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Abstract: Having an incentive mechanism is crucial for the recruitment of mobile users to participate
in a sensing task and to ensure that participants provide high-quality sensing data. In this paper, we
investigate a staged incentive and punishment mechanism for mobile crowd sensing. We first divide
the incentive process into two stages: the recruiting stage and the sensing stage. In the recruiting
stage, we introduce the payment incentive coefficient and design a Stackelberg-based game method.
The participants can be recruited via game interaction. In the sensing stage, we propose a sensing
data utility algorithm in the interaction. After the sensing task, the winners can be filtered out using
data utility, which is affected by time–space correlation. In particular, the participants’ reputation
accumulation can be carried out based on data utility, and a punishment mechanism is presented to
reduce the waste of payment costs caused by malicious participants. Finally, we conduct an extensive
study of our solution based on realistic data. Extensive experiments show that compared to the
existing positive auction incentive mechanism (PAIM) and reverse auction incentive mechanism
(RAIM), our proposed staged incentive mechanism (SIM) can effectively extend the incentive behavior
from the recruiting stage to the sensing stage. It not only achieves being a real-time incentive in both
the recruiting and sensing stages but also improves the utility of sensing data.

Keywords: mobile crowd sensing; incentive mechanism; punishment mechanism; data utility;
Stackelberg game; reputation accumulation

1. Introduction

Nowadays, various human-carried mobile devices (e.g., smartphones and wearable devices) are
ubiquitous and widely used iand have rich sensors are built-in and multiple radios provided [1]. This
trend enables individuals with mobile devices to sense, collect, process, and distribute data around
people at any time and place. By combining “crowdsourcing” with a distributed problem-solving
model, “mobile sensing” offers a novel sensing paradigm with greater potential, to leverage a large
contributing crowd to perform sensing tasks at a larger scale [2]. This novel sensing paradigm is often
called mobile crowd sensing (MCS), and it has been leveraged to develop various applications, such as
environmental monitoring [3], indoor localization [4–6], and social networking [7], etc.

In mobile crowd sensing, the sensing platform releases a sensing task to mobile users through the
network. Mobile users who are willing to participate in sensing tasks accept the sensing task and collect
and upload sensing data to the sensing platform. During this process, the following problems may
occur: Firstly, the sensing platform may not recruit enough mobile users to participate in the sensing
task. Secondly, mobile users who are willing to join in a sensing task may not be kept for long-term
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participation and maintain a positive state. In these cases, the quality and reliability of sensing data
cannot be guaranteed during the data-collecting process. In crowdsensing, appropriate rewards
are always expected to compensate the participants for their consumption of physical resources,
involvement in manual efforts, and privacy disclosure [8].

Meanwhile, the sensing platform in the ubiquitous MCS network has a weaker binding on mobile
users compared to that in the P2P network. The distinct characteristics of mobiles users mentioned
above, will result in unqualified participants or even malicious behaviors, such as updating fake data
or low-quality data, and so on.

Recently, some researchers have done pioneer works on motivating users to contribute their
resources. Most of the existing incentive mechanism studies can be divided into two categories. One is
to consider the influence of payment on the crowd to attempt to increase the number of participants.
However, payment has been determined before the task is completed, regardless of the participants’
sensing behaviors being stimulated in the sensing stage. The other is to consider individual data
and try to motivate the participants through a utility calculation after the completion of sensing task.
However, these solutions overlook the effect of a crowd’s spatial-temporal distribution and data utility
on payment cost. In addition, very few studies on punishment mechanism have been proposed in the
context of MCS.

Motivated by this, this paper explores a staged incentive and punishment mechanism. The main
contributions of our works are summarized as follows.

• First, we propose a staged incentive mechanism to extend the incentive process from the recruiting
stage to the sensing stage, and establish a framework of staged incentive and punishment
mechanisms for Mobile Crowd Sensing.

• Second, we introduce the payment incentive coefficient and design a Stackelberg-based game
method in the recruiting stage. The game interaction is utilized to recruit participants in order to
enhance the participants’ motivation to join in a sensing task.

• Third, in the sensing stage, we propose a sensing data utility algorithm for the interaction. The data
utility affected by time–space correlation is used to filter out the winners after the sensing task to
improve the quality of the sensing data.

• Finally, a reputation accumulation-based punishment mechanism is designed to introduce binding
on malicious participants to save costs and lower resource waste.

The remainder of this paper is organized as follows. Section 2 overviews the related work.
Section 3 gives the problem description. In Sections 4 and 5, a staged incentive and punishment
mechanism is proposed. A simulation and numerical results are given in Section 6, and we conclude
this paper in Section 7.

2. Related Work

2.1. Incentive Mechanism

At present, most studies of incentive mechanisms in MCS have focused on the methods
themselves, which can be classified into three categories: entertainment & game incentives, reward
incentives, and social relation & service incentives [9]. Different methods may bring different incentive
effects. It has been pointed out that reward incentive mechanisms tends to be the better ones.

For reward incentives, it is crucial for MCS that qualified participants are chosen and effective
reward incentives are conducted based on behaviors according to the demands of sensing tasks.
Existing studies on incentive mechanisms are mainly based on the idea of game theory. Specifically,
the sensing platform assigns a task, and the platform and mobile users (potential participants) play a
dynamic game to select participants and determine the payment price. There are two kinds of game
ideas: positive auction and reverse auction. Some of the representative studies are discussed in the
following text.
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Lee et al. [10] first introduced an economic model for user participation and proposed a reverse
auction-based dynamic price incentive mechanism. They removed the burden of accurate pricing for
user sensing data and adapted it to dynamic changes in the user’s true valuation. However, the solution
did not consider whether data collected was valid or if pricing was reasonable. Shah-Mansouri et al. [11]
proposed a Profit Maximizing Truthful auction mechanism for mobile crowdsourcing systems,
which aimed to maximize the profit of the platform while providing satisfying rewards to the
smartphone users. Yang et al. [3,12] considered two system models from two different perspectives:
the crowdsourcer-centric model, where the crowdsourcer provided a fixed reward to participating
users, and the user-centric model, where users could have reserve prices for the sensing service.
Nan et al. [13] proposed the Cross-Space, multi-Interaction-based dynamic Incentive mechanism (CSII),
which estimated the value of a task based on the sensing context and historical data. It then had
multiple interactions with both the task requester and potential contributors to adjust the budget and
select suitable people to form the worker group.

Zhao et al. [14] investigated the frugal online incentive problem based on an online auction
model, where users reported their strategic profiles to the crowdsourcer in an online mode, and
the crowdsourcer selected users before a deadline to complete a specific number of tasks while
minimizing the total payment. They designed two kinds of online mechanisms, namely, Frugal-OMZ
and Frugal-OMG. Zhu et al. [15] proposed an incentive mechanism by combining reverse auctions
and Vickrey auctions. The incentive mechanism effectively improved the fairness of bids without
considering the problem of crowd imbalance. Considering that limited research efforts were made
to address the quality of the recruited crowd, Wang et al. [16] presented an auction formulation for
quality-aware and fine-grained MCS which minimized the expected expenditure subject to the quality
requirement of each subtask.

Chakeri et al. [17] developed an incentive mechanism for crowd sensing markets with imperfect
information. They presented an iterative game framework where the equilibrium of the market was
achieved after a number of iterations. Further, Chakeri et al. [18] proposed an incentive mechanism for
crowd sensing with multiple crowd sourcers. They considered two different pricing mechanisms—the
crowd sourcers fixed the rewards in advance, or the crowd sourcers dynamically set the rewards
in order to maximize their own utilities. To answer the challenges of participant recruitment in
continuous sensing, Azzam et al. [19] proposed a recruitment system based on the stability of the
spatio-temporal availability of participants in the AoI over the specified time period. Unlike previous
works, Guo et al. [20] assumed that each sensing task could be performed by more than one users, but
its single profit was invariable. Additionally, the sensing tasks that each mobile user could deal with
were determined, which made the fees charged by each user be determined. They first proved the NP
hardness of this problem, and then adopted a modified greedy algorithm, called gPUR, to solve it.

To sum up, the existing solutions cannot fully consider the impacts on incentive from different
factors at different stages. Motivated by this, in this paper, we propose a staged incentive mechanism,
which fully considers double effects, namely, (i) the effect of a crowd’s spatial-temporal distribution on
the payment cost, and (ii) the effect of participants’ behaviors on data utility.

2.2. Punishment Mechanism

The punishment mechanism is widely used in the P2P network, which is a kind of management
and constraint mechanism for the nodes’ behaviors in the network [21]. In such a distributed network
environment, because of the mistrust among nodes and the selfishness of nodes, free riding, joint fraud,
and arbitrary termination of services occur frequently, which can seriously affect the overall system
efficiency [22]. Researchers have tried to introduce punishment mechanisms into the P2P network to
constrain the nodes’ behavior.

Researchers have proposed some inclusive, dynamic punishment algorithms. For example,
Zhang et al. [23] designed a trust-based punishment algorithm to suppress the nodes’ malicious
behavior in the network. Zhang et al. [24] put forward an optimal punishment mechanism based
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on the nodes’ selfish behavior to achieve the whole benefit of data transmission. Wen et al. [25]
designed a static and dynamic punishment mechanism by combining the Tat strategy and game
theory. It avoided the inadequacy in the distinctiveness of the Tat strategy by setting the punishment
coefficient. At present, there have been few studies involving punishment mechanisms in MCS. Studies
have focused on how to establish a reputation model to reduce participants’ malicious behavior.
Nan et al. [13] set up a fuzzy reputation model to accumulate a participant’s reputation. Participants
with high reputation values had a greater chance of compensation.

In conclusion, the existing incentive mechanisms adopted the reputation model to encourage and
compensate high-quality participants but without considering the sensing platform’s binding force on
participants. In this paper, we introduce data utility to accumulate reputations for participants, and
malicious participants are filtered out by setting a certain reputation threshold.

3. Problem Description

3.1. Sensing Task Model

Considering that a sensing task is complex and diverse in the MCS network, we first model a
sensing task and give some definitions here. The group relationship is given in Figure 1.

• Sensing platform: This is the core and is responsible for releasing sensing tasks and
choosing participants.

• Potential participant: Mobile users who have the possibility of participating in a sensing task.
• Participant: Potential participants who accept and participate in a sensing task.
• Winner: Participants who complete a sensing task and finally, get rewards.

Figure 1. Group relationship.

In this paper, a complex sensing task is decomposed into multiple simple subtasks in
spatio-temporal dimensions. Generally, a simple sensing task can be represented as a six-tuple:

task =< site, radii, gt, lt, content, cost >, (1)

where site is the location information specified by task, and radii is the radius of a circular sensing
region with the center of a task site. gt and lt denote a sensing task’s required time and expiry time,
respectively. That is, the data collected by participants within [gt− lt, gt + lt] will be effective. content
represents the content of a sensing task. cost is the total rewards paid.

The incentive process of MCS can be divided into four phases: sensing task generation, participant
selection, sensing task evaluation, and reward payment, as illustrated in Figure 2. Through a
comprehensive analysis, the sensing platform releases a specific sensing task and selects an appropriate
participant set from the cohort of mobile users. The data submitted by participants can be evaluated
based on data utility by the sensing platform. Finally, the qualified participants determined to be
winners get rewards, and the whole incentive process is complete.
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Sensing task evaluation Reward paymentParticipant selectionSensing task generation

Figure 2. The incentive process of mobile crowd sensing (MCS).

3.2. Crowd Analysis

In short, mobile crowd sensing is a new kind of sensing paradigm which is to collect data with
the involvement of mobile users. For a sensing task, the difficulty in recruiting enough participants
from different scales of crowd are different. Intuitively, the smaller the crowd scale is, the greater the
difficulty of recruiting participants will be, and thus, the higher the incentive cost required. In general,
the distribution of crowd in a city follows a certain regularity. So, it is crucial for participant recruitment
to fully understand the regularity of crowd distribution.

In this paper, the realistic crowd distribution in Rome city from the website http://www.crawdad.org
is used. Figure 3a gives the satellite map of Rome, and Figure 3b shows the positions where pedestrians
have been in a time period of 30 days. It can be seen that the crowd distribution is mainly concentrated
in the urban area marked with red grid; only a very small part of crowd have appeared in the
remote area.

(a) Rome satellite map (b) Crowd distribution map

Figure 3. Maps.

In the active region, the longitude is in the range of 12.3 to 12.7, and the latitude is in the range of
41.7 to 42. Through meshing, this region can be divided into several subregions. As shown in Figure 4a,
the occurrence numbers of pedestrians in all the grids (sub-regions) were counted. Then, the crowd
distribution was analyzed from the temporal dimension. Here, one week was considered to be a
completed statistical cycle. The average number of pedestrians’ GPS data obtained from 7 a.m. to
8 p.m. each day in 30 days was counted in order to reflect the trend of pedestrian flow in different
periods. The temporal distribution of pedestrians in 30 days is illustrated in Figure 4b.

http://www.crawdad.org
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(a) Spatial distribution

(b) Temporal distribution

Figure 4. Spatial and temporal distribution of the crowd.

From the data shown in Figure 4, we observe that the crowd distribution is unbalanced. This
kind of node distribution will affect the coverage quality of mobile crowd sensing, which is apparently
different from the node distribution in mobile ad-hoc and sensor networks [26–28].

• Imbalance of temporal distribution: The size of the crowd varies in different time periods,
increasing, evidently, in the peak period and relatively reducing in the off-peak period.

• Imbalance of spatial distribution: The densities of the crowds in different regions are
significantly different. The size of the crowd in hot areas is much larger than that in other
areas of the city.

In MCS, mobile users are the sellers of sensing data, and the sensing platform is the purchaser
of sensing data. Mobile users are sensitive to the rewards paid, which will directly impact the
participation of the crowd. Here, the reward can be set as the product of the payment coefficient and
data utility. The payment coefficient is flexibly set to regulate the rewards of sensing activity, thus
motivating the enthusiasm of participants. Obviously, the number of participants is in proportion to
the payment coefficient based on the size of the crowd.
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4. Staged Incentive Mechanism

4.1. Staged Incentive Mechanism Framework

A staged incentive mechanism framework is shown in Figure 5, which contain two stages:
the recruiting stage and the sensing stage. Note that, the punishment mechanism is involved at the
end of sensing stage which is detailed in Section 5.

• Recruiting stage: The sensing platform assesses the sensing tasks by analyzing the mobile crowd
using location-based social network (LBSN) data. Based on the game model, the participant set is
achieved to solve the problem of insufficient participants caused by the imbalance in the mobile
crowd distribution.

• Sensing stage: The sensing platform evaluates the behaviors of participants and calculates the
data utility to guide participants to collect data at the optimal time and location. Meanwhile,
the participants can be chosen with reference to their reputation accumulation in order to inhibit
the participation of malicious participants.

Sensing platform

Potential participant

Participant

Winner

WinnerWinner

LBSN data

 Crowd analysis

 Task evaluation

Sensing task generation

Record

Push task & incentive coefficient

Game interaction

Behavior 

evaluation

Reward 

calculation

Interaction

Reward payment

Reputation 

accumulation

Recruiting stage Sensing stage

Temporal heat

Spatial heat

Punishment 

mechanism

Figure 5. Staged incentive mechanism framework.

4.2. Recruiting Stage

In this stage, the sensing platform is mainly responsible for recruiting participants from the pool
of potential participants. Generally, the sensing platform and each potential participant determine a
certain reward in advance through an auction and game in order to attract potential participants to
participate in the sensing task. However, it is hard to generate a reasonable payment without referring
to the quality of sensing data from potential participants before the end of the sensing task. Moreover,
changes in the sensing time, gt, and sensing location, site, will bring changes in the number of potential
participants, which makes the difficulty of recruiting participants variable.

Motivated by this, we used LBSN data to assess a sensing task from spatio-temporal dimensions
and proposed a payment incentive coefficient-based game interaction solution.
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4.2.1. Payment Incentive Coefficient Calculation

In our solution, the reward for a participant, reward, is calculated from the payment incentive
coefficient, C, and the data utility, Utility, as follows:

reward = C×Utility. (2)

Formula (2) reveals that the larger the payment incentive coefficient is, the more the participants
will be paid under the same Utility. C can be calculated from a sensing task’s temporal heat and
spatial heat (definitions are given in the following subsection), and reflects the number of potential
participants in a given region. Specifically, the lower the number of potential participants is, the larger
C is, and the greater the difficulty of recruitment will be.

A sensing task is generally a multiperiod, multisite task. The distribution of the number of
potential participants in different periods and at different task sites will be imbalanced. Apparently,
a unified incentive mechanism is not conducive to participant recruitment. Therefore, we decomposed
a multiperiod, multitask site sensing task into a series of simple subtasks to form a task set, and each
simple sub-task was evaluated based on LBSN data to directly impact the size of the crowd and the
level of activity. The parameters used are summarized in Table 1.

Table 1. Parameters and their meanings.

Parameter Meaning
Ti ith (time) period
sj jth task site

UTi ,sj the user set in the region sj during Ti
RTi ,sj (u) the number of check-ins in the region of sj during Ti for user u
taskTi ,sj the subtask in the region sj during Ti

En(UTi ,sj ) the information entropy in the region sj during Ti
heatTi ,sj the heat of sj during Ti

cTi ,sj the payment incentive coefficient of taskTi ,sj

It is assumed that a sensing task released contains n periods and m task sites (in our work, 14
sensing tasks (from 7 a.m. to 8 p.m.) were released per hour per day at 4 task sites, so n = 14
and m = 4.). A period set can be denoted as T = {T1, T2, ..., Tn}, where Ti is a time period.
A task site set can be denoted as Θ, Θ = {s1, s2, ..., sm}, where sj is a task site. So, the task set can be
represented as taskT,Θ, where taskTi ,sj is a subtask in the sj region during Ti. In this way, a large-scale
sensing task can be decomposed into multiple simple subtasks.

To facilitate the evaluation of subtasks, the mobile users are represented during Ti by

UTi ,Θ = UTi ,s1 ∪UTi ,s2 ∪ ...∪UTi ,sm , (3)

where UTi ,Θ is the universal set of mobile users (Note that, throughout the rest of the paper, unless
otherwise mentioned, “potential participant” refers to “mobile user”.) during Ti; UTi ,sj is the set which
consists of the mobile users who check into the sj region during Ti.

Temporal heat is one critical evaluation indicator. The number of check-ins is directly proportional
to the total number of mobile users during a certain period. So, the ratio of the number of check-ins
during a certain period to the total number of check-ins during all periods can be denoted as
temporal heat.

The temporal heat of taskTi ,Θ can be represented by heatTi .

heatTi ,Θ =

∑
u∈UTi ,Θ

RTi ,Θ(u)∑
u∈UT,Θ

RT,Θ(u)
, (4)
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where RTi ,Θ(u) denotes the number of check-ins during Ti for user u. Similarly, RT,Θ(u) denotes the
total number of check-ins for user u.

Spatial heat is the other critical evaluation indicator, which can be denoted as the ratio of the
number of mobile users in the sj region to the number of mobile users in the Θ region during a certain
period, Ti. Here, the richness of mobile users can be measured by the information entropy, En().
A greater information entropy reflects more abundant mobile users. The spatial heat of taskTi ,sj can be
represented as heatTi ,sj .

heatTi ,sj =

∑
u∈UTi ,sj

RTi ,sj(u)∑
u∈UTi ,Θ

RTi ,Θ(u)
× En(UTi ,sj), (5)

where RTi ,sj(u) denotes the number of check-ins in the sj region during Ti for user u, and RTi ,Θ(u)
denotes the total number of check-ins during Ti for user u. En(UTi ,sj) is the information entropy of
mobile users in the sj region during Ti, which can be defined as follows:

En(UTi ,sj) = −
∑

u∈UTi ,sj

pTi ,sj(u)× log pTi ,sj(u), (6)

where pTi ,sj(u) is denoted in Formula (7).

pTi ,sj(u) =
RTi ,sj(u)

RTi ,Θ(u)
, u ∈ UTi ,sj . (7)

Further, the payment incentive coefficient, CTi ,sj , for taskTi ,sj is defined by considering the temporal
heat and spatial heat together, which can be represented as follows. We conclude that the greater
heatTi ,Θ and heatTi ,sj are, the easier the participant recruitment gets, and thus, the less payment incentive
coefficient CTi ,sj becomes. In this way, we can spend less to achieve participant recruitment:

CTi ,sj =
heatTi ,Θ

heatTi ,Θ
×

heatTi ,sj

heatTi ,sj

, (8)

where heatTi ,Θ =
n∑

i=1
heatTi ,Θ/n and heatTi ,sj =

m∑
j=1

heatTi ,sj /m.

4.2.2. Strackelberg-Based Game Interaction

The Strackelberg game, as a kind of non-cooperative game, can be composed by two actors:
the leader and the follower. Its main idea is that the leader first takes action, and then followers adjust
their own strategies according to the leader to maximize their own benefits [29]. In the recruiting stage,
the sensing platform is regarded as the leader; the potential participants are regarded as followers.

Based on the Strackelberg game, we figure out payment incentive coefficients by analyzing the
activity information of crowd. Then, the sensing platform releases the payment incentive coefficients,
and meanwhile, the potential participants as followers determine whether to upload the expected
payment incentive coefficient and participate. Finally, the sensing platform selects participants based
on the payment incentive coefficients uploaded by potential participants, and then, a collection
of participants is formed.

Next, we discuss the game interaction process of the recruiting stage. Each potential participant,
u = (ω,c), has two attributes, where ω = 0(1) denotes a potential participant will (will not) accept a
sensing task and report his/her expected payment incentive coefficient, c.
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After the game interaction, all potential participants who decide to participate in the sensing task
form a collection of participants, U′ = {u′1,u′2,...,u′k}. Similarly, each participant, u′ = (ω,c), can also be
defined with the meanings explained above.

Our solution is based on the following three assumptions:

• Each potential participant is rational. That is, a potential participant, u, can decide whether to
report the expected payment incentive coefficient, c, or not according to the C issued by the
sensing platform.

• In the game interaction process, each potential participant is independent and identically
distributed. In other words, the expected payment incentive coefficient, c, reported by a potential
participant has nothing to do with other participants.

• During the game interaction process, potential participants cannot communicate with each other.
That is, ui knows nothing about any ck of uk where uk ∈ (U − ui).

The Strackelberg-based game interaction algorithm (see Algorithm 1) can be described as follows.

Algorithm 1 Strackelberg-based game interaction process

1: The sensing platform releases a sensing task, task, and calculates payment incentive coefficient, C,
whose upper limit is defined as CTH;

2: The sensing platform pushes task and C to the set of potential participants U;
3: For each ui(ωi, ci) ∈ U, he/she decides and reports (ωi, ci) to the sensing platform, and the sensing

platform forms a collection of potential participants, U = {u1(ω1, c1), u2(ω2, c2), ...};
4: The sensing platform conducts statistics on U:

4.1 if ∃ui(ωi, ci) ∈ U and ωi = 0
then if C < CTH

then C ← C + ε; go to step 2;
else go to step 5;

4.2 if ∀ui(ωi, ci) ∈ U and ωi = 1
then go to step 5;

5: The sensing platform chooses participants according to ci of ui whose ωi = 0 in U and constructs a
collection of participants, U′;

6: return Participant set, U′.

The payment incentive coefficient, C, of each round of game interaction is constantly adjusted
with the correction factor, ε. Here, the default value of ε was set as 0.05.

4.3. Sensing Stage

After the recruiting stage, the sensing platform obtains the participant set, U′. However,
the participants do not start to collect data. Intuitively, the utility of sensing data is closely related
to the sensing time and location. The timeliness of sensing data indicates that, the more the sensing
time approaches the required time, the higher the data utility will become. For the sensing distance,
a similar conclusion is obtained. Moreover, orientation information is introduced to measure the
distribution of participants in the region of site. To motivate participants to collect data with high
utility, we fully consider space–time correlations, especially in regard to the orientation information.
The platform establishes real-time communication with participants and figures out the space–time
correlation coefficient so that it can prompt participants to adjust their sensing behaviors in the region
of the task site to enhance data utility.

4.3.1. Time Correlation

The time correlation can be determined from the relationship between the sensing time, t, and a
sensing task’s required time, gt. If there are two types of sensing data, data1 and data2, whose sensing
times are, respectively, t1 and t2, while meeting |t1 − gt| < |t2 − gt| and t1, t2 ∈ [gt− lt, gt + lt] (lt is
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the expiry time defined in Section 3.1) with the other conditions kept the same, the time correlation of
data1 is higher than that of data2.

In Figure 6, we show that the time correlation centers on gt and is attenuated on both sides.
When t = gt, the time correlation reaches the maximum—1. For example, for participant u

′
1, from

11:30 a.m. to 12:30 p.m., the time correlation of data collected at 11:55 a.m. is higher than that collected
at 12:25 p.m. So, the reward obtained at 11:55 a.m. ($1.7) is greater than that at 12:25 p.m. ($1.4) with
other conditions being the same, generally. Based on the above analysis, we used Sigmoid and Sgn
functions to describe the time correlation, VT(t), at the sensing time, t:

VT(t) = 2sgn(|t− gt|)× f (−|gt− t|) + sgn(−|t− gt|) (9)

where f (x) = 1
1+e−x and

sgn(x) =


1, x > 0

1/2, x = 0

0, x < 0

$1.5  12:05

$1.2  12:25

$1.8  12:05

$1.7  11:55

$1.4  12:25

12:0011:30 12:30

Time

Utility

gt-lt gt+ltgt

u'1

u'2

u'3

Figure 6. Data utility decided by different sensing times and distances.

4.3.2. Distance Correlation

The distance correlation can be determined by the distance, d, between the sensing location and
the task site, s. If there are two types of sensing data, data1 and data2, whose sensing distances are,
respectively, d1 and d2, while meeting d1 < d2 and d1, d2 ≤ radii (radii is the radius of a circular sensing
region with the center of a task site defined in Section 3.1) with all other conditions kept the same,
the distance correlation of data1 is greater than that of data2.

Figure 6, shows that the distance correlation increases with a decrease in distance, d. When d = 0,
the distance correlation reaches the maximum—1.

For example, for participants u
′
2 and u

′
3, at the same time (12:05 p.m.), the distance correlation of

data collected by u
′
2 is higher than that by u

′
3. So, the reward obtained by u

′
2 ($1.8) is larger than that



Sensors 2018, 18, 2391 12 of 21

by u
′
3 ($1.5) with other conditions being the same. Based on the above analysis, we also used Sigmoid

and Sgn functions to describe the distance correlation, VD(d):

VD(d) =


1, d ≤ radii

η

2sgn(|d− radii
η
|)× f (−|d− radii

η
|) + sgn(d− radii

η
), d >

radii
η

.

Here, considering that it is hard for a sensing location to completely coincide with a task site,
we used η to define a small range [0, radii

η ]. If d ∈ [0, radii
η ]; its corresponding VD(d) can be valued as 1.

4.3.3. Orientation Correlation

In the sensing process, the sensing data may come from different orientations in a circular region
around the task site. Our solution fully considers the effects on data utility from the orientation
information. A circular region can be equally divided into s sectors, which can be represented as
o1, o2, ..., os. Here, we set s = 3, which means a circular region can be equally divided into 3 subregions,
each covering a sector of 120 degrees. Based on information theory, the information amount on each
orientation can be calculated as I(o) = − log(p(oi)), where p(oi) denotes the proportion of participants
in the orientation oi. Considering that the range of values for the time correlation, VT(t), and the
distance correlation, VD(d) is from 0 to 1, for convenient calculation, we normalized I(o) to get the
orientation correlation, VO(o), as follows:

VO(o) =
I(o)−min{I(o1), ..., I(os)}

max{I(o1), ..., I(os)} −min{I(o1), ..., I(os)}
. (10)

4.3.4. Data Utility

A multidimensional sensing data can be depicted by data = {t, d, o, q}, where q (∈[0, 1.0]) denotes
the quality of the sensing data itself, which can be affected by many kinds of objective factors but
only the type of participants is used here. In our work, we classified participants into three types:
high-quality, ordinary, and low-quality.

The utility of data reflects the value provided by a sensing task, which can be represented as follows:

Utility = q× (αVT(t) + βVD(d) + γVO(o)), (11)

where α, β, and γ are, respectively, the weights of the time correlation, VT(t), distance correlation,
VD(d), and orientation correlation, VO(o). α + β + γ = 1, and their default values here are α = β = 0.4
and γ = 0.2.

The sensing platform can flexibly adjust these weights according to the needs of the sensing task.
For example, for a time-sensitive sensing task, the weight of the time correlation, α, can be enhanced;
similarly, for distance-sensitive sensing data, the sensing platform can add the weight of distance
correlation, β.

In conclusion, in the sensing stage, the sensing platform and participants perform real-time
interactions via intelligent information push & pull technology (IIPP). The sensing platform can obtain
participants’ location information to calculate several space–time correlations, and then push them
to the participants. The participants determine or adjust their own sensing behaviors according to
the calculation results. Once the sensing data is uploaded, the sensing platform can calculate its data
utility. Finally, the interaction process is finished.

5. Reputation Accumulation-Based Punishment Mechanism

Besides the proposed incentive mechanism, in this section, we introduce a reputation
accumulation-based punishment mechanism to inhibit the negative impact from malicious participants.
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Here, a participant’s reputation can be used to determine whether this participant will be paid and if
yes, how much payment he(she) should receive [30].

The reward for participant u
′
i in a sensing task can be calculated by Formula (12):

rewardu′i
= ci ×Utilityu′i

. (12)

The main difference between Formula (2) (in Section 4.2) and Formula (12) is that the payment
incentive coefficient, C, can be substituted by ci which is participant u

′
i’s expected payment incentive

coefficient, ci, that is reported finally in the game interaction process.
The sensing platform screens the participants according to the rewards (i.e., payment cost) of the

sensing task, taskTi ,sj . First, the participants can be sorted by data utility in descending order. Based
on this, these participants can also be sorted by reward in ascending order. In this way, the sensing
platform can pay less (rewards for participant) to get more winners who can provide a higher data
utility. Subsequently, the sensing platform pays the corresponding rewards for the winners. The flow
of the overall staged incentive and punishment mechanism is shown in Figure 7.

Recruiting stage 

Sensing stage

Payment and 

punishment stage

Participant set and 

payment coefficient 

generation

Sensing data generation

Data utility calculation

Winner generation

Payment reward

Reputation Accumulation

      

Malicious Participant 
punishment

Figure 7. Flow of staged incentive and punishment mechanism.

The basic idea of reputation accumulation is that the sensing platform specifies the data utility
threshold, UTH, and the reputation deduction value, ζ. We regarded sensing data whose utility is less
than UTH as malicious, and the reputation of a participant who reports malicious data is deducted by
ζ. Otherwise, the reputation of participants who report good data accumulate as follows:

Ru′i
=



n∑
d=0

e−0.1d ×Utilityd
u′i

, Utilityd
u′i

> UTH

n∑
d=1

e−0.1d ×Utilityd
u′i
− ζ, Utilityd

u′i
≤ UTH,
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where Ru′i
is the reputation of participant u

′
i. d denotes the times of sensing tasks that u

′
i has participated

in, where d = 0 means the current sensing task. For the reputation accumulation, the more recent the
sensing behavior is, the greater the effect on the reputation of a participant will be. Hence, we introduce
the attenuation factor, e−0.1d, and the data utility reported by participant u

′
i for the dth sensing task can

be denoted by Utilityd
u′i

. For example, Utility0
u′i

is the data utility reported by participant u
′
i for the

current sensing task.
In this section, we design a reputation accumulation-based punishment mechanism. A malicious

participant is defined as one whose reputation value is lower than the reputation threshold, RTH.
As illustrated in Figure 7, the punishment mechanism has a major role in the determination of payment
reward (marked with red), which sets strict criteria for the winners. In detail, at the end of a sensing
task, the sensing platform firstly screens participants to achieve a winner set. Then, it does statistics
on the reputations of winners. If a winner is a malicious participant (i.e., his reputation is less than
RTH), the sensing platform only accumulates his reputation based on his data utility in this sensing
task without paying reward to him. In other words, if a malicious participant is filtered out to be a
winner, he can upload high-utility data to achieve continuous reputation accumulation, instead of
getting a reward.

6. Simulation and Numerical Results

Here, the simulation data came from the website (http://www.crawdad.org). These data
include 21,817,851 location points of 360 pedestrians within a time period of 30 days. Each location
point consists of a user’s ID, latitude and longitude, and time. Some simulation parameters used
in our work are illustrated in Figure 8. There are four task sites in the monitored area, and their
corresponding longitude and latitude data are marked. We drew a circle around each task site (a 5 km
radius). For each circular area, we conducted 14 sensing tasks for each hour (from 7 a.m. to 8 p.m.) in
one day, and 1,074,427 valid location points were obtained by uniform time sampling in the active area.
Here, the cost ceiling of each sensing task was set as $15.

1
2

3

4

Site 1 (12.45029,41.86175)

Site 2 (12.52031,41.86016)

Site 3 (12.46187,41.91374)

Site 4 (12.52109,41.92479)

5km

1

2

14

6 :30 7 :30
7 :30 8 :30

19 :30 20 :30

 
 

 

T am am
T am am

T pm pm

Figure 8. Some simulation parameters used.

http://www.crawdad.org
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According to a report on mobile network users’ behaviors that was issued by CNNIC
(http://www.cnnic.net.cn/), for different types of participants—high-quality, ordinary and
low-quality ones—the sensory data quality is different. The value range of sensory data quality
is [0, 1.0]. The higher the quality of a user is, the greater the sensory data quality he/she can provide
will be. Without loss in generality, the simulation parameters of crowd can be set as follows. In the
simulation, the percentages of high-quality, ordinary and low-quality users in 360 pedestrians were
20%, 60% and 20%, respectively. In addition, their corresponding participation probability intervals
were [0.8, 1.0], [0.5, 1.0] and [0.2, 0.8], respectively.

We performed the simulation by using MATLAB tools. Particularly, we explored some primary
parameters: the total data amount collected, the data utility, the number of winners, and the
reputation accumulation, and thus, evaluated the performance of the positive auction incentive
mechanism (PAIM), the reverse auction incentive mechanism (RAIM), and our proposed staged
incentive mechanism (SIM) via extensive simulations. Each result shown here is the statistical average
of 20 simulations.

6.1. Total Amount of Data Collected

To reduce the impact of users’ scale change, in this paper, we selected and analyzed data collected
from 1624 sensing tasks in the simulation (For each task site, 14 sensing tasks (from 7 a.m. to 8 p.m.)
were released in one day. Hence, for 4 task sites, there were, in total, 1624 sensing tasks issued within
30 days (about one month)). For different task sites, the cost ceilings of each sensing task were the
same ($15).

Table 2 shows the total amount of data collected from four task sites in 30 days based on three
kinds of incentive models. From the data shown in this table, the crowd distribution among four task
sites was very unbalanced. For the reverse auction incentive mechanism (RAIM), the sensing platform
does not announce the expected price in advance and only relies on the potential participants’ own
decision-making, so the number of participants was less than that of other two algorithms. In addition,
because the number of participants recruited by RAIM basically follows the crowd distribution, it was
unable to effectively improve the numbers of participants at site 1 and site 2, and it also caused
increased numbers of participants at site 3 and site 4. The positive auction incentive mechanism
(PAIM) overcame the defect of RAIM by early release of price based on the sensing task assessment,
which increased the overall number of participants. Particularly, PAIM motivated the enthusiasm of
potential participants at different task sites to achieve a more balanced crowd distribution compared to
RAIM. The proposed staged incentive mechanism (SIM) improved the overall number of participants
while balancing the number of participants at the four task sites through the combined effect of the
payment incentive coefficient and game theory-based interaction.

Table 2. Crowd ratios at four task sites.

Site 1 Site 2 Site 3 Site 4 Total Data Amount
PAIM 21.24% 19.86% 28.05% 30.84% 67,541
RAIM 16.38% 11.23% 28.52% 43.87% 60,531
SIM 24.20% 23.63% 24.46% 25.47% 70,069

Crowd ratio 16% 9% 30% 45% 1,074,427

6.2. Data Utility

6.2.1. Data Quality Distribution

We quantified the data quality within the range [0, 1.0]. It was concluded that the incentive
coefficient has a great influence on the users’ participation enthusiasm. During peak periods, the more
the number of potential participants in hotspots is, the less the payment incentive coefficient values
are, and thus, the lower the enthusiasm of participants, especially low-quality ones, is. From the data

http://www.cnnic.net.cn/
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in Figure 9, we can see that the data quality distribution of SIM was obviously superior to PAIM and
RAIM. Specifically, the proportion of high quality data (0.8, 1.0) was 71.94% for SIM, which is about
twice as high as the other two. This indicates that more payment costs are used to collect high-quality
data in SIM, so that the whole payment cost can be reasonably employed during the incentive process.
For PAIM and RAIM, the data quality distributions are relatively random, and a considerable portion
of payment costs are used to pay for low-quality data.

Figure 9. Comparison of data quality distribution.

6.2.2. Data Delay Distribution

Delay can be denoted as the collection time difference between the specified time (e.g., 12 p.m.)
and the actual time (e.g., 11:55 a.m.; 12:05 p.m.). This actual collection time has a great impact on the
utility of data because our incentive is to make more participants collect data close to the specified time
to increase the reliability of collected data. As shown in Figure 10, the data delay distributions of PAIM
and RAIM were relatively uniform, and complied with the principle of random sampling. However,
for SIM, the proportion of low delay interval [0, 300], (300, 600] was 85.26%, which is, respectively,
1.5 times and twice as high as that of PAIM and RAIM. This means that SIM can simulate participants
to collect data at a certain time using the time correlation coefficient.

Figure 10. Comparison of data delay distribution.
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6.2.3. Data Distance Distribution

Distance is denoted as the distance difference between the sampling location and the task point.
The utility of data decreases with an increase in distance. Our incentive was to make more participants
collect data close to the task point to improve the data reliability. From the statistical data in Figure 11,
it can be seen that the amount of data collected by PAIM and RAIM was evenly distributed from
0 to 4 km, but the amount of data collected in the distance interval of 4–5 km was relatively high.
This is because the distance factor is not considered in these two incentive models, so edge collection,
which means that a lot of participants who enter or leave a given task area tend to participate in
sensing tasks regardless of the influence of distance on data utility, inevitably happens. For SIM,
the proportion of data collected within 0–1 km approached 51.06%, nearly three times that of PAIM
and RAIM. This reveals that SIM can simulate participants to collect data at nearby task points based
on the distance correlation coefficient.

Figure 11. Comparison of data distance distribution.

6.2.4. Data Orientation Distribution

In the simulation, the region of a task site was divided into three subregions, each covering a
sector of 120 degrees. The data collection locations located in different orientations have different
impacts on the data utility. We hoped that the collected data from different orientations would reflect
different samples.

The variance in the amount of sensing data from different orientations for four task sites using
PAIM, RAIM, and SIM are shown in Figure 12. We can see that the variance in the sensing data amount
with SIM was less than that with PAIM and RAIM. Obviously, the value changed between 0.06 and
0.23. This is mainly because the orientation distributions of data collected for each task site by PAIM
and RAIM meet a natural distribution, so most of the sensing data comes from one orientation which
results in a great variance value. Our proposed SIM can effectively motivate the participants who are
located in the direction with lower crowd distribution to join in the sensing task in order to make the
data source distribution more balanced and the sensing data content richer.
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Figure 12. Comparison of data orientation distribution.

6.2.5. Brief Summary

In conclusion, according to Formula (10), the value range of the data utility was [0, 1]. In the
process of motivation, we expect to obtain higher data utility by paying more payments to the
participants who provide data with high utility. From the data in Figure 13, we can see that the data
utility distributions of PAIM and RAIM basically obeyed a Gaussian distribution, and lots of data
utilities were mainly distributed within the median utility interval from (0.4, 0.5] to (0.7, 0.8]. However,
the curve of the data utility distribution of SIM obviously moved to high data utility. In detail, the data
utility in these three utility intervals (0.6, 0.7], (0.7, 0.8] and (0.8, 0.9] was about 82.95% of the total,
and it was about twice as much as those of PAIM and RAIM. In comparison, we found that SIM
significantly improved the participants’ collection behaviors and promoted the total data utility under
the same payment cost.

Figure 13. Comparison of data utility distribution.

6.3. The Number of Winners and Reputation Accumulation

In the simulation, the cost ceiling of a sensing task was set as $15. The number of winners filtered
out for each sensing task is given in Figure 14. The horizontal axis shows the IDs of the sensing task.
We found that the number of winners filtered out fluctuated within a range of 9–35. The lower the
number of winners was, the greater the reward each winner obtained.
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Figure 14. The number of winners for all sensing tasks.

Assume that the initial reputation of each participant is 5. UTH = 0.5, RTH = 3, and ζ = 1.
The reputation accumulation of participants is illustrated in Figure 15. According to the statistics,
for 1624 sensing tasks, 6037 malicious sensing data were filtered out and 562 person-times were
punished. The payment cost of the sensing platform saved about $368.98.
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Figure 15. Reputation accumulation of participants.

7. Conclusions

In this paper, a staged incentive and punishment mechanism was explored for mobile crowd
sensing. Our solution divides the whole incentive process into two stages: the recruiting stage and the
sensing stage, and proposes a series of mechanisms to motivate potential participants to participate in
the sensing task while balancing participants’ spatio-temporal data as well as the whole data utility.
In addition, a reputation accumulation-based punishment mechanism was designed to introduce
binding on the malicious participants. In this way, the payment cost of sensing task can be saved and
resource waste of the sensing platform can be lowered effectively.

In future work, we plan to improve the incentive and punishment mechanism by introducing more
influence factors into the existing incentive model, such as the type of sensing data, user participation,
and so on.
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