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Abstract: Throughout the last decade, a whole new generation of powered transtibial prostheses and
exoskeletons has been developed. However, these technologies are limited by a gait phase detection
which controls the wearable device as a function of the activities of the wearer. Consequently,
gait phase detection is considered to be of great importance, as achieving high detection accuracy will
produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait
percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called
this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was
obtained from seven healthy subjects that performed daily walking activities on the flat ground and
a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached
to the lower shank. The dataset was divided into training and validation datasets for every subject,
and the mean square error (MSE) error between the model prediction and the real percentage of
the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training
and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation
set was obtained when combining all subjects’ signals together. Although our experiments were
conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides
an opportunity to eliminate detection delays for real-time applications.

Keywords: gait phase prediction; gait event detection; lower limb prosthesis; exoskeleton;
gait recognition

1. Introduction

Gait phase detection is a non-trivial problem for the new generation of powered prostheses and
exoskeletons that are under development [1]. Gait phase detection algorithms are used to create and
improve control strategies that permit prosthetic devices such as those presented in References [2–5]
to work with more precision, safety, and stability. The objective of gait event detection algorithms
is to detect non-delayed events in order to build control strategies for improving gait movement.
For example, authors in [2] focused on a treatment to fix the amputee’s foot in the lifted position by
an orthosis. The technology known as functional electrical stimulation (FES) facilitates the artificial
generation of action potentials in subcutaneous efferent nerves during the swing phase of the paretic
foot by applying tiny electrical pulses via skin electrodes or implanted electrodes. By modulating
the frequency or dimensions of these pulses, one can control the contraction of paretic muscles and
induce movements in the affected limbs based on gait phase transitions. The foot pitch and roll angles
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are assessed in real-time by means of an inertial measurement unit (IMU). They detected four phases
based on measuring the angular velocity and accelerometer to control the pitch and roll of the foot.
Another example is the Ankle Mimicking Prosthetic Foot (AMP-Foot) [4]. This device greatly relies
on the accuracy of a gait event detection algorithm to precisely control the torque of the motor in
the device. This device stores energy in the springs during the first event of gait from initial-contact
(IC) to foot-flat (FF), then releases the energy stored in the push-off (PO) spring and transmits it to
the ankle joint by controlling the direct-current (DC) of the motor at the moment of heel-off (HO).
This joint effort provides a peak torque and power output to the amputee, producing a toe-off (TO)
event. After the TO, the amputee enters a swing phase where the torque of the motor is returned to zero
magnitude, allowing the foot to go back to its initial position, resulting in an IC event. Knowing when
all these events take place allows the device to take action at the right moment. Due to the different gait
terminologies used in different articles, in this paper we follow the wording of Figure 1. In this figure,
a gait cycle percent is defined as a sample from the continuous space of the gait cycle, an event is viewed
as a discrete representation of the percentage space, often labelled as IC, FF, HO and TO; a gait period is
considered as an interval between events, and a phase is considered as a union of several periods that
represent different stages of the gait cycle. Lastly, a full gait cycle is composed of a stance phase and
a swing phase. A more detailed description of different gait events is provided in Section 3. In the gait
percent detection literature, a large set of techniques for improving the performance of event and phase
detection can be found. These include threshold-based methods [3,6–8], time-frequency analysis [9,10],
peak heuristic algorithms [9,11,12], machine learning (ML) models [13–21], and combinations of
these [22]. ML algorithms are among the most popular techniques to detect phases in off-line data
(i.e., stored data) and for real-time data (i.e., data gathered in real time). For instance, authors in
References [17,19] detected four event-phases using hidden Markov models (HMMs). Evans and
Arvind [23] increased the number of event-phases to five, and applied a hybrid method that combined
fully connected neural networks (FNNs) and HMMs. The model accuracy of these algorithms is
dependent on the type of sensors used to gather the gait event signals. Currently, wearable sensors
are widely used for gait phase recognition systems: wearable sensors such as foot switches [14,24,25],
foot pressure insoles [6,16,26,27], electromyography (EMG) [28,29], IMUs [3,8,9,15,30–34], and joint
angular sensors [20,21] are used specifically for gait detection. A review in [35] showed that foot
switches and foot pressure insoles yield the highest accuracy for gait phase detection algorithms.
However, these sensors are very sensitive to the placement of the insole, which can influence the
accuracy and reliability of the model. Additionally, they have a short lifespan, as they are often exposed
to shock forces of the gait. Consequently, foot switches and foot pressure sensors are not considered
suitable for daily activity applications. In contrast, Joshi et al. used EMG sensors to accurately extract
up to eight gait phases [29]. EMGs are sensors that measure specific muscle activities occurring during
a task. Regardless of the amount of information that can be extracted from the EMG signals, a heavy
pre-processing step (e.g., a complex combination of filters) is required before it can be directly used in
a learning algorithm. Furthermore, these sensors are susceptible to artifacts generated by moisture that
builds between the skin and the sensors, and to the way in which they are placed on the skin of the
subject. Recently, IMUs including gyroscopes, accelerometers, and magnetometers have become more
popular, as they are not affected by most of the limitations of the aforementioned sensors. IMUs are
low-cost, low-energy, durable, and can be easily mounted on different parts of the human body.
Moreover, a human walking gait is a periodic cycle where IMUs can measure the angular velocities
and accelerations of the walking gait. As a result, these signals are composed of rich information
that can be used to accurately predict the gait events. Similar to EMG signals, IMU signals are very
sensitive to movement artifacts. This means that in some cases these signals may require a strong
pre-processing step before they can be directly used for learning. We hypothesise that deep learning
algorithms are best suited for gait phase detection using IMU signals, as they perform well on signals
that have a medium-low signal-to-noise ratio.
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Figure 1. A gait cycle is described as a dynamic and continuous occurrence of eight phases from the
heel-contact at 0% to the next heel-contact at 100% percent of the gait cycle. Phase 0 is initial double-limb
support, which appears during the first 10% of the cycle. Phase 1 is mid-stance, which appears from
10% to approximately 30% of the gait cycle. The following 10% of the gait cycle is terminal-stance.
The propulsion phase or toe-off occurs after foot flat from 40% of the gait. This stage pushes the body
forwards and prepares for swing phase from approximately 60% of the gait cycle. Single-limb support
occurs from foot flat until 50% of the gait-related opposite initial contact limb, typically at 50% of
the gait cycle. The second double-limb support occurs from the opposite limb at 50% until the toe
leaves the ground at 60% of the gait cycle. Then, the second single-limb support completes the cycle.
The following phases are early swing at approximately 60% to 75% of the gait cycle, mid swing at
approximately 75% to 85% of the gait cycle, and late swing at approximately 85% to 100% of the gait
cycle. Adapted from [36].

This paper introduces a novel gait percent detection model based on deep learning (DL) algorithms
that can predict a full gait cycle discretised within a 1% interval. Currently, most studies can accurately
detect four to eight phases. However, for real-world applications, it may be not sufficient for controlling
active prosthetic devices. As a result, a more densely sampled gait phase is needed in order to obtain
more important gait information and give more possibilities of control. The purpose of this study is to
open an opportunity for future active devices such as below-the-knee prosthetics to take full control of
the gait by accurately predicting the gait percentage in densely sampled phases.

2. Related Work

Due to the capacity of IMU sensors to measure the velocities and accelerations of motion, they are
generally used in the fields of gait phase detection, gait event detection, and gait detection. In this
section, we analyse and evaluate the performances and time delays of several recent gait phase
detection systems in the fields of transtibial prostheses and exoskeletons.

Evans and Arvind [23] presented a method for the detection of five gait phases based on
a feed-forward neural network (FNN) embedded in the hidden Markov model (HMM) model. However,
their sensor system had to use seven IMUs mounted on the foot, shank, both sides of the thigh, and one
on the pelvis. An implementation of complex threshold rules was further applied in exoskeletons in
References [8,37]. The study in [8] could detect seven gait phases, and Boutaayamou et al. could detect
four events in their study, with a temporal accuracy of around 10 ms [37]. However, systems in [8,37]
were required to use four sensors which were attached to the leg segments.
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Several papers have proposed applications for robotic prostheses that use signals from one IMU
attached to the shank or the foot [12,17,38,39] to detect four phases or events. Mannini et al. [17]
and Muller et al. [39] proposed two different models to detect four gait events in real-time using
one IMU. The former proposed an HMM and the latter proposed afinite state automaton to model
the transitions between phases. Nevertheless, both cases showed a time delay limitation in on-line
detection. For example, authors in [17] presented an average error latency of 62± 47 ms for FS and
86± 61 for HO. Moreover, authors in [39] reported delays when subjects were wearing or not wearing
shoes. For example, they reported approximately 0.1± 0.05 s for the TO and 0.01± 0.07 s for the IC.
Similar to our work, the recent study of Quintero et al. [40] worked on estimating the continuous
progression of the gait cycle by extracting the relationship between the thigh angle and velocity
extracted from one IMU. They transformed the angle–velocity relationship to polar coordinates in
order to predict the gait percentage. However, a comparison between their results and ours would
be unfeasible, as they only visually reported the accuracy of their technique. A study in [12] recently
announced an effective algorithm that detects four gait events (e.g, IC, TO, mid-swing (MSw) and
mid-stance (MSt)) based on a set of heuristic rules using one gyroscope attached to the shank of
subjects performing activities of daily living such as normal walking, fast walking, ramp ascending,
and ramp descending. However, this algorithm is limited to an off-line setting and to a non-detection
of the push-off event, which is considered to be an important phase before toe-off. Although they state
that their algorithm also works in an on-line setting, they do not show any evidence that supports
their results. In summary, in the course of our literature review, we encountered gait event detection
systems that limit their experiments to one IMU and to gait phases that were partitioned between
two [9,41,42] and three phases [3]. In this limited framework, they illustrated that a high accuracy
can be achieved. For instance, authors in [41,42] illustrated an accuracy of 100% in IC and TO event
detection. Zhou et al. [9] showed an accuracy of above 98% for IC event detection and 95% for TO
event detection on three different terrains. We also observed that in cases where the number of
phases is increased (i.e., to four phases [12,15,17]), the gait phase detection performance also decreases.
For example, the experiment in [15] yielded an average detection accuracy under 95% in every phase,
while Mannini et al. [17] showed a long delay of detection from 45 ms to 100 ms. The experiment in [12]
showed a mean difference error between the reference and the proposed system of approximately
+4 ms for IC and −6.5 ms for TO.

Recently, most studies have focused on improving the detection accuracy with the purpose of
applying real-time safety walking for amputees while at the same time increasing the number of
detectable gait phases for better control of the robotic device. However, we previously saw that
increasing the granularity of the phases leads to a significant decrease in the prediction accuracy.
To cope with this trade-off, we built a new deep learning architecture called the exponentially delayed
fully connected neural network (ED-FNN). This network is made to overcome most of the current
limitations in gait phase detection algorithms, such as predicting gait events with one IMU attached to
the lower shank with high phase granularity and no detection delay.

3. Materials and Methods

This section discusses the algorithms and materials that were used for our experiments section.
First, the concept of gait classification is introduced. Second, we describe how the walking gait is
typically discretised. Finally, a description of the ED-FNN architecture is provided.

3.1. The Division of the Human Walking Gait

The human walking gait is defined as a periodic cycle involving two legs from the initial contact
of one foot on the ground to the following occurrence of the heel of the same event with the same
foot. Typically, one gait cycle is divided into two main phases, including a stance phase which is
approximately 60% of a gait cycle and a swing phase which is approximately 40% of the remaining
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gait cycle [43]. The heel-contact and the toe-off events mark the beginning of the stance phase and the
swing phase, respectively.

The granularity of one step is equally divided into two, three, four, five, six, seven, and eight gait
periods depending on the specific type of application. This is done to define the label of the different
periods of the gait cycle [35]. An example of the different periods is shown in Figure 1, which illustrates
eight periods that were summarised into one gait cycle based on 100 percent of the gait [35,43].

In our study, we classified a full gait cycle discretised within a 1% interval based on real-time
measurements of the gait cycle. Doing so will allow prosthetic devices to have a wider spectrum of
control in the cycle. For example, the prosthesis AMP-Foot 3 plus [4] stores energy in the springs at
the mid-stance period and starts to inject positive energy at the terminal stance period by using a DC
motor. The detection of the terminal stance period is important for injecting energy at the right time.
At the initial swing and mid-swing periods, the trajectory for the next work situation (i.e., the next
walking phase) needs to be set. It is of great importance to command the control of the prosthesis just
before gait events happen in order to avoid action delay on the device. Therefore, an algorithm for
detecting 100% of the gait is required for the next concept of gait phase detection. For applications that
do not require a granular gait cycle, the phases can be mapped to the fundamentals of human gait
phases (Table 1) in order to control the prosthesis when needed.

Table 1. One gait cycle can be subdivided into eight typical phases based on the gait fundamentals
shown in Section 3.1. In this table Dorsi Assist means assisting the foot to bend up, Plantar Assist means
assisting the foot to bend down, and No Assist means that there is no assistant for the movement.
FF: foot-flat.

Label Phase Percentage Function Controlling

0 Initial Contact 0 to 8 Loading, weight transfer Dorsi Assist
1 Mid Mid-stance (FF) 8 to 30 Support of entire body weight: No Assist
2 Terminal Mid-stance (FF) 30 to 40 Center of mass moving forward No Assist
3 Push Off 40 to 50 Push Off Plantar Assist
4 Pre-swing, double-limb support, push off 50 to 60 Unloading and preparing for swing Plantar Assist
5 Initial swing 60 to 75 Foot Clearance Dorsi Assist
6 Midswing 75 to 85 Limb advances in front of body Dorsi Assist
7 Terminal Swing 85 to 100 Preparation for weight transfer Dorsi Assist

According to the fundamentals of human gait phases, the stance phase begins with IC from 0%
to 10% of the gait cycle. Initial double-limb support appears during the first 10% of the gait cycle.
The foot flat occurs from 10% until the heel leaves the ground at 40% of the gait cycle. Mid-stance
appears at approximately 30% of the gait. Single-limb support occurs from foot flat until 50% of
the opposite initial contact which is approximately at 50% of the gait cycle. The second double-limb
support occurs from the opposite limb at 50% until the toe leaves the ground at 60% of the gait cycle.
Then the second single-limb support starts until the cycle is complete. The following periods are early
swing at approximately 60–75% of the gait cycle, mid-swing at approximately (75–85% of the gait
cycle, and late swing at approximately 85–100% of the gait cycle. The fundamentals of human gait
phases are shown in Figure 1.

3.2. Percent Segmentation Method for the Gait Cycle

We propose a model that can predict the gait percentage that was equally divided into 100
one-percent fragments. To achieve this, we reused the method from [44] to segment input signals and
label output targets. We began by extracting the lengths of the walking steps from one heel-contact to
the next. Then, we sampled each heel-strike window with an interval of 10 ms. This resulted in several
signals that were stored as a matrix X of dimension Rp×(s∗d), where p is the percentage value, s is the
number of sensors, and d is the number of dimensions in an IMU sensor.
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3.3. Gait Prediction Model

We developed an exponentially delayed fully connected neural network (ED-FNN) that accurately
detects and forecasts gait percentage that was densely discretised. In Section 2 we showed that Evans
and Arvind [23] implemented a combination of FNN and HMM that had been previously used to
detect phases that had been partitioned into five events. However, coarse discretisation of the gait
is not sufficient to fully control prosthetic devices for real-world applications. In this section we will
describe the ED-FNN and show that this algorithm manages to simulate recurrent neural networks for
regression problems.

3.3.1. Fully Connected Neural Networks (FNNs)

An FNN is a collection of artificial neurons called computational units. These units are grouped
as a set of layers that are arranged in a hierarchical structure. FNNs are divided into input layer, hidden
layers, and output layer. The function of the input layer is to directly process the data given by the
user and forward it to the first hidden layer to learn complex representation of the data. This forward
process is repeated in the following hidden layers, allowing them to learn more specific characteristics
of the input data. The function of the output layer is to process the output of the last hidden layer
and generate a prediction that agrees with the ground truth of the given input data. This network
architecture is called a fully connected network because every unit in a layer is connected to every other
unit in the following layer. These connections are represented as weights and biases that express the
importance of a respective input to the output. The activation of each unit in a layer of the network is
computed by the following equation:

al = σ
(

θlal−1 + bl
)

, (1)

where θ ∈ Rn×k is a matrix denoting the weights between layers l and l − 1, al−1 ∈ Rk denotes the
activation units of the previous layer (l − 1), and σ is a predefined activation function. In the literature,
several activation functions (e.g., sigmoid [45], rectified linear unit (ReLU) [46], and softmax [47]) can
be found. For our model, we chose a ReLU activation function as shown in Equation (2) due to its
properties of avoiding saturation in the error gradients:

σ(z) = max(0, z). (2)

Modifying the weights and biases in every activational layer (al) will lead the overall model to
obtain a desirable output. To learn these weights and biases, the objective of the network is quantified
by means of a cost function. Several cost functions for neural networks (NN) are found in the literature,
such as the mean square error (MSE) [48] and cross-entropy [49]. For the purpose of gait percentage
detection, we use the mean square error (MSE) of Equation (3) to minimise the cost between the ground
truth of the data and the prediction of our model:

MSE
(θ,b)

(x) =
1

2N

N

∑
xi∈x
||h(θ,b)(xi)− y(xi)||2, (3)

where h(θ,b)(xi) is the prediction of the FNN and θ and b are the weights and the biases of the network.
This equation indicates that if the MSE is close to zero, then the weights and the biases reflect a good
representation of the given data. In an NN, gradient-based methods are used to back-propagate the error
from the output layer to every weight of the hidden units. The error gradient indicates the direction
in which the weights and biases of the units need to be updated. (Stochastic) gradient descent [50],
conjugate gradient [51], and Adam [52] are the most popular gradient-based methods that are used
in NNs.
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3.3.2. Exponentially Delayed Fully Connected Neural Network (ED-FNN)

Because FNNs do not hold any notion of time as they only consider the current example x,
a machine learning model needs to rely not only on the signal taken at time t but also on the history
of signals Xd = [xt−k, · · · , xt] to estimate present and future gait percentages y = [yt, yt+1, · · · , yt+n].
In this case, n indicates the number of gait events to estimate in the future, and k specifies the number
of IMU samples to take from the past. Recurrent neural networks (RNNs) are known to simulate
a historical behaviour by introducing memory that encodes information about what has been observed
in the past. Figure 2 shows the architecture of an RNN.
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Figure 2. This figure illustrates the information flow in a recurrent neural network (RNN). The left
image shows an RNN as an infinite loop network where the model outputs are fed back as inputs.
The right figure is an unfolded representation of an RNN [53].

In a simple fully connected neural network (FNN), information flows back and forth from the
lower to the higher layers of the network, allowing it to learn higher-order representations of the input
data. A similar process is observed in RNNs, with the distinction that the network not only depends
on the inputs X, but also on the activations of the hidden units at previous time steps. As a result,
these networks will learn to map the sequence of inputs x = [xt−k, . . . xt] into output of sequences
o = [ot+1, . . . , ot+n]. RNN algorithms such as long short-term memory (LSTM) networks have shown
great success in many problems that contain temporal information (e.g., IMU signals) [54]. Based on the
characteristics of RNNs, it is clear that these networks have the capacity to accurately predict dense gait
events. However, we found that they generally require substantially more data than standard FNNs,
and they are computationally expensive, which poses limitations when working with microprocessors.
Consequently, in our research we created an NN architecture that simulates the “memory” of RNNs
and removes the aforementioned limitations.

To simulate a “memory” of an RNN, the input tensor X was delayed according to the
following equation:

D = [W(t−d):t]
T−1− f
t=d , (4)

where W[·]start:end is a window sequence from start to end, [xt]BA is a vector of elements xt that ranges
from A to B, T indicates the number of samples in the signal, and f is the number of percentage
values that will be predicted in the future. This equation constructs a tensor D of dimensions Rp×sd×s,
where p indicates percent index, sd indicates the delayed samples, and s indicates the number of IMU
sensors. This tensor is illustrated in Figure 3. Furthermore, the tensor D was reshaped into a matrix
Xd ∈ Rp×k in order to use this tensor directly in the NN. In this case, k = sd ∗ s ∗ d refers to the product
of the delayed samples, IMU sensors, and the dimensions of the IMU sensors. Finally, we generated the
output matrix Yd ∈ Rp× f , where p indicates the percentage index and f is the number of samples in
the future. Using the matrix, we oblige the network to always predict f percentage values in advance.
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Figure 3. This figure illustrates how the matrix D was created. Every sample in the inertial
measurement unit (IMU) is delayed by n times (in this case five times). The output matrix is shifted
n times into the future (in this case three times).

Using the matrix Xd directly in an FNN with a short delay d will yield bad predictions on the overall
trend, but it will be good at predicting fast changes in the percentage. This is because a one-to-one
mapping between neighbouring samples Xd and percent samples yd does not exist. In contrast,
using a Xd with long delays will be better at predicting the overall trend of the percentage, but less good
at predicting fast changes. A good trade-off between large and short delays will yield an optimal input
space to predict the gait percentage. One of the reasons why LSTM works well for time series is due to
its ability to choose which of the delay samples are important for the overall prediction. As a result,
in order to simulate this behaviour, we introduced the concept of exponential windows, which allows us
to make trade-offs between short and long delays. An exponential window is defined as:

ψ(Xd, δ) = Xd[t− exp(k)]δk=0. (5)

This equation uses the delayed matrix Xd and re-samples it using a smaller delay δ. Consequently,
we not only obtain a window that includes the knowledge of samples that are close by, but also obtain
knowledge of samples that are far away. Note that the number of samples which are close in time
are more densely sampled than those that are far away from t. This means that we are including
information that encompasses both fast changes in the percentage and samples that contribute to the
prediction of the cycle trend. Furthermore, applying this exponential window allows us to decrease the
number of input units that are needed to predict the gait percentages, which results in a substantial
decrease of computational power. Additionally, due to the forecasting properties of the network,
we also removed the delay limitations that arise when using algorithms on micro-controllers with low
memory and CPU power.

The network that was used in our experiments is made of one fully connected (fc) layer as input,
two hidden layers of six units, and an output layer of one unit. Furthermore, we found that training
one IMU sensor per input layer and concatenating them later decreased the variance between several
runs. Figure 4 illustrates the architecture of the NN. The concatenation of the weights and biases for
each layer was performed based on the following equation:

alc = [al−1
0 , · · · , al−1

s ],

θlc = [θl
0, · · · , θl

s],

blc = [bl
0, · · · , bl

s],

(6)

where s is the number of sensors that were modelled by different FNNs. Note that the activation of the
concatenated layer can be computed by modifying Equation (1) as:
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al = σ
(

θlcalc + blc
)

. (7)

Sensor1,1

Sensor1,2

Sensork ,1

Sensork ,d

Input
Feature

extraction
Feature

Concatenation
Gait event
Prediction

Figure 4. This figure illustrates the exponentially delayed fully connected neural network (ED-FNN)
architecture. Initially, the network individually receives each sensor input from the matrix X in
Equation (5). Then, the network separately extracts the features of each sensor and concatenates them
into a single feature vector. Finally, the output layer uses the feature vector to forecast the gait events of
the cycle.

Regarding the framework of the ED-FNN, in order to keep the network architecture constrained
by the computation complexity, we chose six hidden units per layer. We found that this number of
units satisfied the computational limitations and the accuracy of the model. Moreover, with regard
to the sampling of Equation (5), we chose an exponential window of 1.6. We found that this window
yielded the best results for every subject in the dataset. Further optimisation of the hyper-parameters
could be done in future work by means of cross-validation techniques.

3.3.3. Performance Metric for the ED-FNN

To train the ED-FNN model, we used the MSE to minimise the cost between the prediction and
the ground truth. In addition to these metrics, we also calculated the mean absolute error (MAE) and
the coefficient of determination (R2). The absolute error is computed as:

MAE =
∑i |ŷi − yi|

n
, (8)

where ŷi is the predicted percentage of the model and y is the ground truth. Furthermore, we computed
R2 as:

SStot = ∑
i
(ȳi − y)2,

SSres = ∑
i
(ŷi − y)2,

R2 = 1− SSres

SStot
,

(9)
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where ȳi is the mean of the ground truth and SStot and SSres indicate the total sum of squares and the
residual sum of squares, respectively. This metric is generally used to measure the correlation between
the prediction and the ground truth. If there is a correlation of 1, it means that the prediction fully
represents the ground truth.

4. Experiments

This experimental section is divided into three parts. First, Section 4.1 explains the electronic
board that was used to read the IMU signals. Section 4.2 describes the number of subjects and situations
that were performed in the experiments. Finally, Section 4.3 explains how the signals were recorded
and pre-processed.

4.1. Experimental Electronic Board Prototype, Experiment Protocol, Measurement System

In our experiments, an electronic board with one embedded IMU sensor was used. The board
was an Adafruit Feather M0 Bluefruit LE (using ATSAMD21G18 ARM Cortex M0 processor, clocked
at 48 MHz and at 3.3 V logic, 256 KB of FLASH ROM and 32 KB of RAM). Moreover, the charging
battery unit was designed to measure and monitor the voltage of the battery so we could detect when
it needed to be recharged. The board also supports a Bluetooth Low Energy component. This addition
makes it convenient for transferring data to the computer or designing mobile applications so that
amputees can easily monitor or even control their prosthesis. To measure the gait signals, we used
one IMU and two FSRs. The IMU (MPU 6000–Invensense) consists of a gyroscope sensor and
an accelerometer. This provides tri-axis signals of angular velocity and tri-axis acceleration of the lower
shank. Furthermore, the IMU was connected to the microcontroller via the SPI interface for the purpose
of high-speed signal transfer to the commuter (up to 1 MHz). The gyroscope resolution was set at a full
range scale of±2000 degrees/sec with a sensitivity of±16 g LSB/degree/s. Moreover, the resolution of
the accelerometer was set at a full range scale of ±16 g with a sensitivity of 2048 LSB/g (g = 9.8 m/s2).
Regarding the FSRs, we placed two of these sensors under the toe and the heel of the subject to detect
the impact of the foot with the ground. FSR signals were used as references for classifying gait events
and to build a dataset for training the ED-FNN algorithm. After pre-prossessing the IMU signals with
the FSRs, we removed these sensors for the training and prediction of the model. All signals were
recorded synchronously at intervals of 10 ms, then transmitted directly to the computer. This electronic
board was first used for collecting the data and creating a dataset. Additionally, we embedded the gait
percent detection algorithm combined with a device control program for the prosthesis.

4.2. Subjects

The data were extracted from seven healthy subjects with IMUs fixed with a belt placed on the
subjects’ lower shank, and two FSRs were placed under the toe and heel. Participants were five males
and two females. Their age ranged from 25 to 33 years, their height ranged from 160 to 185 cm, and their
weight ranged from 48 to 80 kg. We recorded different scenarios in two environments. In the first
environment, subjects walked on a treadmill with a 0 degree inclination. In the second environment,
subjects walked outside on a 0 and a 15-degree inclination. On the treadmill, each subject was required
to walk four different trials with different speeds. The speeds were divided into 2.2 m/s, 2.6 m/s,
3.2 m/s, and 3.8 m/s respectively. For outside walking, subjects performed normal speed (approx.
3.2 m/s) and fast speed (approx. 4.0 m/s). All trials were recorded for an interval of five minutes.
The number of steps of each subject was categorised as an example in the training data. On average,
each participant walked 275.0 steps in the overall experiment. All IMU signals obtained from each
participant were mixed together to build a larger dataset for training the network model. This resulted
in a dataset of 2313 walking cycles, as shown in Table 2. Merging the dataset allowed the model to
increase the chances of extracting the important features that are relevant in different walking gaits.
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Table 2. The number of samples and cycles in the dataset.

Subjects The Number of Samples The Number of Cycles

Subject 1 19,805 162
Subject 2 47,089 449
Subject 3 46,367 434
Subject 4 21,531 189
Subject 5 19,149 170
Subject 6 15,858 181
Subject 7 25,166 258
Subject 8 15,858 181

Data on the treadmill 78,473 451
Dataset (all samples and cycles) 269,491 2313

4.3. Off-Line Data Analysis

As mentioned earlier, FSRs were used to extract gait cycles and phases by measuring the heel-strike
and the toe impact with the ground. The location of FSRs under the sole can be seen in the right image
of Figure 5. The IMU’s position on the subject’s lower shank can also be seen in the right image.

A

B
2

1

Figure 5. Sensor positions of the IMU and the FSR on the foot. Arrow (A) illustrates the position of the
IMU, and arrow (B) the position of FSRs under the sole.

In Section 2 we described that the methodologies that divide the gait cycle into foutr or more
phases (see Table 1) yield acceptable results to classify the gait percentage. However, for real-world
applications, this phase granularity may not be sufficient for controlling active prosthetics. For this
reason, we want to open an opportunity for future active prosthetics to be able to fully control their
devices by accurately predicting the gait percentage in a densely discretised gait. An example can
be observed in Figure 6, which illustrates a gait cycle that was discretised within a 1% interval in
the real-time estimation of the gait cycle. Lastly, in comparison with [3,34,37,55], our model does not
require complex pre-processing steps, as it can deal with data with a high signal-to-noise ratio.
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Figure 6. The figure shows one gait cycle discretised with a 1% interval. The division was based on
measuring cycle latency, from an initial-contact (IC) at 0% to the next at 100%.

5. Results

The development of a gait percent detection model based on ED-FNN was described above.
The model was trained with the angular velocity and acceleration signals in the sagittal plane of the
foot. These signals were taken from healthy subjects walking at different speeds on flat ground and
on a 15-degree inclined terrain. The performance of our method was evaluated on individual and
group bases. Over several runs, we computed the mean loss and variance to determine the overall
performance of the model. Additionally, we generated a validation set to validate the generalisation
accuracy of our model.

For each subject, we computed the mean absolute error (MAE), mean square error (MSE), and the
coefficient of determination (R2). Table 3 gives an overview of the average error of all subjects and
the joined dataset. These values are shown as training and validation errors. Furthermore, due to
the number of subjects in the experiments, the visualisation of the results was divided into two parts.
The first part illustrates the learning process of the MSE prediction in four different plots: two for one
single subject and two for all-subjects’ signals combined. The second part individually illustrates the
overall MSE performance for every subject by means of a violin plot. The following table provides
a summary of the performance in Figures 7–9.

Table 3. The average error across every subject in the dataset and the error obtained when learning
in the joined dataset. To convert these errors into percentages (except R2), the equations for MSE and
MAE are given in Equations (10) and (11), respectively. Individual errors for each subject are shown in
Figure 9.

Error

t-MSE v-MSE t-MAE v-MAE t-R2 v-R2

Average 0.005± 0.0003 0.005± 0.0004 0.021± 0.001 0.023± 0.002 0.93± 0.003 0.881± 0.015
Joined 0.006± 0.0003 0.011± 0.0017 0.021± 0.001 0.041± 0.002 0.91± 0.004 0.828± 0.022

MSE% =
√

MSE× 100 (10)

MAE% = MAE× 100 (11)

5.1. Results: Part 1

In this section we illustrate the results for one subject and all the subjects’ signals combined.
Figure 7 shows the prediction and learning process of one subject. The Gyroscopey,z signals can be
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observed in the bottom plot in Figure 7a. Additionally, the prediction of the phase signal can be
observed in the top plot. Notice that the prediction almost perfectly follows the trend of the ground
truth. Moreover, we can see that this accuracy is reflected in Figure 7b, which shows the MSE of the
learning. In this plot we can observe that the MSE reached an average loss of 0.003 in the training
set and a value of 0.0028 for the validation set. The reason why the model performed better in the
validation set is because it was slightly under-fitting the data. This could be solved by increasing
the size of the NN. Figure 8a illustrates the gait prediction for all subjects’ signals joined together.
In this plot we can observe similar results to those in Figure 7a, with a difference in the accuracy of the
MSE. Here we can see that the validation set performed less well than in one subject alone. This was
expected, as the signals of each subject slightly vary. Furthermore, we can observe that the prediction
still followed the trend of the ground truth despite the decrease of accuracy. Based on these results,
we can conclude that the network managed to generalise well.
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Figure 7. This figure shows the prediction and the results of the learning process for one subject.
(a) The ground truth and mean prediction of the gait phase discretisation divided into 100 portions
normalised between 0 and 1 (0 equals to 0 percent and 1 equals 100 percent of the gait cycle). The bottom
figure shows the y and z signals of the gyroscope sensor; (b) The mean and variance of the mean square
error (MSE) learning curve. The average of MSE reached a loss of 0.003 in the training set and 0.0662 in
the validation set.
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Figure 8. This figure shows the prediction and learning process results of the joined signal for several
subjects. Similar to Figure 7, (a) shows the comparison between the prediction and the ground truth
and (b) illustrates the learning curve of the MSE. The average MSE reached a loss of 0.006 in the training
set and an average of 0.0115 in the test set.
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5.2. Results: Part 2

This section describes the MSE violin plot for every individual subject in the experiments.
In Figure 9, the colours of the plot show the distributions of the training and the test MSEs. Each violin
in the plot belongs to one subject in the experiments, and the last violin plot belongs to all the subjects’
signals combined. These results show that the ED-FNN accuracy was consistent over every subject in
the dataset. Furthermore, thanks to the concatenation of the layers in our network, we can observe that
the variance between different runs was small. As a result, it increased the robustness and reliability of
our model.
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Figure 9. This figure illustrates the MSE for every subject in the experiments. Each number in the x-axis
from 1 to 7 represents a subject in the experiments. Violin plots 7, 8, and 9 were of two 15 degree incline
walks and to all subjects’ signals combined, respectively. Every violin plot consists of two distributions
(i.e., Train—blue and Test—orange ) and the mean of the MSE. The distributions illustrate the MSE
variance over 100 runs. This figure shows that the ED-FNN managed to accurately predict the gait
cycle over several subjects.

5.3. Reference System

We observed that our algorithm was able to accurately predict 100 percent of the gait cycle. To our
best knowledge, this setting has never been done in previous studies. Furthermore, we showed that
the MSE managed on average to achieve a 0.003 in both validation and training sets. We expect the
real-time performance to be very similar to the off-line performance. It is difficult to compare our
algorithm with other studies, as our setting is not standard. However, Table 4 lays out the performance
of other existing gait phase prediction systems using one IMU.

Table 4. This table compares existing gait event predictions with our method using one IMU. Every
method was applied on lower limbs. FF: foot-flat; HO: heel-off; IC: initial contact; TO: toe-off.

Author Detectable Events
or Phases Performance Metric Detection

Ledoux et al. [42] (2018) IC and TO −1.7%± 0.6 stride (IC),
−1.8%± 0.6 stride (TO) Detection delays On-line

Zakria et al. [12] (2017) IC and TO 3.92 ms ± 1.56 (IC),
−1.81 ms ± 4.03 (TO) Time difference Off-line
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Table 4. Cont.

Author Detectable Events
or Phases Performance Metric Detection

Maqbool et al. [41]
(2016) IC and TO 15.44 ms ± 25.2 (IC),

−28.44 ms ± 16.2 (TO) Time difference On-line

Zhou et al. [9] (2016) IC and TO

95% (TO: upstairs),
99% (IC: upstairs),

99% (TO: downstairs)
98% (IC: downstairs)

Detection
precision On-line

Mannini et al. [17] (2014) IC, FF, HO, TO

62 ms ± 47 (IC),
−3 ms ± 53 (FF),
86 ms ± 61 (HO),
36 ms ± 18 (IC),

Time difference On-line

Muller et al. [39] (2015) Detected four phases 100 ms ± 50 (TO),
50 ms ± 79 (IC) Time difference On-line

Quintero et al. [40]
(2017) 100 gait percent Reported visually Theory Off-line

Our method 100 gait percent 2.1%± 0.1 MAE—No delay Off-line

6. Conclusions and Future Work

Over the recent decades, gait phase detection algorithms have become a challenging topic for
researchers due to their extensive application in assistance devices. One example is improving the
gait phase detection accuracy in prosthetics so that amputees can safely use these devices. To date,
many gait phase detection methods have been developed. However, these methods use only one
sensor, and often detect gait cycles on a low granular domain of the phase space. In order to take full
control of current prosthetics, we proposed a robust walking gait percent detection method that can
detect 100 percent of the gait cycle for walking on flat ground and on a 15-degree inclination. Because
other similar methods have shown that the accuracy of gait phase detection algorithms is suitable for
ambulatory applications, we showed that our method yielded state-of-the-art performance for these
applications. In summary, our study obtained the following outcomes:

• A compact system using one IMU mounted on the lower shank.
• A model that is capable of learning highly discretised percentages of the gait cycles.
• An average mean square error of approximately 0.003 in both training and validation sets for

single subjects.
• A model that generalises toward several subjects with an average MSE of 0.006 in the training set

and 0.01 in the validation set.
• A model that is consistent over several subjects. (i.e., low variance between several runs).
• A model with powerful forecast capabilities that introduces a no-delay prediction method within

10 ms.

It is important to note that our tests were performed on ARM chips, which are known to
underperform when conducting heavy mathematical computations. Because our experiments were
purely offline, computational cost was not a concern. However, our model was built with the purpose of
working on scenarios where computational power is an issue. The ED-FNN requires less samples than
a normal FNN or RNN. Consequently, it takes less computational power for prediction. Additionally,
we also included a forecasting option that allows the network to predict future percentages in the case
of a delay in the system. Furthermore, we would like to point out that we are not learning on the ARM
chips directly. Instead, we learn the models in a normal computer and then make the predictions in the
ARM chip. Lastly, in the near future we plan to leave aside the Beagle Bone Black and use other more
powerful alternatives, such as ODROID-C2 boards or neuromorphic computation.
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For future work we will focus on improving the prediction accuracy and evaluation with different
walking conditions such as stair walking and real-time implementation with the newest prosthesis
version of the AMP-Foot [4]. Additionally, the hyper-parameters of the ED-FNN model will be
improved by means of cross-validation methods.
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