accuracy of voiceprint recognition
gradually increases, and EER gradually decreases. When the network reaches the convergence state,
as the number of iterations increases, accuracy and EER tend to be stable.

Table 3. Comparison of accuracy and EER for different iteration times.

No. of Epochs Accuracy (%) EER (%)

5 88.73 5.42
10 90.25 4.47
15 96.12 1.63
20 97.80 1.12

3.3.2. Discussion Based on Recognition Performance

The proposed method in this paper abandons the traditional speech recognition framework and
adopts the method of voiceprint identification based on the spectrogram and CNN-FBN neural network.
The advantage of this method is that the spectrogram fully contains the speaker’s speech features, and
CNN-FBN Neural network can automatically extract potential voiceprint features, compared with the
traditional voiceprint identification method that can only get a single feature, and this method can
significantly improve the accuracy of voiceprint recognition and reduce EER.

3.3.3. Comparison of Network Pre-Training Time and Convergence Speed

In this experiment, the above spectrograms generated by NIST 2008 SRE as a training set were
used to pre-train the CNN network and compare the effect of the BN and FBN on the training time
under the same training set. Three groups of contrast experiments were carried out: CNN, CNN-BN,
and CNN-FBN. For the deep networks without BN or FBN, the basic learning rate was set to 0.01; for
the deep networks with BN or FBN, the basic learning rate was set to 0.05; and the overall network
loss was set to 0.01. The following experimental result displayed the averages of the three experiments,
as shown in Figure 9.
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The experimental results show that the FBN performed well in the training process. The training
time of the CNN network with FBN was reduced by 48.03% compared with the original network, and
had a 19.11% reduction compared with one added BN. There are two reasons for this: firstly, the fast
batch normalization operation that normalized the data to zero mean and unit variance; secondly,
the total variance and mean were, respectively, replaced by the mini-batch’s variance and mean, thus
reducing the amount of calculation as a whole. It is verified that adding FBN to the convolution
process will accelerate the convergence of the network.
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For the next experiment, the same three groups of contrast experiments were performed to
compare the outcome of the BN or FBN on the convergence speed of the network. Using the same
training set, the CNN network, the CNN network with BN, and the CNN network with FBN were
preliminarily trained with the NIST 2008 SRE dataset, respectively. According to the loss value, the
convergence speed of the network was measured. The experimental results are shown in Figure 10.
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The experimental results show that the loss of the network with FBN is significantly smaller
than that of the network with BN or without FBN when the three networks are trained, respectively.
According to the loss of the network during the training process, it shows whether the network is
converged. As the network training advances, all of three models gradually converged, but surprisingly,
we could clearly see that the CNN network with FBN converged faster. Furthermore, as the iterative
process proceeded, we can see that at the beginning of training, the loss value decreased rapidly, then
the rate of decrease slowed down. Apparently, the loss value of the network showed a tendency
toward stabilization, and the fluctuation was small. The experimental results proved that FBN added
into convolutional layers could effectively accelerate the convergence of the network.

3.3.4. Discussion Based on the Convergence Speed and Training Time

Training a deep CNN model is complicated because the distribution of each layer’s inputs
changes during the training process on account of the variation of previous network parameters.
Additionally, small changes to the network parameters amplify as the network becomes deeper.
This slows down the training thanks to the lower learning rate and more careful parameter initialization,
and makes it difficult to train a saturated nonlinear model. In order to address this problem, the FBN
algorithm is performed for each training mini-batch and makes them satisfy the standard normal
distribution. FBN allows us to use a higher learning rate and be less careful about initialization.

BN can be used to solve the low learning rate of the convolution neural network and optimize the
speed of the network training. Based on this further improvement, we introduced an FBN in our new
network before the activation function, whose purpose is to normalize the output of each network
node to zero mean and unit variance, and then accelerate the training convergence. Compared with
BN, FBN had three improvements: (1) the recovery operation was safely removed from the FBN due to
its inefficiency in improving non-linear expression ability and occupation in memory and computing
resources; (2) each mini-batch produced the estimation of the mean and variance for each activation
value, meanwhile, the whole and the parts were linked by applying Equations (7) and (8); (3) in order
to obtain a more precise global variance and mean value, a self-adaptive strategy was adopted for the
specific combination coefficients ξ and ζ learned from the input data.
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3.4. Re-Training and Testing Results

3.4.1. Comparison of Recognition Performance after Transferring the Pre-Trained Model

In this experiment, after transferring the model, the target voiceprint data of 30 persons each with
50 speech spectrograms were selected as the training set from the TIMIT speech database to verify the
validity of the fourth scheme below. From the above 30 people, the voices of 10 speakers, each with
100 speech spectrograms, were selected as the test set, according to the following four schemes to do
comparative experiments.

Scheme 1: The GMM-UBM and HMM-UBM models, which are commonly used in speech
recognition, are trained and tested, respectively, with the voiceprint data of the TIMIT.

Scheme 2: We only used small target voiceprint data to train the CNN-FBN network.
Scheme 3: Firstly, we pre-trained the CNN-FBN network with the source voiceprint data.

The model was then migrated to the target set and fine-tuned for the migration network.
Finally, a TLCNN-FBN model was formed.

Scheme 4: Firstly, we pre-trained CNN-FBN network with the source voiceprint data, migrating
the model to a small target set, replaced the fully connected layer with two RBM layers, re-trained
the two RBM layers and Softmax classifier with the target voiceprint data, and then used the BP
algorithm to fine tune the parameters of the network. Finally, a TLCNN-RBM-FBN model was formed.
TLCNN-RBM-FBN is a model combining CNN-FBN networks and RBM based on transfer learning.

The experimental results under the five models are shown in Figure 11.
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Figure 11. Comparison of the performance for five models. (a) Comparison of accuracy for five 
models based on female, (b) comparison of accuracy for five models based on male, (c) comparison 
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Figure 11. Comparison of the performance for five models. (a) Comparison of accuracy for five models
based on female, (b) comparison of accuracy for five models based on male, (c) comparison of EER for
five models based on female, and (d) comparison of EER for five models based on male.
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In order to verify that the added RBM layer can improve the recognition ability of the extracted
voiceprint feature, the feature vectors output from FC6 and FC7 layers of the TLCNN-FC-FBN
model are extracted from the TIMIT dataset, the feature vectors output from R6 and R7 layers of
the TLCNN-RBM-FBN hybrid model are extracted from the TIMIT dataset, and Softmax classifier was
trained by using the feature vectors; finally, we used the test set to test the RBM layer and the fully
connected layer. The results are shown in Figure 12. From the experimental results, we can see that the
feature vectors extracted from RBM layer are more discriminative than the feature vectors extracted
from the fully connected layer. Therefore, when we use transfer learning, it is better to use the RBM
model to integrate the feature maps of the convolutional layer output than to use the full connection
layer directly.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 22 

 

In order to verify that the added RBM layer can improve the recognition ability of the extracted 
voiceprint feature, the feature vectors output from FC6 and FC7 layers of the TLCNN-FC-FBN 
model are extracted from the TIMIT dataset, the feature vectors output from R6 and R7 layers of the 
TLCNN-RBM-FBN hybrid model are extracted from the TIMIT dataset, and Softmax classifier was 
trained by using the feature vectors; finally, we used the test set to test the RBM layer and the fully 
connected layer. The results are shown in Figure 12. From the experimental results, we can see that 
the feature vectors extracted from RBM layer are more discriminative than the feature vectors 
extracted from the fully connected layer. Therefore, when we use transfer learning, it is better to use 
the RBM model to integrate the feature maps of the convolutional layer output than to use the full 
connection layer directly. 

93.69

96.72

95.39

97.95

90

91

92

93

94

95

96

97

98

99

100

FC6 FC7 R6 R7

A
cc

ur
ac

y(
%

)

Layer

Female

 

94.34

97.19

96.37

98.12

90

91

92

93

94

95

96

97

98

99

100

FC6 FC7 R6 R7

A
cc

ur
ac

y(
%

)

Layer

Male

 
(a) (b) 

4.78

2.33
2.61

1.34

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FC6 FC7 R6 R7

EE
R

(%
)

Layer

Female

 

4.52

2.16

2.57

1.15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FC6 FC7 R6 R7

EE
R

(%
)

Layer

Male

 
(c) (d) 

Figure 12. Contrast the influence of RBM and FC on voiceprint identification. (a) Comparison of 
accuracy for FC and RBM based on female, (b) comparison of accuracy for FC and RBM based on 
male, (c) comparison of EER for FC and RBM based on female, and (d) comparison of ERR for FC and 
RBM based on male. 
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based on male.

3.4.2. Comparison of Accuracy Based on the Different Number of Target Training Sample

In this experiment, after the pre-trained CNN-FBN model was migrated to the target set, the
TLCNN-FBN and TLCNN-RBM-FBN networks were used to test the effect of the target training
sample number on the recognition rate. During the retraining, we selected the target voiceprint data
of 30 speakers from the TIMIT database and conducted several experiments for each person’s 20 or
40 or 60 or 80 or 100 speech segments, respectively. In the testing, the data of 15 speakers, each
with 50 speech spectrograms, were selected from the TIMIT dataset. The recognition rate of different
retraining sample sizes is shown in Figure 13.
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The experimental results show that with the increase of training sample capacity, the recognition
rate under the two models exhibited an upward trend. Under different training sample sizes, the
recognition rate of the TLCNN-RBM model was higher than that of the TLCNN model.

3.4.3. Discussion Based on Recognition Performance

The proposed method adopts the method of voiceprint identification based on the spectrogram
and TLCNN-RBM-FBN neural network. The advantage of this method is that the spectrogram fully
contains the speaker’s speech features, and TLCNN-RBM-FBN Neural network can automatically extract
potential voiceprint features. When migrating a pre-trained convolutional neural network, two RBM
layers replaced the full connection layer, which not only connected all of the feature maps but also
further studied the high-order abstract features unique to the small sample voiceprint data through
unsupervised training. In addition, the network parameters were adjusted using the cross entropy cost
function, which was self-adaptive to the input voiceprint data, thus improving the recognition rate of the
small voiceprint sample.

4. Experiment in Real Scenes

4.1. Dataset

The experiment adopted the self-built speech database in our daily life as a small sample voiceprint
data set. The speech is collected in two environments (laboratory and supermarket), and the voice in
each environment contains 20 speakers from different regions in China. The average of each speaker is
about 10 2-s wav format speech fragments; each speech segment corresponds to a speech spectrogram, as
shown in in Figure 14, and, finally, each speech spectrogram generates 20 images according to the data
augmentation algorithm.
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4.2. Experiment Settings and Results

In the above verification test, we demonstrated the effectiveness of the proposed method for the
standard speech dataset. In order to verify the feasibility of the algorithm in practice, we collected
voice in real life and made the following experiments using the self-collected voice. The experiment
settings are shown in Table 4.

Table 4. Proposed network architectures and settings.

Training Phase Pre-Training Retraining

Models CNN + FBN TLCNN − RBM + FBN
Learning rate 0.05 0.05
Weight decay 10−3 10−3

No. of epochs 15 15
Activation function RELU RELU

Cost function Cross-entropy Cross-entropy
No. of Conv. layers 5 5
No. of RBM layers 0 2

Input sizes 227 × 227 227 × 227
Dataset NIST 2008 SRE self-built database

In this experiment, firstly, we used the NIST 2008 SRE speech database to pre-train the CNN model
in the same way. Then, we migrated the pre-trained model to our limited target domain, retained the
parameters of the convolutional layer, removed the fully connected layers, and combined the RBM with
Softmax to form a new network. We retrained RBM and Softmax separately using speech collected in
laboratory or supermarket. The target voiceprint data of 20 persons each with 50 speech spectrograms
were selected as the training set from the self-collected speech dataset to verify the validity of the
proposed algorithm. From the above 20 people, the voices of 10 speakers, each with 100 speech
spectrograms, were selected as a test set. In order to obtain the EER, the extra 500 spectrograms
(excluding NIST 2008 SRE and self-collected voice dataset) were used to separately test the model
trained using the speech collected in laboratory or supermarket; the accuracy of voiceprint recognition
and EER of voiceprint recognition under the TLCNN-RBM model are shown in Figure 15.
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Figure 15. Separate tests of the TLCNN-RBM model using the speech collected in two environments. 
(a) Speech collected in quiet environment (laboratory) was used for retraining and recognition 
results, and (b) speech collected in noisy environment (supermarket) was used for retraining and 
recognition results. 

4.3. Discussion 

The experimental results done in self-collection speech dataset slightly reduced the accuracy 
and slightly increased the rate of false rejection and the rate of false acceptation. Due to the fact that 
there are some noises in the voice collected in real life, or the defect of the acquisition device itself, 
the speech quality obtained is worse than that of the standard speech dataset. In the self-collected 

Figure 15. Separate tests of the TLCNN-RBM model using the speech collected in two environments.
(a) Speech collected in quiet environment (laboratory) was used for retraining and recognition results, and
(b) speech collected in noisy environment (supermarket) was used for retraining and recognition results.

4.3. Discussion

The experimental results done in self-collection speech dataset slightly reduced the accuracy and
slightly increased the rate of false rejection and the rate of false acceptation. Due to the fact that there are
some noises in the voice collected in real life, or the defect of the acquisition device itself, the speech quality
obtained is worse than that of the standard speech dataset. In the self-collected voice dataset, compared
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with the speech collected in the supermarket, the speech recognition rate collected in the laboratory is
slightly higher, and the error rate is slightly lower. Generally speaking, the experiment results meet
our expectation.

Generally, training deep neural networks needs a large amount of data. The self-built speech
database contains about only 20 speakers, each with 10 2-s wav format speech fragments, smaller than
the TIMIT or NIST dataset used in this paper. Such a limited dataset leads to over-fitting. Therefore, we
designed a suitable TLCNN-RBM model based on transfer learning, which contains five convolutional
layers and two RBM layers for the small dataset. In addition, we use the data augmentation to
increase the target training set, which can effectively reduce over-fitting. When migrating a pre-trained
convolutional neural network, two RBM layers replaced the full connection layer, which not only
connected all of the feature maps but also further study the high-order abstract features, thus improving
the recognition performance of the small voiceprint sample.

4.4. Application

In this section, a software for voiceprint identification was developed using the proposed
algorithm, as shown in Figure 16.
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Figure 16. Software interface based on voiceprint identification.

In the voiceprint identification software, the input voiceprint to be tested is shown at the top.
Various attributes of the voiceprint, face image that appears when matched successfully, and label
information are shown below. Besides, we also made an intelligent mailbox based on the voiceprint
unlock. The mailbox is shown in Figure 17.
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The intelligent mailbox mainly consists of 1-raspberry pie, 2-electronic lock, 3-power adapter, and
4-relay. The physical diagram of the mailbox is shown in Figure 18, and the schematic diagram of the
mailbox is shown in Figure 19.
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This paper designed an intelligent mailbox based on cloud server, raspberry pie controller,
and android system; the core of the system running on the remote cloud hosting, cloud hosting is
responsible for the response to the corresponding operation and the request of the user’s mobile APP,
or results and return of a resource required to service this request. Server program is responsible for
the backend API request routing and resource management, storing registered user information in the
cloud hosting database, and categorizing user’s speech spectrogram according to the user ID stored in
server file system. The underlying algorithm interface is called, and the result is returned to the mobile
APP based on the voiceprint identification algorithm.

Mobile APP is a major terminal user interaction, and is responsible for collecting speech signals
and displaying the system output. The system performs feature extraction and identification on the
server. Through communication between the server and mobile, as well as between the server and
raspberry pie, we can unlock the mailbox. Users can complete the whole process on the Mobile APP.
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5. Conclusions and Future Work

In this paper, we presented a novel method of using the deep migration hybrid model to solve
the small training voiceprint data and low accuracy in voiceprint identification. The main idea of the
method contained four aspects. First, we used NIST 2008 SRE as the source domain to accomplish
the pre-training. This paper migrated convolutional layers CONV1–CONV5 of the pre-trained CNN
network, which is used as a small target voiceprint for feature extraction. Besides, when the pre-trained
model was transferred to the target voiceprint sample sets, the fully connected layers were replaced by
RBM layers. The RBM layers not only fully connected all of the feature maps under the convolution
layer but also extracted the high-order abstract features of the voiceprint, eliminated differences
between the data sets, and improved the voiceprint recognition rate. Second, data augmentation
algorithms based on convex lens imaging was used to enhance the number of target voiceprints to
effectively reduce the over-fitting. In addition, when the voiceprint data was used to train the CNN
network, fast batch normalization was added during the convolution process, so that the convergence
speed of the network was accelerated and the training time of the network was shortened. On this
basis, the network parameters were also adjusted using the cross entropy cost function, which made
the TLCNN-RBM-FBN model more suitable for the small sample voiceprint set and solved the low
recognition rate of small sample voiceprints.

However, in the case of complex background noise, the method of voiceprint identification will
be affected, and in the future these complicated situations will be further studied.
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