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Abstract: A colorimetric probe for determination of As(III) ions in aqueous solutions on basis of
localized surface plasmon resonance (LSPR) was synthesized. The dithiothreitol molecules with
two end thiols covalently combined with Au Nanorods (AuNRs) with an aspect ratio of 2.9 by Au-S
bond to form dithiothreitol coated Au Nanorods (DTT-AuNRs), acting as colorimetric probe for the
determination of As(III) ions. With the adding of As(III) ions, the AuNRs will be aggregated and
leading the longitudinal SPR absorption band of DTT-AuNRs decrease due to the As(III) ions can
bind with three DTT molecules through an As-S linkage. The potential factors affect the response of
DTT-AuNRs to As(III) ions including the concentration of DTT, pH values of DTT-AuNRs, reaction
time and NaCl concentration were optimized. Under optimum assay conditions, the DTT-AuNRs
colorimetric probe has high sensitivity towards As(III) ions with low detection limit of 38 nM by rules
of 3σ/k and excellent linear range of 0.13–10.01 µM. The developed colorimetric probe shows high
selectivity for As(III) ions sensing and has applied to determine of As(III) in environmental water
samples with quantitative spike-recoveries range from 95.2% to 100.4% with low relative standard
deviation of less than 4.4% (n = 3).
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1. Introduction

Arsenic (As) is an inorganic element with high toxicity and occurrence abundant in the
environment samples including soil, water, food, rain and vegetations which has attracted great
attention worldwide [1,2]. Arsenic has several oxidation states (−3, +3, 0, and +5) in the environment
but in water samples it is mostly found as trivalent arsenite or pentavalent arsenate. A number of
diseases including cancer, skin damage, problems with cardiovascular, nervous system, respiratory
system and blood system are closely related with the continuous intake of As(III) in drinking
water [3–5]. World Health Organization (WHO) and Environmental Protection Agency (EPA) both
set a provisional guideline of 133 nM (10 µg·L−1) for maximum arsenic content in ground water in
1993 [6,7]. Several analytical methods have been established to determine the concentration of arsenic
in various samples. Many analytical methods with expensive instrumental have been applied to
detect arsenic in environmental matrices, such as high performance liquid chromatography combined
with inductively coupled plasma mass spectrometry (HPLC–ICP-MS) [8], hydride generation atomic
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fluorescence spectrometry (HG-AFS) [9], atomic fluorescence spectrometry (AFS) [10], inductively
coupled plasma mass spectrometry (ICP-MS) [11], electrochemical method [12–14] and atomic
absorption spectroscopy (AAS) [15]. Furthermore, various simple, rapid, sensitive and inexpensive
methods was also investigated. Fluorescent probe based on CdS quantum dots and Carbon dots
have been developed to detect the concentration of arsenic in ground water samples with satisfactory
recovery [7,16]. Colorimetric probes based on gold nanoparticles have been also established for
determination of arsenic [17,18]. Among these methods, the colorimetric method attract more attention
due to the unique merits of simplicity, speediness, sensitivity and low cost.

Recently, gold nanorods has attracted increasing attentions due to the distinctive optical properties
of localized surface plasmon resonance (SPR), which possesses two plasmon absorption bands
including transverse surface plasmon resonance (transverse SPR) peak and longitudinal surface
plasmon resonance (longitudinal SPR) peak produced by plasmon oscillation of short axis and long
axis, respectively [19–22]. The transverse SPR band at about 520 nm and longitudinal SPR band was
based on the aspect ratio of AuNRs along with different absorption band from visible to near-infrared
region [23–25]. On the other hand, various colorimetric probe based on AuNRs due to the surrounding
environment will affect the longitudinal SPR peak location and intensity remarkably, and the biological
modification of AuNRs surface can also altered the longitudinal SPR peak location and intensity [26–28].
Due to the unique optical properties of AuNRs, AuNRs have being applied to various fields, such as
biosensing, bioimaging and photodynamic therapy [29–33]. The applications of AuNRs are generally
based on functionalization of AuNRs due to the high concentration of cetyltrimethylammonium
bromide (CTAB) on the surface of nanorods, which possesses biotoxicity and can maintain the
stability of AuNRs [34–36]. Considering the above situation, the molecules of modification on
surface of AuNRs need strong conjugation ability towards the surface of AuNRs, thiol compounds
including cysteine (Cys), dithiothreitol (DTT) and glutathione (GSH) will be ideal candidates due to
the fact that the thiol compounds can be covalently combined with AuNRs by Au-S bond instead of
cetyltrimethylammonium bromide (CTAB) on the surface of nanorods.

In the past decades, numerous of colorimetric sensors on basis of variation of the longitudinal
plasmon absorption of AuNRs for metal ions sensing have been developed. The cysteine (Cys) modified
AuNRs (Cys-AuNRs) was developed for Pb2+ sensing on basis of the fact that Pb2+ ions induce the
aggregation of Cys-AuNRs along with decrease of longitudinal surface plasmon resonance absorption
peak at 700 nm [37]. The dithiothreitol (DTT) functionalized AuNRs was used as colorimetric probe
for determination of Hg2+ on the basis of the fact that Cys can induce the aggregation of AuNRs
and special affinity of Hg2+ to the thiol group for preventing the aggregation of Cys-AuNRs and
leading the recovery of longitudinal SPR absorption peak at 650 nm along with an obvious change in
color from gray to blue-green [38]. The colorimetric sensors for Cu2+ sensing based on Cys-AuNRs
was developed. The strong combination of Cu2+ with –COOH and –NH2 of cysteine leading a
stable complex of Cys–Cu–Cys and the Cys-AuNRs will aggregated in the presence of Cu2+ along
with a rapid and obvious change in color from gray to blue-green [39]. 1-[2-(octylamino) ethyl]-3,
5-diphenylpyrazole (PyL) modified AuNRs (PyL-AuNRs) was developed for determination of Hg2+

based on the longitudinal plasmon absorption peak will result in gradual red-shift range from 650 nm
to 900 nm and broading the longitudinal plasmon absorption peak range up to 900 nm with obvious
change in color from blue-green to gray [40]. A non-aggregation colorimetric sensor based on AuNRs
for determination of Cr (VI) was established based on the blue-shift in the presence of Cr (VI) [41].
A glutathione (GSH) modified AuNRs (GSH-AuNRs) has developed for Pb2+ sensing based on the
aggregation of GSH-AuNRs with the Pb2+ adding and result in obvious red-shift [42]. A meso-2,
3-Dimercaptosuccinic acid (DMSA) functionalized gold nanorod on paper has developed for arsenic
(III and V) detection in ground water on the basis of aggregation of GNR-PEG-DMSA after arsenic
(III and V) addition [43]. The GNR-PEG-DMSA is a colorimetric probe with high sensitivity and
excellent selectivity while the preparation of colorimetric probe is also complicated and difficult. Thus,
the molecules with a thiol group and have strong affinity to target which can affect the longitudinal
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SPR of AuNRs is necessary. To our best knowledge, no colorimetric probe for determination of As(III)
ions based on functionalized AuNRs with high sensitivity, excellent simplicity and rapidity have been
reported so far.

In the present study, we developed a dithiothreitol (DTT) modified AuNRs (DTT-AuNRs)
as colorimetric probe for determination of As(III). The UV-Vis absorption spectra of prepared
CTAB-AuNRs, AuNRs, and DTT-AuNRs were characterized by UV–vis spectrophotometer.
The transmission electron microscopy (TEM) was applied to describe the morphology of AuNRs.
The DTT-AuNRs colorimetric probe for sensing As(III) ions shows low limit detection and excellent
detection range. The selectivity of proposed colorimetric method was investigated by testing various
metal ions including Mn2+, Cu2+, Cd2+, V3+, Co2+, Ca2+, Mg2+, Zn2+, Cr3+, Al3+, Hg2+, Pb2+ and Fe3+

by monitoring changes of the longitudinal SPR band. What’s more, the developed colorimetric probe
(DTT-AuNRs) was used to determine the concentration of As(III) ions in water samples of environment
by quantitative spike recovery method with ideal recoveries. The results of experiment suggested that
the proposed colorimetric probe for determination of As(III) ions has some merits including sensitivity,
selectivity, simplicity, speediness, and accuracy.

2. Materials and Methods

2.1. Chemicals

All chemicals used were at least analytically pure. Cetyltrimethylammonium bromide (CTAB,
99%), chloroauric acid (HAuCl4·3H2O, 99.99%) and ascorbic acid (Vc, 99.99%) were all purchased from
Sigma (St. Louis, MO, USA). Dithiothreitol (DTT) and grade heavy metal standard solutions (Mn2+,
Cu2+, Cd2+, V3+, Co2+, Ca2+, Mg2+, Zn2+, Cr3+, Al3+, Hg2+, Pb2+ and Fe3+) were all purchased from
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). The buffer was 10 mM HAc-NaAc solution
(pH 4.0). Milli-Q purified water was used for all experiments.

2.2. Characterization

Transmission electron microscope (TEM, JEM-2010FEF, JEOL, Tokyo, Japan) was applied to
characterize the morphology of the AuNRs. The absorption spectra of AuNRs were recorded on
Cary50-Bio UV-Vis spectrophotometer (Victoria, Australia) with 1 cm path-length in the wavelength
range of 200–1000 nm. The size distribution of AuNRs and DTT-AuNRs exposed to As(III) ions were
performed on Mastersizer 2000 (Malvern Instruments Ltd., UK).

2.3. Preparation and Modification of AuNRs

Gold nanorods were prepared by seed mediated growth method using the previously published
protocol [44]. Briefly, the seed solution was prepared by mixing of 7.5 mL of 0.1 M CTAB with 250 µL
of 10 mM gold(III) chloride trihydrate and 600 µL of ice-cold 0.01 M sodium borohydride, then the
mixture was stored for 2 h for the next procedure. Subsequently, 4.75 mL of 0.1 M CTAB was added to
200 µL of 10 mM gold(III) chloride trihydrate, then 48 µL of 0.004 M silver nitrate was added into the
previous mixture. After a mild mixing of the mixture, 32 µL of ascorbic acid (0.1 M) was added into
the previous mixed solution. Finally, 12 µL of the prepared seed solution was mixed with the growth
solution in the temperature range of 30–32 ◦C for at least 24 h for completion of nanorod synthesis.
The gold nanorods solution were washed twice by centrifugation at 10,000 rpm/min for 10 min to
remove the excess surfactant cetyltrimethylammonium bromide (CTAB) and the final nanorod pellet
was dispersed in purified water and stored in the refrigerator at 4 ◦C.

The AuNRs were modified with dithiothreitol with 1 sulfhydryl group to form DTT-AuNRs.
Briefly, the 100 µL of 70 µM dithiothreitol was added dropwise into the 5 mL of 1 nmol·L−1 gold
nanorods solution (HAc-NaAc buffer, 10 mM, pH = 4.0) followed by mildly stirring for 2 h at room
temperature without light and the DTT-AuNRs can maintain the stability at 4 ◦C in the dark for one
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week. The concentration of the functionalized AuNRs was calculated to be 1 nM according to the
Lambert-Beer law and the extinction coefficient of AuNRs (3.59 × 109 M−1·cm−1) [45].

2.4. Samples

Three kinds of water samples including tap, lake and river water were collected from local water
resource. Before the analysis, all environmental water samples were purified by centrifugation at
10,000 rpm/min for 10 min and filtration through a 0.45 µm membrane. The spiked samples were then
analyzed immediately without other treatment.

2.5. Detection of As(III) Ions by Colorimetric Probe

First, the absorption spectrum of prepared DTT-AuNRs were measured to ensure the
photostability of prepared AuNRs in HAc-NaAc buffer solution. Then, 1 mL of different concentrations
of As(III) ions were mixed with 500 µL of DTT-AuNRs colorimetric probe with gentle shaking for
10 min and recorded the change of absorption intensity. The selectivity of DTT-AuNRs colorimetric
probe to As(III) ions were carried out by adding other metal ions including Mn2+, Cu2+, Cd2+, V3+,
Co2+, Ca2+, Mg2+, Zn2+, Cr3+, Al3+, Hg2+, Pb2+ and Fe3+ (50 µM) into DTT-AuNRs colorimetric probe
with the same experiment conditions.

3. Results

3.1. Characterization of Functionalized AuNRs

Figure 1 shows the mechanism of sensing As(III) ions by proposed DTT-AuNRs colorimetric
probe. Firstly, the surface of AuNRs have high concentration of CTAB with positive charge to maintain
the stability of AuNRs, thus, a great deal of CTAB surrounding the nanorods surfaces was removed by
centrifugation and leave behind huge area with low concentration CTAB on the long sides of AuNRs
surfaces, then one end thiol of the DTT covalently combined with AuNRs by Au-S bond instead of
the CTAB layer surrounding the nanorods surfaces. The proposed colorimetric method for selective
detection of As(III) ions is on the basis that the As(III) ions can bind with three DTT-AuNRs through
an As-S linkage and induce the aggregation of DTT-AuNRs.
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Figure 1. The schematic mechanism of determination of As(III) by DTT-AuNRs colorimetric probe.

The transmission electron microscopy (TEM) images are applied to characterize the morphology
and UV–vis absorption spectroscopy is applied to confirm the spectral properties. The transmission
electron microscopy (TEM) images of AuNRs were showed in Figure 2a, we can note that the separated
AuNR shows well-shared shape of rod with the aspect ratio of 2.9 ± 0.1. The AuNRs have distinctive
optical characteristics that they have 2 typical absorption peaks, the transverse SPR peak at about
520 nm and the longitudinal SPR peak at about 700 nm (Figure 2c). As showed in Figure 2d, after
removing the CTAB surrounding the nanorods surfaces and modification of DTT, the longitudinal SPR
peak showed slight blue-shift compared to AuNRs and DTT-AuNRs, and the longitudinal SPR peak of
DTT-AuNRs have lower absorption peak than AuNRs, indicating that that dithiothreitol molecules are
mainly conjugated on the long sides of AuNRs surface. On the other hand, the band change only occur
in longitudinal SPR instead of transverse SPR indicating that DTT molecules are majorly combined on
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the long sides of AuNRs surfaces based on strong affinity between Au with -SH. Furthermore, size
distribution of AuNRs and DTT-AuNRs exposed to As(III) further shows that the DTT-AuNRs were
aggregated after adding the As(III) ions into DTT-AuNRs colorimetric probe (Figure 2b). Moreover,
under optimal conditions, the longitudinal SPR peak will decrease gradually with the increase of
concentration of As(III) ions (Figure 3a).
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3.2. Stability Evaluation of AuNRs

In addition, in order to evaluate the stability of the DTT-AuNRs colorimetric probe to ensure the
sensitive and selective sensing performance, some experiment conditions including pH values, reaction
time and concentration of NaCl were carried out by recording the absorption value. As showed
in Figure 4a, NaAc-HAc buffer (10 mM) with pH values range of 3.0–7.0 can keep the stability
of DTT-AuNRs. Moreover, the reaction time produced negligible effect to the absorption value of
DTT-AuNRs within 20 min. In addition, the concentration of NaCl range of 10–2000 µM also show high
stability of DTT-AuNRs. The above results means that the as-prepared the DTT-AuNRs colorimetric
probe have excellent stability in the absence of As(III) ions which can prove that the colorimetric probe
will maintain high stability and uniformity before As(III) ions addition.
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In order to choose an appropriate buffer solution for ensuring the good stability of AuNRs,
the UV–vis spectra of AuNRs based on different pH values in various buffer media was evaluated.
In phosphate buffer solution (PBS), the longitudinal SPR absorbance of AuNRs decreased significantly
at pH > 6.0 (Figure 5a). The same phenomenon can be found in Tris-HCl and Britton-Robinson buffer
at pH > 6.0 and pH > 5.0, respectively (Figure 5b,c). Moreover, the AuNRs also shows different stability
at low pH among PBS, Tris-HCl and Britton-Robinson buffer and no buffer can maintain the same
longitudinal SPR absorbance at low pH condition. The decrease of the longitudinal SPR absorbance
of AuNRs at high pH suggests the serious aggregation of AuNRs and indicates that the AuNRs can
maintain the stability under acidic pH condition due to the existence of CTAB on the surface of AuNRs.
The CTAB is a kind of quaternary ammonium salts with positive charge under acidic conditions which
can provide excellent effect of electrostatic protection to maintain the stability of AuNRs and prevent
aggregation. However, under high pH conditions, the protective effect of CTAB to AuNRs will be
weaken, resulting in instability of AuNRs and decrease of longitudinal SPR absorption peak. Therefore,
the appropriate buffer medium to confirm the stability of the AuNRs solution under low concentration
conditions of CATB is necessary absolutely. We find that the NaAc-HAc buffer (10 mM) with pH values
range of 3.0–7.0 can keep the stability of AuNRs solution with low concentration of CTAB (Figure 5d),
thus, the NaAc-HAc buffer (10 mM) was chosen the final media for further experiments. Moreover, the
concentration of DTT range of 10–80µM produces negligible effect to the absorption value of AuNRs
(Figure 3b), which can ensure that the high stability of AuNRs in different concentration of DTT.
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3.3. Optimization of Experimental Conditions

To further achieve sensitive and selective sensing performance, some optimal experiment conditions
including concentration of DTT, pH values, reaction time and concentration of NaCl were optimized.

3.3.1. Effect of DTT Concentration

The concentration of DTT will affect the sensitivity of sensing As(III) ions, a low concentration of
DTT will show weak response to As(III) ions and high concentration of DTT will induce the aggregation
of AuNRs, thus the different concentration of DTT was optimized. As showed in Figure 6a, the ∆A
of DTT–AuNRs system increases slowly with the increase of DTT concentration within 50 µM and
increases significantly upon the concentration of DTT reaches to 70 µM in the presence of 6.67 µM
As(III) ions. Therefore, the final concentration of DTT was chosen 70 µM to modify AuNRs.
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3.3.2. Effect of pH

The pH values of DTT-AuNRs colorimetric probe plays an important role in sensing As(III).
Therefore, the pH of DTT-AuNRs sensing system was investigated by 10 mM NaAc-HAc buffer range
of 3.0–7.0 due to the NaAc-HAc buffer can maintain the stability of DTT-AuNRs sensing system.
As displayed in Figure 6b, the ∆A of DTT–AuNRs system increases slowly with the increase of pH
values within 4.0 and ∆A of DTT–AuNRs system decreases significantly while the pH values exceed
4.0 in the presence of 6.67 µM As(III) ions. As mentioned above, high pH values can induce the
aggregation of AuNRs and too low pH values may affect the determination of As(III) ions. So, 10 mM
NaAc-HAc buffer of pH = 4.0 was chosen as the final reaction media.

3.3.3. Effect of Reaction Time

The reaction time between As(III) ions and DTT-AuNRs colorimetric probe also affects the
sensitivity of As(III) ions, if the reaction time is too short will result in incomplete reaction between
As(III) ions and DTT-AuNRs and too long time seems to be a waste of time. Thus, the effect of
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incubation time between DTT-AuNRs colorimetric probe and As(III) ions was tested by recording the
change of longitudinal SPR band absorption (∆A) in the presence of 6.67 µM As(III) ions. As showed
in Figure 6c, the ∆A values increase significantly at the beginning and increase slowly range from
1–10 min, while the ∆A values increases with the increase of incubation time and slightly changes
in the presence of 6.67 µM As(III) ions when reaction time is longer than 10 min. In order to achieve
maximum ∆A values between As(III) ions and DTT-AuNRs colorimetric probe, 10 min was chosen the
final reaction time.

3.3.4. Effect of NaCl Concentration

The concentration of NaCl is also plays an important role in in sensing As(III). NaCl can affects the
stability of DTT-AuNRs colorimetric probe due to the fact that high concentration of NaCl can induce
the aggregation of AuNRs. Thus, the effect of concentration of NaCl on the proposed colorimetric
probe was evaluated with range of 10 µM–2 mM (Figure 6d). The ∆A values increases with the
increase of NaCl concentration and obviously changes in the presence of 6.67 µM As(III) ions when
NaCl concentration is lower than 50 µM. The ∆A values of DTT-AuNRs colorimetric probe reaches
maximum at 50 µM NaCl and the ∆A values decreases with the increase of NaCl concentration
while the NaCl concentration is higher than 50 µM. Thus, 50 µM NaCl was chosen the final added
concentration of salt.

3.4. Selectivity

The selectivity of the developed colorimetric probe was evaluated under the same experiment
conditions for As(III) determination and 13 kinds of interfering metal ions were used to selectivity
test. Figure 7 showed that 13 kinds of chosen metal ions exerted negligible effect to DTT-AuNRs
colorimetric probe compared to 6.67 µM As(III) at 50 µM level, suggesting the high specificity of
the proposed DTT-AuNRs colorimetric probe for determination of As(III) ions. Furthermore, the
interference assay was investigated by mixing the As(III) ions (6.67 µM) with 50 µM other 13 kinds
of metal ions and recording the changes of longitudinal SPR absorption peak. No obvious changes
in UV-vis absorption spectrum of DTT-AuNRs colorimetric probe to As(III) ions in the absence and
in the presence of above interferential metal ions except Hg2+ (25 µM) was noted. The response of
DTT-AuNRs colorimetric probe to Hg2+ may due to the special affinity of Hg2+ to the thiols and Hg2+

ions will detaching DTT from DTT-AuNRs and the interference of Hg2+ can be reduced or eliminated
by decreasing the concentration of Hg2+ from 50 µM to 25 µM which is still higher than the maximum
detectable concentration of As(III) ions in developed colorimetric probe mentioned above.
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red bars show the responses of As(III) (6.67 µM) in the presence of other metal ions.



Sensors 2018, 18, 2372 9 of 13

3.5. Determination of As(III)

Under the optimal conditions, the linearity and detection limit of DTT-AuNRs colorimetric probe
were constructed. As displayed in Figure 8, after adding increasing concentration of As(III) ions into
DTT-AuNRs colorimetric probe in NaAc-HAc buffer at pH 4.0 result in an obvious decrease of the
longitudinal SPR absorption intensity of DTT-AuNRs colorimetric probe due to the strong and specific
affinity of As(III) ions to the dithiothreitol and a linear relationship between the ∆A of the DTT-AuNRs
colorimetric probe, and the linear equation ∆A = 0.00487 [As] + 0.02089 with a correlation coefficient
R2 = 0.99878 was observed, the calibration plot exhibits an excellent detection range of 0.13–10.01 µM,
in addition, the limit of detection (LOD) was estimated to be 38 nM by rules of 3 σ/k. The above results
suggest that the proposed DTT-AuNRs colorimetric probe have huge potential for determination of
As(III) ions in actual sample with low concentration level.
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3.6. Analysis of Samples

The analytical figures of highlight for proposed DTT-AuNRs colorimetric probe for As(III) sensing
under optimal assay conditions are summarized in Table 1. The developed colorimetric probe have an
excellent detection range from 0.13 to 10.01 µM, and the limit of detection (LOD) can reaches 38 nM
(3 σ/k) which is lower the maximum permissible maximum concentration levels of 0.133 µM (10 ppb)
developed by World Health Organization (WHO) and Environmental Protection Agency (EPA). On
the other hand, to evaluate the precision of DTT-AuNRs colorimetric probe for the determination
of As(III) ions, the relative standard deviation (RSD) was investigated by operating 11 repeated
measurements of 2 µM As(III) ions and can reaches 2.1%, which indicating high reliability of this
developed colorimetric method.

Table 1. Analytical figures of merit of the proposed AuNRs colorimetric probe for As(III).

Detection limit (3s)/nM 38
Linear range/µM 0.13–10.01
Calibration function (As, conc./µM) ∆A = 0.00487 [As] + 0.02089
Correlation coefficient (γ2) 0.99878
Precision (RSD, n = 11) (%) 2.1 (2 µM)

The developed DTT-AuNRs colorimetric probe was also applied to detect the As(III) in
environmental water samples by quantitative spike recovery method. As showed in Table 2, 3 kinds of
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water samples collected locally were used to determination for As(III) ions. The developed DTT-AuNRs
colorimetric probe produced negligible effect to the longitudinal SPR absorption peak when the spiked
concentration of As(III) is 0 and the quantitative spike recoveries for the detection of As(III) ions by
DTT-AuNRs colorimetric probe ranged from 95.2% to 100.4% with low relative standard deviation
of less than 4.4% (n = 3). To our best knowledge, the proposed DTT-AuNRs colorimetric probe have
excellent potentials for determination of As(III) in real samples.

Table 2. Analytical results for the determination of As(III) in environmental water samples by proposed
colorimetric probe.

Sample Added
Amount (µM)

Concentration
(Mean ± s, n = 3/µM)

Recovery
(Mean ± s, n = 3) (%)

Tap water
0 Not detectable /
3 2.86 ± 0.12 95.2 ± 4.0
5 4.95 ± 0.17 99.0 ± 3.4

Lake water
0 Not detectable /
3 2.95 ± 0.04 98.4 ± 1.4
5 5.02 ± 0.10 100.4 ± 1.9

River water
0 Not detectable /
3 2.93 ± 0.13 95.4 ± 4.3
5 4.88 ± 0.19 97.7 ± 3.9

4. Conclusions

In conclusion, we have successfully developed a simple, rapid, selective and sensitive colorimetric
method for determination of As(III) ions based on AuNRs with an aspect ratio of 2.9. The detection
strategy that As(III) ions can induce the aggregation of AuNRs and leading the decrease of longitudinal
SPR absorption peak due to the strong coordination ability of DTT with As(III) ions. Notably, the
proposed method shows high sensitivity, high selectivity and excellent performance in the detection
of environmental water samples by spectrophotometry and without intricate process and special
instruments. Under the optimal assay conditions, the DTT-AuNRs colorimetric probe for determination
of As(III) ions has lowly limit detection (LOD = 38 nM) and highly selectivity toward As(III) ions,
with an excellent liner detection range from 0.13 to 10.01 µM. What’s more, the proposed DTT-AuNRs
colorimetric probe was applied to determine the amount of As(III) ions in environmental water samples
with good recoveries of 95.2% to 100.4% with low RSD of less than 4.4%. This work has proposed a
new perspective for detection of As(III) ions in real samples and has the good potential for monitoring
the pollution conditions of metal ions.
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