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Abstract: In recent years, the rapid development of microelectronics, wireless communications, and
electro-mechanical systems has occurred. The wireless sensor network (WSN) has been widely used
in many applications. The localization of a mobile node is one of the key technologies for WSN.
Among the factors that would affect the accuracy of mobile localization, non-line of sight (NLOS)
propagation caused by a complicated environment plays a vital role. In this paper, we present a
hierarchical voting based mixed filter (HVMF) localization method for a mobile node in a mixed
line of sight (LOS) and NLOS environment. We firstly propose a condition detection and distance
correction algorithm based on hierarchical voting. Then, a mixed square root unscented Kalman filter
(SRUKF) and a particle filter (PF) are used to filter the larger measurement error. Finally, the filtered
results are subjected to convex optimization and the maximum likelihood estimation to estimate
the position of the mobile node. The proposed method does not require prior information about
the statistical properties of the NLOS errors and operates in a 2D scenario. It can be applied to time
of arrival (TOA), time difference of arrival (TDOA), received signal (RSS), and other measurement
methods. The simulation results show that the HVMF algorithm can efficiently reduce the effect of
NLOS errors and can achieve higher localization accuracy than the Kalman filter and PF. The proposed
algorithm is robust to the NLOS errors.

Keywords: wireless sensor network; non-line of sight; mobile localization; square root unscented
Kalman filter; particle filter; convex optimization

1. Introduction

The wireless sensor network (WSN) is a network that consists of hundreds of tiny sensor nodes.
The sensor nodes are randomly deployed in the monitoring field and they work cooperatively to gather
physical information through wireless links [1]. The measured data is sent to a Fusion Center [2], which
either uses the data locally or delivers the data to clients and servers [3]. WSN have been used in various
applications, such as event detection (fires, floods) [4], monitoring (health care, industrial, agricultural,
environmental) [5,6], energy-efficient routing [7,8], exploration (underground and undersea) [9], and
surveillance [10].

Global positioning system (GPS) is one of the well-known solutions to the outdoor positioning
problem, but the localization accuracy of GPS cannot achieve the requirements of indoor
positioning [11]. The WSN based indoor localization has attracted much attention and become a
research hotspot in recent years [12]. There are two types of nodes in the WSN based localization
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system: beacon and mobile node. The node with known coordinate information is called the beacon
node, while the node without a prior coordinate is defined as the mobile node. The mobile node
measures the distance [13] or angle from the beacon nodes, then it estimates the position of itself
through a generic localization algorithm [14]. The developed localization algorithm should be able to
provide a tradeoff between accuracy, robustness, and complexity. Indoor localization systems based
on WSN technologies [15–19] have been used in a variety of applications, such as monitoring workers
and valuable equipment in buildings, tracking products and transportation vehicles in logistics, and
localizing prisoners in a jail [18].

For the localization methods based on WSN, the four main measurement methods to locate
the mobile node consist of received signal strength (RSS) [20], angle of arrival (AOA) [21], time of
arrival (TOA) [22] or time difference of arrival (TDOA) [23]. If there is direct propagation, also known
as line-of-sight (LOS), between the beacon nodes and the mobile node, we can obtain the accurate
position of the mobile node through the filtering algorithms. However, one of the major challenges in
wireless positioning technology is the non-line of sight (NLOS) problem [24], which occurs when direct
line-of-sight is blocked between the beacon and mobile nodes. In the case of NLOS, the propagation
time of the signal is increased because the radio waves are reflected by the scatter or penetrate the
blocking object [25]. Therefore, the WSN based localization in the complex NLOS environment is still
a challenging problem.

In this paper, we propose a hierarchical voting based mixed filter (HVMF) localization algorithm
to mitigate the NLOS error, which is suitable for a 2D scenario. We firstly use the hierarchical voting
method to obtain the initial position estimation of a mobile node, and the probability of including the
NLOS errors is obtained. Then, a mixed square root unscented Kalman filter (SRUKF) and particle filter
(PF) method based on the probability is proposed to filter the larger measurement error. Finally, the
convex optimization and maximum likelihood estimation method is proposed to estimate the position
of the mobile node. The main contributions of this paper are given as follows:

(1) The proposed condition detection and distance correction method based on hierarchical
voting does not require identification of the propagation state, and it is independent of the physical
measurement ways.

(2) A mixed SRUKF and PF method is proposed to filter the larger measurement error.
The proposed method only needs the parameter of measurement noise in the LOS condition. It does
not require any prior information about the NLOS errors. Therefore, the proposed method can be
widely used in other wireless localization methods.

(3) In this paper, we assume that the measurement model is based on TOA. The proposed
localization method could easily extend to other measurement model such as TDOA and RSS.

(4) We compare the performance of the proposed method when the NLOS error obeys different
distributions. The simulation results show that the proposed method is robust to the NLOS errors.

This paper is organized as follows. In Section 2 we elaborate on the related works. In Section 3,
the problem statement and a brief introduction to SRUKF and PF are introduced. In Section 4 our
proposed method is described in detail. Section 5 shows the simulation results. The conclusions are
given in Section 6. The list of key notations is shown in Table 1.
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Table 1. List of Key Notations.

Notation Explanation Notation Explanation

N the number of beacon nodes Zi the position of beacon nodes

Zt
u the position of mobile nodes di

k
the true distance between the i-th beacon node and

the mobile node at time k

d̂i
k

the measured distance measurement of the i-th
beacon node at time k bNLOS the NLOS error

ni the measurement noise li
k

the probability of the measurement contains NLOS
error

d̃i(SRUKF)
k

the output of Square Root Unscented Kalman Filter d̃i(PF)
k

the output of Particle Filter

d̃i(M)
k

the mixed measurement value si
k

the state vector measured by the i-th beacon node at
time k

Pk the variance of the state vector si
k Fk the state transition matrix

Gk system process noise input matrix ωk process noise

Hk observation matrix vk observation noise

C(m, n) the location of each voting node dimn
the Euclidean distance between i-th beacon node and

the C(m, n)

bi(m, n) the number of votes increased at C(m, n) given by
the measurement of the i-th beacon node V(m, n) voting result matrix

v the number of the possible initial estimated position
of mobile node C∗ the initial results set

ŝk the average state for group si
k si,k|k

the estimated state measured by the i-th beacon node
at time k

Ui,k|k
the estimated error covariance matrix of the state

measured by the i-th beacon node at time k
si,k|k−1 the estimated state of si,k−1|k−1

Ui,k|k−1 the estimated matrix of Ui,k−1|k−1 s(j)
i,k|k−1

the estimated sigma points for group si,k−1|k−1

Nv the dimension of the state vector ω(j) the weight coefficient for i-th sigma points

z(j)
i,k|k−1

the estimated distance from si,k|k−1 ẑi,k|k−1 the average distance for group z(j)
i,k|k−1

Ps,z
i,k|k−1 the cross-covariance matrix of z(j)

i,k|k−1 and s(j)
i,k|k−1 Ti,k the filter gain matrix

Ns the number of the particles we use in PF sn
i,k−1 the estimated state of i-th particle

ωn
i,k−1 the weight coefficient for particles d(j)

k the estimated sigma points for group d̃i(M)
k

P
(

d(j)
k

)
the optimized point for the group d(j)

k d̃i
k the output of convex optimization

2. Related Works

The methods of combining all LOS and NLOS measurements to compute the position of mobile
nodes have been studied in [26–31]. These methods do not require NLOS identification because they
either use adaptive methods to adjust the probabilities of each model, or transform the positioning
problem into sub-problems and eliminate NLOS errors through sub-problems. In [26–29], the interacting
multiple model (IMM) approach and the data fusion algorithm [27,28] are investigated to mitigate the
NLOS error. Based on the IMM approach, the switched model sets based interacting multiple model
(SMS-IMM) algorithm [29] has been proposed. It takes the advantage of the switching between different
model sets for further performance improvement. A selective fuzzy-tuned extended Kalman filtering
based IMM (SFT-EKF-IMM) algorithm has been put forward in [27]. It presents a viable Bayesian
estimation alternative to mobile localization enhancement and relies on a synergistic combination of
valid aggregate measurements, NLOS bias modeling and estimation, and computational intelligence.
In the IMM approach, two state space model sets are proposed. The model set 1 only considers the
dynamics of a mobile station without covering the NLOS bias variation. The model set 2 consists of
the modeling of the MS dynamics and the NLOS bias variation expressed as a random walk process.
The two models apply to the LOS and NLOS environments, respectively. However, most of the above
mentioned methods assume that the distribution or parameters of the NLOS error is known, which
is impractical. In [30,31], an estimator is proposed by transforming the localization problem into a
generalized trust region sub-problem framework. The proposed estimator is strictly decreasing over a
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readily obtained interval, and thus, can be solved exactly by a bisection procedure. The new approach
does not require any assumptions about the statistics of NLOS bias, nor distinguish which link is
NLOS or LOS [31]. In [32], an improved residual weighting (Rwgh) algorithm is proposed, which
uses different subgroups of range measurements to eliminate the NLOS error. The algorithm does not
require any prior information about the statistical properties of NLOS errors.

In [33–39], the NLOS identification algorithms have been proposed to realize mobile localization
in NLOS environments. In [33–35], the NLOS measurements are identified and discarded in location
estimation. In order to identify the propagation conditions (LOS or NLOS), the NP theorem is applied
in [33] to determine a threshold value to the AOA. In [34], an improved method based on the Rwgh
algorithm is proposed to gradually eliminate the NLOS transmission situation, then only the LOS
measurements are used to localization. This method can be used in other measurement methods.
Moreover, Bayes sequential test method [35] can also identify the propagation condition. To mitigate
the impact of the NLOS propagation, the NLOS measurements are corrected by subtracting the mean
of NLOS errors. The proposed method owns relatively higher localization accuracy in compare with
other methods. In [36–38], methods of reconstructing NLOS measurement values have been proposed.
Rather than processing all measurements via a single filter, the proposed algorithm in [36] distributes
the measurements among several local filters. Through the distributed filtering and data association
techniques, abnormal measurements due to NLOS are identified, and negative effects can be prevented.
Besides, the hybrid particle finite impulse response filter (HPFF) was used to process localization
failures due to NLOS. In [37], the modified Kalman filter algorithm is used to reduce the NLOS error
according to its distribution model. And the least square method (LSM) method and the reconstructed
measured value are combined to estimate the location of the target node. In [38], two algorithms
based on machine learning and a third based on hypothesis testing have been proposed to separate the
LOS/NLOS measurements. The key technology of the proposed method is exploiting several statistical
features of the RSS time series, which are shown to be particularly effective. In [39], the data association
method is proposed to mitigate the NLOS measurements. In this method, the binary hypothesis is carried
out to detect the measurements that contain the NLOS errors. For the NLOS propagation condition, a
mean shift algorithm is utilized to evaluate the means of the NLOS measurements and the data association
method is used to alleviate the NLOS errors. It can be proved that the proposed method can provide higher
location accuracy in comparison with some traditional methods. In our previous paper [40], we propose a
RSS based localization algorithm in a NLOS environment. An algorithm for identifying NLOS errors using
loop iteration is firstly proposed. Then we correct the NLOS measurements by subtracting the mean of
NLOS errors. Finally, the Kalman filter is employed to mitigate the process noise. The previous paper [40]
only applies to RSS, while this paper applies to a variety of situations that can convert measurement results
into distance, such as TOA, TDOA, RSS, and other measurement methods. At the same time, the previous
algorithm needs to know the mean of NLOS errors in advance, while this paper does not need the prior
knowledge of NLOS errors.

3. Problem Statement

3.1. Signal Model

In this section, we introduce some technical preparation. We assume that N beacon nodes
(Zi = [xi, yi]

T , i = 1, . . . , N) are randomly deployed in the field. The location of the obstacles is
unknown. The mobile node moves randomly in the field, at time k the position of mobile node is
Zt

u =
[
xu

k , yu
k
]T , k = 1, . . . , tu. This paper considers a 2-D localization scenario.

The beacon node sends a signal; the mobile node receives the signal and converts it into distance
information. In LOS propagation conditions, the estimation of TOA is modeled as follows:

t̂TOA = tTOA + nTOA (1)
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where tTOA is the true TOA between the beacon node and mobile node, nTOA is the measurement
noise modeled as zero mean white Gaussian with variance σ2.

In LOS propagation conditions, the measured distance of the i-th beacon node at time k is modeled
as [41]:

d̂i
k = c·t̂TOA = di

k + ni (2)

where, ni is the measurement noise modeled as zero mean white Gaussian with variance

σ2
i , di

k =
√(

xu
k − xi

)2
+
(
yu

k − yi
)2 is the true distance between the i-th beacon node and the mobile

node at time k.
In the condition of NLOS propagation, due to the presence of obstacles, the signal transmission

to the mobile node does not travel in a straight line. It will result in a reflection or diffusion effect.
Therefore, the measured distance measurement of the i-th beacon node at time k is modeled as [42]:

d̂i
k = di

k + ni + bNLOS (3)

where ni is the measurement noise with zero mean and σ2
i variance, i.e., N

(
0, σ2

i
)
. bNLOS is the NLOS

error and assumes that it is independent with the measurement noise ni. Since the indirect propagation
path is longer than the direct path, the NLOS error is assumed positive. And the NLOS error bNLOS
obeys Gaussian, uniform, or exponential distribution. The distribution and parameters of bNLOS are
different in different indoor environments and measurement methods.

The probability density function of ni can be described by

f (ni) =
1√

2πσ2
i

exp

(
−

n2
i

2σ2
i

)
(4)

The probability density function of bNLOS when it obeys the Gaussian distribution
( bNLOS ∼ N

(
µNLOS, σ2

NLOS
)
) is given by

f (bNLOS) =
1√

2πσ2
NLOS

exp

(
− (bNLOS − µNLOS)

2

2σ2
NLOS

)
(5)

The probability density function of bNLOS when it obeys the Uniform distribution
( bNLOS ∼ U(umin, umax)) is given by

f (bNLOS) =

{
1

umax−umin
, f or umin ≤ bNLOS ≤ umax

0 , else
(6)

The probability density function of bNLOS when it obeys the Exponential distribution
( bNLOS ∼ exp(λ)) is given by

f (bNLOS) =

{
λ−1e−bNLOS/λ , bNLOS ≥ 0

0 , bNLOS < 0
(7)

3.2. A Brief Introduction to SRUKF and PF

UKF (unscented Kalman filter) is a method of approximating nonlinear distribution using
sampling strategy. It is based on UT (Unscented Transformation) transformation and adopts a Kalman
linear filtering framework. The specific sampling form is deterministic sampling. Research results
show that UKF has the same computational complexity as the EKF algorithm, but its performance is
better than that of EKF. It does not require the calculation of the Jacobian matrix and can approximate
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any posterior probability mean and covariance to second-order accuracy for any nonlinearity. It can
avoid the sampling particle decay problem and other advantages.

The SRUKF (square root unscented Kalman filter) is based on the UKF and introduces the matrix
QR decomposition, Cholesky factorization update, and least-squares linear algebra optimization to
reduce the overhead of the algorithm. The essence of these techniques is based on the weighted
statistics linear regression technique, using a priori distribution to construct a set of deterministic
sampling points (Sigma points) to capture the relevant statistical parameters of the system, and
use linear regression to transform the Sigma points to represent the state’s posterior distribution.
This statistical linearization technique takes full account of the statistical properties of Gaussian
random variables.

The PF (Particle filtering) is the most representative non-linear filtering implementation method
in the Bayesian recursive framework. It uses a set of particles with weights (sample points) obtained
through random sampling to fit the target after the state space distribution. The probability density
function is tested to replace the integral operation with the sample mean to obtain the state minimum
variance distribution. When the sample size is large enough, it can approximate any form of probability
density distribution. The advantages of the PF are also reflected in its complexity and precision only in
relation to the number of particles and the PF algorithm itself, independent of the dimension of the
state space. In this way, the PF will not cause performance degradation or increase in complexity due to
the increase in the dimension of the state space. Although the probability distribution in the algorithm
is only an approximation of the real distribution, due to the non-parametric characteristics, it can get
rid of the constraints that the random variables must satisfy the Gaussian distribution when solving
the nonlinear filtering problem. It can express a wider distribution than the Gaussian model. It also has
stronger modeling capabilities for the nonlinear characteristics of variable parameters. Therefore, the
PF can more accurately express the posterior probability distribution based on the observation and
control quantities.

4. Proposed Method

As shown in Figure 1, the input of the method is the measurement distance d̂i
k and the output of

the method is position of mobile node [x̂k, ŷk]
T, the method consists of three main stages:
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Figure 1. The flowchart for the proposed algorithm. Figure 1. The flowchart for the proposed algorithm.
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(1). Condition Detection and Distance Correction based on Hierarchical Voting:

We estimate the initial position of the mobile node by voting based on the obtained data d̂i
k.

Then we calculate the corrected distance
_
d

i

k of each node based on the initial position, and give the
probability li

k of the measurement contains NLOS error.

(2). Mixed Square Root Unscented Kalman and Particle Filter

Because SRUKF is mainly applied to nonlinear Gaussian distributions, PF is mainly applied to
nonlinear non-Gaussian distributions. Therefore, we decided to combine the two algorithms to get

better results. First we should perform SRUKF and PF using on the corrected distance
_
d

i

k, and then
mix the values of the two filters to obtain the mixed measurement value d̃i(M)

k using the probability li
k.

(3). Convex Optimization & Location Estimation

First, we perform convex optimization using the mixed measurement values d̃i(M)
k of each beacon

node. Finally, the maximum likelihood estimation method is used to estimate the position of mobile
node [x̂k, ŷk]

T using the output of the convex optimization.

4.1. General Concept

Let i-th node obtain the measured value at time k as d̂i
k. The state vector at time k is defined by

si
k=

[
d̂i

k,
.
d̂

i

k

]T

(8)

where T denotes the transpose operator, d̂i
k is the velocity of the mobile node. And the variance of the

system is defined as Pk, with Pk=Uk
TUk.

Then the state equation of i-th beacon node under LOS/NLOS environment can be expressed
as follows:

si
k=Fksi

k−1 + Gkωk−1 (9)

where the state transition matrix Fk is defined as Fk =

[
1 ∆t
0 1

]
, ∆t = tk − tk−1 is the sampling

period. The vector ωk is a zero-mean white Gaussian noise process with diagonal covariance matrix

Q =σ2
i I. And the matrix Gk is defined as Gk=

[
∆t2

2 , ∆t
]T

.
The measurement equation of i-th beacon node under LOS/NLOS environment can be expressed

as follows:
zi

k = Hksi
k + vk (10)

where Hk=[1, 0], and vk can be written as:

vk =

{
vk ∼ N

(
0, σ2

i
)

, LOS

vk ∼ N
(
µnlos, σ2

i + σ2
NLOS

)
, NLOS

(11)

4.2. ConditionDetection and Distance Correction Based on Hierarchical Voting

In the condition detection and distance correction algorithm, the voting matrix is firstly established
using the measurements. The initial estimated position is computed using the voting matrix
which owns the largest value. Finally, the corrected distance and probability of the NLOS are
estimated. We assume that the size of the field is M × M, and it is divided into W × W cells by
integrating the estimation accuracy and computational complexity. The cell can be represented as
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C(m, n), for m, n = 1, . . . , W. The resolution of each cell is w (w = M/W). For example, a 100× 100 field,
if W = 10, the mesh resolution w is equal to 100/10 = 10.

At time k, the proposed algorithm includes the following steps:
Step 1: We construct a W ×W voting matrix V. The elements of the voting matrix are obtained in

the following way:

V(m, n) =
N

∑
i=1

bi(m, n), for m, n = 1, . . . , W (12)

where bi(m, n) can be written as:

bi(m, n) =

{
X
(

dimn − d̂i
k

)
,

0,

X
(

dimn − d̂i
k

)
≥ X(0)/2

X
(

dimn − d̂i
k

)
< X(0)/2

(13)

where dimn is the Euclidean distance between i-th beacon node and the C(m, n), d̂i
k is the measured

distance of i-th node at time k. We define that ei
k(m, n) = dimn − d̂i

k, X
(
ei

k(m, n)
)
= N

(
ei

k(m, n); 0, σ2
i
)

and N
(
ei

k(m, n); 0, σ2
i
)

denotes the Gaussian density function of ei
k(m, n) with zero mean and

covariance σ2
i .

Step 2: We can obtain all the elements in the voting matrix V that have the largest value.
They marked as V(m∗, n∗) and meet V(m∗, n∗) ≥ V(m, n), for m, n = 1, . . . , W. The initial estimated
location of mobile node is C∗=

[
C∗1 , . . . , C∗v

]
. C∗ is the initial results set. And we can get the initial

estimated position of the mobile node:

C∗=
v

∑
i

C∗i /v (14)

Step 3: The corrected distance by i-th beacon node at time k is can be expressed as:

_
d

i

k = ‖C
∗−Zi‖ (15)

where Zi=[xi, yi]
T represents the location of i-th node.

Step 4: The probability of the measurement contains NLOS error is

li
k = ‖d̂

i
k −

_
d

i

k‖
/

N

∑
i=1
‖d̂i

k −
_
d

i

k‖ (16)

To illustrate our voting process, we will provide two simple voting examples. Figure 2 shows
a 100 × 100 field with M = 10, w = 10 and σ2

i = 1. The red dot indicates the location of the beacon
node. The number on each grid represents the probability that the mobile node is at the grid when the
distance measured by the beacon node from the mobile node is 2.
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Figure 2. An example of voting process (only one beacon node).

In Figure 2, it can be seen that the smaller the distance deviation is, the greater the probability.
Figure 3 shows a 150 × 150 field with M = 15, w = 10 and σ2

i = 1. The red dot indicates the location of
the beacon node. The green dot indicates the final estimated position. The distance measured by the
beacon nodes from the mobile node is 2, 3, and 2 respectively. The number on each grid represents the
probability that the mobile node is at the grid. It can be seen that the smaller the distance deviation is,
the greater the probability.
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Figure 3. An example of voting process (three beacon node).

Based on the aforementioned descriptions, the condition detection and distance correction based
on hierarchical voting can be summarized as the pseudo code shown in Algorithm 1.



Sensors 2018, 18, 2348 10 of 26

Algorithm 1 Condition detection and distance correction based on hierarchical voting

Input: d̂i
k

Output: li
k,

_
d

i

k
Initialization: V = 0
begin

for i = 1:N do
for m = 1:W do

for n=1:W do
dimn = ‖C(m, n)−Zi‖

bi(m, n) =

{
X
(

dimn − d̂i
k

)
,

0,

X
(

dimn − d̂i
k

)
≥ X(0)/2

X
(

dimn − d̂i
k

)
< X(0)/2

end for
end for

V(m, n) = V(m, n) + bi(m, n)
end for
C∗i = [m∗, n∗] = f ind(V == max(max(V)))

C∗ = ∑v
i C∗i /v

for i=1:N do
_
d

i

k = ‖C∗ − Zi‖

li
k = ‖d̂i

k −
_
d

i

k‖
/

∑N
i=1 ‖d̂i

k −
_
d

i

k‖

end for
end

4.3. Square Root Unscented Kalman Filter

The initial state vector is defined as si
0, i = 1, . . . , M. We can use the following formula to get the

initial error variance P0:
ŝ0 = E

(
si

0

)
(17)

P0 = E
((

si
0 − ŝ0

)(
si

0 − ŝ0

)T
)

(18)

where si
k =

_d i

k,
.
_
d

i

k

T

.

Then we can compute a Cholesky factorization of P0 to get its upper triangular factor Ui,0|0 =

chol(P0), i = 1, . . . , M.
Let si,k−1|k−1 be the estimated state and Ui,k−1|k−1 be the estimated error covariance matrix of the

state, then the prior estimate of the state vector and the corresponding error covariance matrix can be
obtained as:

si,k|k−1 = Fsi,k−1|k−1 (19)

Ui,k|k−1 = qr

{[
Ui,k−1|k−1FT

Q
1
2 GT

]}
(20)

where the function qr{.} returns the upper triangular factor of the QR factorization of its
matrix argument.
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We can generate a set of estimated sigma points using si,k|k−1 and Ui,k|k−1:

s(j)
i,k|k−1 =


si,k|k−1,

si,k|k−1 +
√

ηα

(
UT

i,k|k−1

)
j
,

si,k|k−1 −
√

ηα

(
UT

i,k|k−1

)
j−Nv

,

j = 0
j = 1, . . . , Nv

j = Nv + 1, . . . , 2·Nv

(21)

where Nv is the dimension of the state vector (in this paper, Nv = 2),
(

UT
i,k|k−1

)
j

denotes the i-th column

of matrix UT
i,k|k−1, and ηα is a tuning parameter that controls the spread of the sigma points.

After that, we calculate the weight coefficient ω as follows:

ω(j) =

{
1− Nv

ηα
, j = 0

1
2ηα

, j = 1, . . . , 2·Nv
(22)

In the next step, we convert the vector s(j)
i,k|k−1 obtained into a one-dimensional distance z(j)

i,k|k−1
and use the weight coefficient to obtain the average distance ẑi,k|k−1:

z(j)
i,k|k−1 = Hks(j)

i,k|k−1, j = 0, . . . , 2·N. (23)

ẑi,k|k−1 =
2N

∑
j=0

ω(j)z(j)
i,k|k−1 (24)

We calculate the value of the upper triangular Cholesky factor Ui,z|k as follows

e(j)
i,z =

√
ω(j)

(
z(j)

i,k|k−1 − ẑi,k|k−1

)
, j = 0, . . . , 2·N (25)

Ui,z|k = qr
{[

e(0)i,z , e(1)i,z , . . . , e(2N)
i,z , R

1
2

]T
}

(26)

The cross-covariance matrix Ps,z
i,k|k−1 is described as

Ps,z
i,k|k−1 =

2N

∑
j=0

ω(j)
(

s(j)
i,k|k−1 − si,k|k−1

)(
z(j)

i,k|k−1 − ẑi,k|k−1

)T
(27)

After completing the above steps, we calculate the filter gain matrix Ti,k as follows:

Ti,k = Ps,z
i,k|k−1U−1

i,z|k (28)

The posteriori state estimate si,k|k and the Cholesky factor of the error covariance matrix Ui,k|k can
be updated as

si,k|k = si,k|k−1 + Ti,kU−T
i,z|k

(
_
d

i

k − ẑi,k|k−1

)
(29)

Ui,k|k = cholupdate
{

Ui,k|k−1, Ti,k,−1
}

(30)

The filtered distance of SRUKF can be expressed as:

d̃i(SRUKF)
k = Hksi,k|k (31)
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4.4. Particle Filter (PF)

We divide the PF step into four phases: initial phase, prediction phase, re-sampling phase, and
output phase.

Step 1 (Initial Phase):

We firstly initialize s0, and randomly generate the particle swarm
{

sn
0
}Ns

n=1 (where Ns means
the number of the particles, in this article Ns = 10), and set the weight of all particles in the prior
probability

{
ωn

0
}Ns

n=1 is 1/Ns.

Step 2 (Prediction Phase):

At the beginning of the filtering at each time k, the i-th particle and its weight at the previous time
can be represented as sn

i,k−1 and ωn
i,k−1. The prediction of the sn

i,k and the ωn
i,k can be described by:

sn
i,k = sn

i,k−1 + N
(

0, σ2
i

)
, n = 1, 2, . . . , Ns (32)

zn
i,k = Hksn

i,k (33)

ωn
i,k =

√2× π

σi
× e−

(zn
i,k−

_
d

i
k)

2
×σ2

i
2

, n = 1, . . . , Ns (34)

After that we need to normalize the importance weights:

ωn
i,k =

ωn
i,k

Ns
∑

_
n=1

ω
_
n
i,k

(35)

Step 3 (Re-sampling Phase):

Generate two random number Nrandom and nrandom:

Nrandom = 2×max
(

ωn
i,k

)
× rand(0, 1) (36)

nrandom = rand(0, 1) (37)

where the function rand(0, 1) returns a pseudo random scalar drawn from the standard uniform
distribution on the open interval (0,1).

Then do the following steps while Nrandom > ω
nrandom
i,k :

Nrandom = Nrandom −ω
nrandom
i,k (38)

nrandom = nrandom + 1 (39)

In the while loop if nrandom > Ns, then nrandom = 1.
The estimated state vector for i-th particle is:

sn
i,k = snrandom

i,k (40)

Step 4 (Output Phase):

The state estimate can be computed as:

ŝi,k =
Ns

∑
n=1

ωn
i,ksn

i,k (41)
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The filtered distance of PF can be expressed as:

d̃i(PF)
k = Hkŝi,k|k (42)

4.5. Mixed Square Root Unscented Kalman and Particle Filter

In this subsection, we combine the results of SRUKF and PF. It can be expressed as:

d̃i(M)
k = li

k·d̃
i(PF)
k +

(
1− li

k

)
d̃i(SRUKF)

k (43)

where li
k is the probability that a measurement contains NLOS error according to Equation (16).

4.6. Convex Optimization & Location Estimation

Because the range of the NLOS error is too large, we optimize the result by using convex
optimization. First, we generate a set of estimated sigma points by using the mixed measurement
values d̃i(M)

k .

d(j)
k =


d̃i(M)

k ,

d̃i(M)
k +

√
ηασi,

d̃i(M)
k −√ηασi,

j = 0
j = 1
j = 2

(44)

Perform convex optimization for the estimated sigma points, map the points that violate the
constraints into the feasible region. The optimization scheme is as follows:

min
u

{u·u}

s.t. ‖
(

d(j)
k − u

)
− d̃i(M)

k ‖ ≤ σi, i ∈ Nk
(45)

P
(

d(j)
k

)
= d(j)

k − u (46)

where σn means the standard deviation of the measurement error, s.t. is the abbreviation of subject to,
indicating that the latter formula is a constraint for convex optimization.

Using the ω(j) and the optimized point P
(

d(j)
k

)
, the final result is obtained by the following

transformation:

d̃i
k =

2

∑
j=0

ω(j)P
(

d(j)
k

)
(47)

After that, we introduce the maximum likelihood localization method. We assume that the
position of the beacon node is ((x1, y1), . . . , (xN , yN)). At time k, the position of the mobile node
(Zt

u =
[
xu

k , yu
k
]T , k = 1, . . . , tu) d̃i

k is the output of convex optimization. These values comply with the
following formula: 

(
x1 − xu

k
)2

+
(
y1 − yu

k
)2

=
(

d̃1
k

)2

...(
xN − xu

k
)2

+
(
yN − yu

k
)2

=
(

d̃N
k

)2

(48)

It can be simplified as:
2xk(x1 − x2) + 2yk(y1 − y2) = d̃2

k − d̃1
k −

(
x2

2 + y2
2
)
+
(
x2

1 + y2
1
)

...
2xk(x1 − xN) + 2yk(y1 − yN) = d̃N

k − d̃1
k −

(
x2

N + y2
N
)
+
(
x2

1 + y2
1
) (49)
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The above equation is represented by the linear equation AX = B, where A and B are given by:

A = 2


(x1 − x2) (y1 − y2)

(x1 − x3) (y1 − y3)
...

...
(x1 − xN) (y1 − yN)

B =


d̃2

k − d̃1
k −

(
x2

2 + y2
2
)
+
(
x2

1 + y2
1
)

d̃3
k − d̃1

k −
(
x2

3 + y2
3
)
+
(
x2

1 + y2
1
)

...
d̃N

k − d̃1
k −

(
x2

N + y2
N
)
+
(
x2

1 + y2
1
)


The final estimated position of the mobile node at time k is as follows:

[x̂k, ŷk]
T =

(
ATA

)−1
ATB (50)

5. Simulation and Experiment Results

5.1. Simulation Results

In this section, we present the simulation results for the proposed HVMF algorithm. As shown in
Figure 4, we randomly deploy 8 beacon nodes in the 100 m × 100 m area, and one mobile node (MN)
is moving in the area. We assume that the mobile node has the velocity of 1 m/s. The communication
range of the sensor node is 150 m. The default parameter values in the simulation are shown in Table 2.
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Table 2. The default parameter values.

Parameters Symbol Default Values

The number of beacon nodes N 8
The standard deviation of measurement noise σi 1

The NLOS error N
(
µNLOS, σ2

NLOS
)

N(2,32)

We compare the proposed method with no filter (NF) method, the Kalman filter (KF) method,
and the Particle Filter (PF) algorithm. In each simulation case, 1000 Monte Carlo runs are performed
with the same parameters. The performance of the proposed algorithm is measured by the Root Mean
Square Error (RMSE):

RMSE =

√√√√ 1
K·tn

tn

∑
i=1

K

∑
k=1

(
(x(k)− x̂i(k))

2 + (y(k)− ŷi(k))
2
)

(51)
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where tn = 1000, K = 91, [x(k), y(k)] is the true position of the mobile node at time k, and [x̂i(k), ŷi(k)]
is the estimated position for i-th trial at time k.

Figure 5 shows the sight state with respect to all the beacon nodes in the sample points. We can
see that the sight states vary with time.
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In the following section, we evaluation the performance of our proposed method under different
environment; i.e., the NLOS errors obey different distribution. We also investigate the effect of various
parameters on the proposed method.

5.1.1. Large Measurement Noise

In this subsection, we consider the case of a narrow-band ranging application where the noise
variance is relatively high, i.e., σi = 3 is considered.

When the number of beacon nodes is eight, the localization errors of four algorithms at each
sample points are shown in Figure 6. As can be seen, the proposed method has better performance
than the other methods in most sampling points.

The cumulative distribution function (CDF) of the localization error is depicted in Figure 7. It can
be observed that the 90-percentile average localization error of the HVMF algorithm is less than 4.0 m
and the CDF tends to one at the localization error of less than 6.4 m. In contract, the 90-percentile
average localization error of the KF, NF, and PF are achieved at 5.4 m, 5.6 m, and 4.4 m, respectively.
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5.1.2. Small Measurement Noise

For further verify our algorithm, we consider a case where the noise variance is relatively small;
i.e., σi = 1.

The number of nodes is eight, the measurement errors of the four algorithms at each time are
shown in Figure 8. As can be seen, the proposed method has better performance than the other methods
in most sampling points. Figure 9 shows the cumulative distribution function of the localization error at
each time. When the localization error is small, several algorithms have almost the same performance,
but when the localization error is large, the HVMF algorithm has obvious advantages over other
algorithms. The proposed method has more points within the average error 3 than NF, KF, and PF,
about 20.9%, 13.04%, and 8.33%, respectively.
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5.1.3. The NLOS Errors Obey Gaussian Distribution

In this subsection, we assume that the NLOS error obey the Gaussian distribution; i.e.,
bNLOS ∼ N

(
µNLOS, σ2

NLOS
)
.

The relationship between the RMSE and the number of beacon nodes is shown in Figure 10.
Evidently, the proposed method also has the best positioning accuracy. The proposed method has
higher localization accuracy than NF, KF, and PF, about 43.04%, 33.73% and 18.31%, respectively.
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Figure 11 shows the effect of the mean of NLOS errors on the RMSE. We can see that the RMSE
of all methods increases with the mean of NLOS errors increase. The proposed method has a higher
localization accuracy than NF, KF, and PF, about 29.69%, 26.01%, and 8.02%, respectively.
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Figure 12 shows the effect of the standard deviation of NLOS errors on the RMSE. We can see that
the RMSE of all methods increases with the standard deviation of NLOS errors increase. At the same
time, the HVMF algorithm has better performance when the deviation is large. When the standard
deviation of NLOS errors is 3, the proposed method has higher localization accuracy than NF, KF, and
PF, about 30.72%, 23.82%, and 5.11%, respectively. When the standard deviation of NLOS errors is 9,
the proposed method has higher localization accuracy than NF, KF, and PF, about 39.14%, 29.05%, and
13.43%, respectively.
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5.1.4. The NLOS Errors Obey Uniform Distribution

In this subsection, we assume that the NLOS errors obey uniform distribution. The parameters of
uniform distribution are 2 and Umax, namely, bNLOS ∼ U(2, Umax).
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Figure 13 shows the relationship between the RMSE and the number of beacon nodes. In Figure 13,
the proposed method has higher localization accuracy than NF, KF and PF, about 33.15%, 31.67% and
10.59%, respectively.

When the number of nodes is eight, the localization error of each algorithm at each time is shown
in Figure 14. As can be seen, the proposed method has better performance than the other methods in
most sampling points.
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The cumulative distribution function of the localization error is shown in Figure 15. It indicates
that the 90-percentile localization error of the HVMF algorithm is less than 3.5 m and the CDF tends to
one at the localization error of less than 4.7 m. However, the 90-percentile average localization error of
the KF, NF, and PF are already arrived at 4.3 m, 4.4 m, and 3.7 m, respectively.

Figure 16 shows the effect of Umax on the RMSE when the NLOS error obeys uniform distribution,
i.e., bNLOS ∼ U(2, Umax). We can see that the RMSE of all methods increases with the increase of Umax.
The proposed method has the highest localization accuracy than KF, PF and NF, and the advantage of
the proposed method becomes more and more obvious.
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5.1.5. The NLOS Errors Obey Exponential Distribution

In this subsection, we evaluate the performance of the four methods when the NLOS errors obey
exponential distribution, i.e., bNLOS ∼ E(u).

The relationship between the RMSE and the number of beacon nodes can be seen in Figure 17.
The proposed method has higher localization accuracy than NF, KF and PF, about 36.45%, 30.20%, and
8.25%, respectively.

Figure 18 is the cumulative distribution function of the localization error at each sample points.
We can see that the advantage of the proposed method becomes more and more obvious. The proposed
method has more points within the average error 3 m than NF, KF, and PF, about 24.73%, 19.57%, and
12.47%, respectively.



Sensors 2018, 18, 2348 21 of 26Sensors 2018, 18, x FOR PEER REVIEW  21 of 26 

 

 

Figure 17. The number of beacon nodes versus RMSE. 

 

Figure 18. The localization error versus CDF. 

Figure 19 shows the performance of the proposed method when the NLOS error obeys the 

Exponential distribution. It can be observed that the RMSE increases with the parameter u  

increases. The proposed HVMF method has the highest localization accuracy, but the NF method 

owns the worst performance. At the same time, the HVMF and PF algorithm have better performance 

when the deviation is large. When the standard deviation of NLOS errors is three, the HVMF method 

has higher localization accuracy than NF, KF, and PF, about 34.85%, 30.95% and 11.20%, respectively. 

When the standard deviation of NLOS errors is 8, the HVMF method has higher localization accuracy 

than NF, KF, and PF, about 45.35%, 42.17%, and 4.85%, respectively. 

Figure 17. The number of beacon nodes versus RMSE.

Sensors 2018, 18, x FOR PEER REVIEW  21 of 26 

 

 

Figure 17. The number of beacon nodes versus RMSE. 

 

Figure 18. The localization error versus CDF. 

Figure 19 shows the performance of the proposed method when the NLOS error obeys the 

Exponential distribution. It can be observed that the RMSE increases with the parameter u  

increases. The proposed HVMF method has the highest localization accuracy, but the NF method 

owns the worst performance. At the same time, the HVMF and PF algorithm have better performance 

when the deviation is large. When the standard deviation of NLOS errors is three, the HVMF method 

has higher localization accuracy than NF, KF, and PF, about 34.85%, 30.95% and 11.20%, respectively. 

When the standard deviation of NLOS errors is 8, the HVMF method has higher localization accuracy 

than NF, KF, and PF, about 45.35%, 42.17%, and 4.85%, respectively. 

Figure 18. The localization error versus CDF.

Figure 19 shows the performance of the proposed method when the NLOS error obeys the
Exponential distribution. It can be observed that the RMSE increases with the parameter u increases.
The proposed HVMF method has the highest localization accuracy, but the NF method owns the
worst performance. At the same time, the HVMF and PF algorithm have better performance when the
deviation is large. When the standard deviation of NLOS errors is three, the HVMF method has higher
localization accuracy than NF, KF, and PF, about 34.85%, 30.95% and 11.20%, respectively. When the
standard deviation of NLOS errors is 8, the HVMF method has higher localization accuracy than NF,
KF, and PF, about 45.35%, 42.17%, and 4.85%, respectively.
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5.2. Experiment Results

5.2.1. Localization Results

In order to test the localization performance of the proposed algorithm in a practical environment,
we perform a realistic experiment in the building. The experimental equipment used for the experiment
is a chirp spread spectrum (CSS) localization system, mainly consisting of CSS nodes. As shown in
Figure 20, we deploy 8 beacon nodes in a 5 m × 7 m room. The beacon nodes and unknown nodes and
are installed up to 1.7 m above the ground. MN moves around a rectangle table at a constant velocity.
The distance measurement frequency of the CSS nodes is set to 20 Hz, and 20 distance measurements
are carried out at each sampling site in order to weaken the negative impacts imposed to the localization
accuracy. The average measurements at each sampling site are used for the localization calculation.
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The localization error of each algorithm at each sampling site is as shown in Figure 21. The average
localization errors of the NF, KF, PF, and HVMF algorithms are 2.3138 m, 2.2119 m, 1.9617 m, and
1.5684 m, respectively. Therefore the proposed method has better performance than the other methods.
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The cumulative distribution function of the localization error in the field experiment is shown in
Figure 22. It shows that the localization error of the KF, NF, and PF is 5.2 m, 6.8 m, and 4.1 m when the
cumulative distribution function is close to 1, while the localization error of the HVMF algorithm is
3.3 m. The 90-percentile of the localization error of the KF, NF, PF, and HVMF algorithms are less than
4.7 m, 4.8 m, 3.8 m, and 3.0 m. It can be seen the HVMF algorithm has the highest localization accuracy.
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5.2.2. Computation Time

Table 3 shows the running times of the KF, PF, and HVMF. The three methods are coded using
Matlab2014 and tested on a Windows 7 Professional workstation with Intel(R) Core(TM) i5-5200U CPU @
2.20 GHz and 4.00 GB RAM. Compared with the traditional method, the proposed method has the highest
running time, but it is still lower than the total elapsed time for one sampling (0.05 s-the measurement
frequency of CSS nodes is set to 20 Hz), meaning that with the computer used here, the algorithm can be
applied for online tracking. Therefore, our algorithm remains competitive in terms of computation time.

Table 3. Running times of each method.

Method Used Running Times/s

KF 0.0015
PF 0.0045

HVMF 0.0324

6. Conclusions

This paper proposes a HVMF algorithm based on hierarchical voting for the aim of the localization
of mobile nodes in mixed LOS and NLOS environments. The hierarchical voting algorithm proposed
by the propagation condition detection and distance correction method does not need to identify the
propagation state and has a fast operation speed, and is applicable to TOA, TDOA, RSS, and other
measurement methods. At the same time, we use the SRUKF and PF methods to filter the Gaussian noise
and non-Gaussian noise, respectively, and use a hierarchical voting algorithm to combine the two sets of
data. In addition, we perform convex optimization for the estimated sigma points, which are generated
from the mixed measurement values. The points that violated the constraints are projected on the feasible
region, and a new set of prediction points are obtained. Moreover, the location estimation method is utilized
to get the final position of the mobile node. The simulation results show that the proposed algorithm can
efficiently reduce the effect of NLOS errors whether in large measurement noise or small measurement
noise. The proposed method could achieve higher localization accuracy when NLOS errors obey Gaussian
distribution, uniform distribution, or exponential distribution. The performance of the proposed method is
better than no filter method, Kalman filter and PF. And it is robust to the NLOS errors.

For future work, more experiments will be conducted to extend the proposed method to
cooperative tracking of multiple mobile nodes. The computational complexity could also be reduced
through the optimization of the method. At the same time, we will modify the Hierarchical Voting
algorithm and apply it to RSS-based positioning to improve the effectiveness of RSS positioning.

Author Contributions: Y.W. and L.C. conceived and designed the experiments; J.H. and C.L. performed the
experiments; Y.W. and J.H. analyzed the data; L.C. and X.S. contributed analysis tools; L.C. and J.H. wrote the paper.

Funding: This work was supported by the National Natural Science Foundation of China under Grant
No. 61473066 and No. 61403068; Natural Science Foundation of Hebei Province under Grant No. F2015501097 and
No. F2016501080; Fundamental Research Funds for the Central Universities under Grant No. N172304024 and
No. 152302001.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of
this paper.

References

1. Niu, R.; Varshney, P.K. Distributed detection and fusion in a large wireless sensor network of random size.
EURASIP J. Wirel. Commun. Netw. 2005, 4, 462–472. [CrossRef]

2. Ciuonzo, D.; Buonanno, A.; D’Urso, M.; Palmieri, F.A.N. Distributed classification of multiple moving
targets with binary wireless sensor networks. In Proceedings of the IEEE 14th International Conference on
Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8.

http://dx.doi.org/10.1155/WCN.2005.462


Sensors 2018, 18, 2348 25 of 26

3. Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent
developments and potential synergies. J. Supercomput. 2014, 68, 1–48. [CrossRef]

4. Singh, Y.; Saha, S.; Chugh, U.; Gupta, C. Distributed Event Detection in Wireless Sensor Networks for
Forest Fires. In Proceedings of the 15th International Conference on Computer Modelling and Simulation,
Cambridge, UK, 10–12 April 2013; pp. 634–639.

5. Zhong, R.B.; Chen, G.H. Research on major hazard installations monitoring system based on WSN.
In Proceedings of the IEEE International Conference on Future Computer and Communication, Wuhan,
China, 21–24 May 2010; pp. 741–745.

6. Dai, Z.C.; Wang, S.; Yan, Z. BSHM-WSN: A wireless sensor network for bridge structure health monitoring.
In Proceedings of the IEEE International Conference on Modelling, Identification & Control, Wuhan, China,
24–26 June 2012; pp. 708–712.

7. Blazevic, L.; Boudec, J.Y.; Giordano, S. A location-based routing method for mobile ad hoc networks.
IEEE Trans. Mobile Comput. 2005, 4, 97–110. [CrossRef]

8. Rossi, P.S.; Ciuonzo, D.; Kansanen, K.; Ekman, T. On energy detection for MIMO decision fusion in wireless
sensor networks over NLOS fading. IEEE Commun. Lett. 2015, 19, 303–306. [CrossRef]

9. Minhas, U.I.; Naqvi, I.H.; Qaisar, S. A WSN for Monitoring and Event Reporting in Underground Mine
Environments. IEEE Syst. J. 2018, 12, 485–496. [CrossRef]

10. He, T. Energy-efficient surveillance system using wireless sensor networks. In Proceedings of the
International Conference on Mobile Systems, Applications, and Services, Boston, MA, USA, 6–9 June
2004; pp. 270–283.

11. Tomic, S.; Beko, M.; Dinis, R.; Montezuma, P. Distributed algorithm for target localization in wireless sensor
networks using RSS and AoA measurements. Pervasive Mobile Comput. 2017, 37, 63–77. [CrossRef]

12. Ahmadi, H.; Viani, F.; Bouallegue, R. An accurate prediction method for moving target localization and
tracking in wireless sensor networks. Ad Hoc Netw. 2018, 70, 14–22. [CrossRef]

13. Ciuonzo, D.; Rossi, P.S. Distributed detection of a non-cooperative target via generalized locally-optimum
approaches. Inf. Fusion 2017, 36, 261–274. [CrossRef]

14. Cheng, L.; Wang, Y.; Wu, H.; Hu, N.; Wu, C.D. Non-parametric location estimation in rough wireless
environments for wireless sensor network. Sens. Actuators A Phys. 2015, 244, 57–64. [CrossRef]

15. Yang, P.; Wu, W. Efficient particle filter localization algorithm in dense passive RFID tag environment.
IEEE Trans. Ind. Electron. 2014, 61, 5641–5651. [CrossRef]

16. Wang, J.; Gao, Q.; Yu, Y.; Cheng, P.; Wu, L.; Wang, H. Robust device-free wireless localization based on
differential RSS measurements. IEEE Trans. Ind. Electron. 2013, 60, 5943–5952. [CrossRef]

17. Wang, J.; Gao, Q.; Yu, Y.; Wang, H.; Jin, M. Toward robust indoor localization based on Bayesian filter using
chirp-spread-spectrum ranging. IEEE Trans. Ind. Electron. 2012, 59, 1622–1629. [CrossRef]

18. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning technique and systems.
IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2007, 37, 1067–1080. [CrossRef]

19. Pomarico-Franquiz, J.; Shmaliy, Y.S. Accurate self-localization in RFID tag information grids using FIR
filtering. IEEE Trans. Ind. Inform. 2014, 10, 1317–1326. [CrossRef]

20. Amundson, I.; Sallai, J.; Koutsoukos, X.; Ledeczi, A. Mobile Sensor Waypoint Navigation via RF-Based Angle
of Arrival Localization. Int. J. Distrib. Sens. Netw. 2012, 8, 1–15. [CrossRef]

21. Lee, Y.S.; Park, J.W.; Baroll, L. A localization algorithm based on AOA for ad-hoc sensor networks.
Mobile Inf. Syst. 2012, 8, 61–72. [CrossRef]

22. Guvenc, I.; Chong, C.C. A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques.
IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [CrossRef]

23. Cheng, L.; Wu, C.D.; Zhang, Y.Z. Indoor Robot Localization Based on Wireless Sensor Networks. IEEE Trans.
Consum. Electron. 2011, 57, 1099–1104. [CrossRef]

24. Cheng, L.; Wu, H.; Wu, C.D.; Zhang, Y.Z. Indoor Mobile Localization in Wireless Sensor Network under
Unknown NLOS Errors. Int. J. Distrib. Sens. Netw. 2013, 2013, 59–64. [CrossRef]

25. Yousefi, S.; Chang, X.W.; Champagne, B. Mobile Localization in Non-Line-of-Sight Using Constrained
Square-Root Unscented Kalman Filter. IEEE Trans. Veh. Technol. 2015, 64, 2071–2083. [CrossRef]

26. Ho, T.J.; Chen, B.Y. Enhanced Urban Mobile Localization via Partitioned NLOS Bias Model Approach.
In Proceedings of the IEEE International Conference on Wireless Communications & Signal Processing,
Nanjing, China, 15–17 October 2015; pp. 1–5.

http://dx.doi.org/10.1007/s11227-013-1021-9
http://dx.doi.org/10.1109/TMC.2005.16
http://dx.doi.org/10.1109/LCOMM.2014.2379714
http://dx.doi.org/10.1109/JSYST.2016.2644109
http://dx.doi.org/10.1016/j.pmcj.2016.09.013
http://dx.doi.org/10.1016/j.adhoc.2017.11.008
http://dx.doi.org/10.1016/j.inffus.2016.12.006
http://dx.doi.org/10.1016/j.sna.2015.01.018
http://dx.doi.org/10.1109/TIE.2014.2301737
http://dx.doi.org/10.1109/TIE.2012.2228145
http://dx.doi.org/10.1109/TIE.2011.2165462
http://dx.doi.org/10.1109/TSMCC.2007.905750
http://dx.doi.org/10.1109/TII.2014.2310952
http://dx.doi.org/10.1155/2012/842107
http://dx.doi.org/10.1155/2012/986327
http://dx.doi.org/10.1109/SURV.2009.090308
http://dx.doi.org/10.1109/TCE.2011.6018861
http://dx.doi.org/10.1155/2013/208904
http://dx.doi.org/10.1109/TVT.2014.2339734


Sensors 2018, 18, 2348 26 of 26

27. Ho, T.J. Robust Urban Wireless Localization: Synergy between Data Fusion, Modeling and Intelligent
Estimation. IEEE Trans. Wirel. Commun. 2015, 14, 685–697. [CrossRef]

28. Yang, C.Y.; Chen, B.S.; Liao, F.K. Mobile Location Estimation Using Fuzzy-Based IMM and Data Fusion.
IEEE Trans. Mobile Comput. 2010, 9, 1424–1436. [CrossRef]

29. Ho, T.J. Switched model sets-based estimators for mobile localization in rough NLOS conditions.
In Proceedings of the IEEE International Conference on Wireless Communications & Signal Processing,
Hangzhou, China, 24–26 October 2013; pp. 1–6.

30. Tomic, S.; Beko, M. A bisection-based approach for exact target localization in NLOS environments.
Signal Process. 2018, 143, 328–335. [CrossRef]

31. Tomic, S.; Beko, M.; Dinis, R.; Montezuma, P. A Robust Bisection-Based Estimator for TOA-Based Target
Localization in NLOS Environments. IEEE Commun. Lett. 2017, 21, 2488–2491. [CrossRef]

32. Yu, X.S.; Hu, N.; Xu, M.; Wu, M.C. A Novel NLOS Mobile Node Localization Method in Wireless Sensor
Network. In Proceedings of the 2015 International Conference on Communications, Signal Processing, and
Systems, Chengdu, China, 23–24 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 541–549.

33. Aghaie, N.; Tinati, M.A. Localization of WSN Nodes Based on NLOS Identification Using AOAs Statistical
Information. In Proceedings of the IEEE 24th Iranian Conference on Electrical Engineering, Shiraz, Iran,
10–12 May 2016; pp. 496–501.

34. Cheng, L.; Qi, Q.Y.; Wu, X.H. A NLOS Selection based Localization Method for Wireless Sensor Network.
In Proceedings of the 7th IEEE International Conference on Electronics Information and Emergency
Communication, Macau, China, 21–23 July 2017; pp. 340–343.

35. Wang, Y.; Cheng, L.; Hu, N. Bayes sequential test based NLOS localization method for wireless sensor
network. In Proceedings of the IEEE 27th Chinese Control and Decision Conference, Qingdao, China,
23–25 May 2015; pp. 5230–5234.

36. Pak, J.M.; Ahn, C.K.; Shi, P. Distributed Hybrid Particle/FIR Filtering for Mitigating NLOS Effects in
TOA-Based Localization Using Wireless Sensor Networks. IEEE Trans. Ind. Electron. 2017, 64, 5182–5191.
[CrossRef]

37. Yang, Y.; Li, B.K.; Ye, B. Wireless Sensor Network Localization Based on PSO Algorithm in NLOS
Environment. In Proceedings of the IEEE 8th International Conference on Intelligent Human-Machine
Systems and Cybernetics, Hangzhou, China, 27–28 August 2016; pp. 292–295.

38. Xiao, Z.L.; Wen, H.K.; Markham, A. Non-Line-of-Sight Identification and Mitigation Using Received Signal
Strength. IEEE Trans. Wirel. Commun. 2015, 14, 1689–1702. [CrossRef]

39. Yu, X.S.; Ji, P.; Wang, Y.; Chu, H. Mean Shift-Based Mobile Localization Method in Mixed LOS/NLOS
Environments for Wireless Sensor Network. J. Sens. 2017, 2017, 5325174. [CrossRef]

40. Wang, Y.; Cheng, L.; Han, G.; Wu, H.; Jiang, B. RSS Localization Algorithm Based on Nonline of Sight
Identification for Wireless Sensor Network. Int. J. Distrib. Sens. Netw. 2014, 10, 1–8. [CrossRef]

41. Cheng, L.; Wu, C.-D.; Zhang, Y.-Z. An Indoor Localization Strategy for a mini-UAV in the Presence of
Obstacles. Int. J. Adv. Robot. Syst. 2012, 9, 1–8. [CrossRef]

42. Rasool, I.; Kemp, A.H. Statistical analysis of wireless sensor network Gaussian range estimation errors.
IET Wirel. Sens. Syst. 2013, 3, 57–68. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TWC.2014.2357807
http://dx.doi.org/10.1109/TMC.2010.105
http://dx.doi.org/10.1016/j.sigpro.2017.09.019
http://dx.doi.org/10.1109/LCOMM.2017.2737985
http://dx.doi.org/10.1109/TIE.2016.2608897
http://dx.doi.org/10.1109/TWC.2014.2372341
http://dx.doi.org/10.1155/2017/5325174
http://dx.doi.org/10.1155/2014/213198
http://dx.doi.org/10.5772/52754
http://dx.doi.org/10.1049/iet-wss.2012.0073
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Problem Statement 
	Signal Model 
	A Brief Introduction to SRUKF and PF 

	Proposed Method 
	General Concept 
	ConditionDetection and Distance Correction Based on Hierarchical Voting 
	Square Root Unscented Kalman Filter 
	Particle Filter (PF) 
	Mixed Square Root Unscented Kalman and Particle Filter 
	Convex Optimization & Location Estimation 

	Simulation and Experiment Results 
	Simulation Results 
	Large Measurement Noise 
	Small Measurement Noise 
	The NLOS Errors Obey Gaussian Distribution 
	The NLOS Errors Obey Uniform Distribution 
	The NLOS Errors Obey Exponential Distribution 

	Experiment Results 
	Localization Results 
	Computation Time 


	Conclusions 
	References

