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Abstract: This paper presents a new adaptive square-root unscented particle filtering algorithm
by combining the adaptive filtering and square-root filtering into the unscented particle filter to
inhibit the disturbance of kinematic model noise and the instability of filtering data in the process of
nonlinear filtering. To prevent particles from degeneracy, the proposed algorithm adaptively adjusts
the adaptive factor, which is constructed from predicted residuals, to refrain from the disturbance
of abnormal observation and the kinematic model noise. Cholesky factorization is also applied
to suppress the negative definiteness of the covariance matrices of the predicted state vector and
observation vector. Experiments and comparison analysis were conducted to comprehensively
evaluate the performance of the proposed algorithm. The results demonstrate that the proposed
algorithm exhibits a strong overall performance for integrated navigation systems.

Keywords: performance analysis; particle filter; adaptive filtering; Cholesky factorization;
integrated navigation

1. Introduction

Nonlinear filtering is ubiquitous in many areas such as integrated navigation system, geodetic
positioning, automatic control, information fusion and signal processing. It aims to estimate the
state of a nonlinear dynamic system from observations. The extended Kalman filtering (EKF) is
a widely used filtering method for nonlinear systems [1,2]. It linearizes nonlinear system equations
by a truncated Taylor series expansion and then applies the linear Kalman filter to the linearized
system equations. However, it still requires the linearized state obey the Gaussian distribution,
which is usually not consistent with practical applications [3]. Further, when the probability function
of state distribution involves multiple peaks, the filtering solution will be biased or even divergent [4].
EKF also involves a complicated calculation process of solving Jacobian matrix. The unscented Kalman
filter (UKF) avoids the linearization error of EKF by approximating the probability density of state
distribution using unscented transformation (UT) [5,6]. It does not need to calculate Jacobian matrix.
However, this method inherits the linear update structure of the Kalman filtering and also requires
the system state obey the Gaussian distribution, which is unsuitable for nonlinear systems with
non-Gaussian system state model.

The particle filtering (PF) is an optimal recursive Bayesian filtering method based on Monte Carlo
simulation [7,8]. Since it is not limited by system linearity and the system state is not subject to the Gaussian
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distribution, this method can deal with nonlinear system models with non-Gaussian system state [8–10].
However, PF suffers from the particle degeneracy phenomenon and the accuracy largely depends on
the choice of importance sampling density function and resampling scheme [11–13]. Research efforts
have been focused on design of a good importance sampling density function and improvement of the
resampling scheme to improve the PF performance [14–17]. The unscented particle filtering (UPF) is
a method to obtain a better importance sampling density function using UT to approximate the posterior
probability density function of the state [17–20]. However, this method still suffers from the particle
degeneracy phenomenon if the dynamic system is affected by the disturbances of abnormal observation
and kinematic model noise [10,17,20]. In fact, the disturbances caused by abnormal observation or
kinematic model noise are unavoidable in practical engineering applications [21,22]. In addition, due to
the use of a large number of particles, PF also causes an expensive computational load. The parallel
implementation within a shared-memory architecture [23], reduced-order system modelling to reduce
the filtering dimensionality [24] and improvement of the algorithm structure can be used to improve the
computational performance of PF [18,20].

The robust adaptive filtering is a method to handle the problem of degradation or divergence
due to abnormal observation and kinematic model noise. It robustly estimates the covariance matrix
of observation noise and adaptively adjusts the covariance matrix of state noise by augmenting the
adaptive factor into the covariance matrix of state prediction to improve the filtering robustness [21,22,25].
Yang et al. reported a robust adaptive filter by combining the robust maximum-likelihood estimation with
the adaptive filtering process to adaptively adjust the weight matrix of predicted parameters according
to the difference between system observation and model information [26]. This filter can be adaptively
converted into the classical Kalman filter, adaptive Kalman filter and Sage filter by modifying the weight
matrix and adaptive factor. Ding et al. reported a process noise scaling method by improving the
robustness of adaptive filtering, where the status of the filter operation is monitored using covariance
matching [27]. Gao et al. [28,29] combined the random weighting concept with adaptive filtering for
a dynamic navigation system. This method establishes unbiased random weighting estimations of
observation and state noises and feedbacks them to the kinematic and observation models of a dynamic
navigation system to improve the filtering robustness. Azam et al. [30,31] studied the online input
estimation techniques to handle cases in which the input of the robust adaptive filtering is unknown.

There are few studies focusing on the use of robust adaptive filtering to improve the
UPF performance. Xue et al. [32] reported a new robust adaptive unscented particle filtering algorithm.
In order to prevent particles from degeneracy, this algorithm adaptively determines the equivalent
weight function according to robust estimation and adaptively adjusts the adaptive factor constructed
from predicted residuals to inhibit the disturbances of abnormal observation and kinematic model noise.
However, due to the adaptive adjustment to the covariance matrices of predicted state vector and
observation vector, this algorithm cannot guarantee the covariance matrices in the filtering process are
positive definite, leading to the illness of the filtering process [33]. The square-root filtering provides
a solution to overcome this problem. It can improve the update accuracy of covariance matrices by
Cholesky factorization and effectively avoid the negative definiteness of covariance matrices.

This paper presents a new adaptive square-root unscented particle filtering (ASUPF) algorithm by
combining adaptive filtering and square-root filtering into UPF. This algorithm uses adaptive factors
to reasonably control the statistics of observation and kinematic models to inhibit the disturbances
of systematic noises, thus preventing particles from degeneracy. Further, Cholesky factorization is
used to suppress the negative definiteness of the covariance matrices of predicted state vector and
observation vector. Simulation and experimental analyses as well as comparison analysis with the
existing nonlinear filtering algorithms were conducted to comprehensively evaluate the performance
of the proposed nonlinear filtering algorithm for dynamic navigation.
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2. Construction of Adaptive Factor

The role of the adaptive factor in the filtering process is to correct the predicted values using
the observation values, as well as to estimate and correct the unknown or inaccurate system model
parameters and noise statistics.

Consider the following nonlinear system

xk = f (xk−1, vk−1)

yk = h(xk, nk)
(1)

where xk ∈ Rn is the state vector at epoch k, yk ∈ Rn is the system observation, vk ∈ Rn is the process
noise with the variance Rk, nk ∈ Rn is the observation noise with the variance Qk, both f (·) and h(·)
are a nonlinear function and k = 0, 1, · · · , N is the sampling epoch.

According to the theory of robust estimation, the predicted residual vector reflects the disturbance
of the dynamic system, since it contains the state information that has not been corrected by observation.
Therefore, the predicted residual vector can be used as the variable to construct the error discriminant
statistic and adaptive factor of the kinematic model. The predicted residual vector at time k can be
expressed as

Vk = yk − yk (2)

where yk is the predicted observation vector.
Accordingly, the error discriminant statistic can be constructed by using Vk

∆Vk =

((
Vk
)TVk

tr(Pykyk )

) 1
2

(3)

where ∆Vk is the error of the predicted residual vector, Pykyk is the covariance matrix of the predicted
observation vector and tr(·) represents the trace of a matrix. According to (3), three kinds of adaptive
factor can be constructed, namely the two-segment function adaptive factor, three-segment function
adaptive factor and exponential function adaptive factor [26].

The two-segment function adaptive factor can be constructed as

αk =

{
1

∣∣∆Vk
∣∣ ≤ c

c/
∣∣∆Vk

∣∣ ∣∣∆Vk
∣∣ > c

(4)

where αk represents the adaptive factor, satisfying 0 ≤ αk ≤ 1 and c = 1.0 ∼ 2.5 is a constant.
The three-segment function adaptive factor can be constructed as

αk =


1

∣∣∆Vk
∣∣ ≤ c0

c0
|∆Vk|

(
c1−|∆Vk|

c1−c0

)2
c0 <

∣∣∆Vk
∣∣ ≤ c1

0
∣∣∆Vk

∣∣ > c1

(5)

where αk satisfies 0 ≤ αk ≤ 1, c0 = 1.0 ∼ 1.5 and c1 = 3.0 ∼ 8.5 are constants.
The exponential function adaptive factor can be constructed as

αk =

{
1

∣∣∆Vk
∣∣ ≤ c

e−(|∆Vk−c|)2 ∣∣∆Vk
∣∣ > c

(6)

where αk satisfies 0 ≤ αk ≤ 1, c is a constant and its value is usually 1.5.
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3. Adaptive Square-Root Unscented Particle Filtering Algorithm

Abnormal interference can be caused by various system factors such as the additional thrust
change of carrier’s manoeuvre, mechanical disturbance, sensors anomaly and systematic noises and
various environmental factors such as air resistance, weather conditions and radiation. It will lead
to a sudden increase in observation error (i.e., the observation abnormality), or the inconformity
of the navigation kinematic model with the actual model (i.e., the model abnormality), leading to
a decrease in the accuracy of dynamic navigation. Combined with the advantages of adaptive filtering
and square-root filtering, an ASUPF algorithm for nonlinear systems is proposed in this section.
This algorithm selects appropriate adaptive factors to control the information of the kinematic
and observation models and suppresses the influence of abnormal interference, to improve the
filtering accuracy. Simultaneously, in order to suppress the negative definiteness of the covariance
matrices, Cholesky factorization is applied to the filtering process.

Consider the nonlinear system described as (1), the ASUPF algorithm includes the following steps.

Step 1: Initialization

Draw N sampling points according to the initial mean and variance. For k = 0, xi
0 ∼ p(x0),

i = 1, 2, · · · , N. Assume
xi

0 = E[xi
0]

Si
0 = chol

{
E[(xi

0 − xi
0)(x

i
0 − xi

0)
T
]
}

wi
0 = p(y0

∣∣xi
0)

(7)

where xi
0 and xi

0 represent the ith initial particle and its estimated value, Si
0 represents the ith Cholesky

factorization factor at the initial time, wi
0 denotes the initial weight of the ith particle and chol{·} is the

Cholesky factorization operator.

Step 2: For k = 1, 2, · · · , N, conduct importance sampling.

(i) Calculate the Sigma points and weights
xi

0,k−1 = xi
k−1

xi
j,k−1 = xi

k−1 +
√
(N + λ)Si

k−1 j = 1, · · · , N
xi

j,k−1 = xi
k−1 −

√
(N + λ)Si

k−1 j = n + 1, · · · , 2N
(8)


Wm

0 = λ/(N + λ)

Wc
0 = λ/(N + λ) + (1− α2 + β)

Wm
j = Wc

j = 0.5/(N + λ) j = 1, · · · , 2N
(9)

where xi
j,k−1 represents the jth Sigma point, Wj represents the weight of the jth Sigma point and

∑ Wj = 1, j = 0, 1, · · · , 2N. λ = α2(N + κ) is the size factor, κ is the second-order size factor, N is
the number of particles, α is the factor determining the extent of sample distribution with respect
to the predicted state mean and 10−3 < α ≤ 1. β is usually determined according to the prior
knowledge of the distribution of x and β = 2 is optimal for the Gaussian distribution.

(ii) Predict and update the particles using UKF

According to the kinematic model, the predicted state vector is expressed as

χi
j,k/k−1 = f (χi

j,k−1) (10)

The estimate of the predicted state vector is calculated by

xi
k/k−1 =

2N

∑
j=0

Wm
j χi

j,k/k−1 (11)
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Applying Cholesky factorization to the covariance matrix of the predicted state vector yields

Si
k/k−1 = qr

{[√
Wc

1(x
i
1:2n,k/k−1 − xi

k/k−1)
√

PWk

]}
(12)

Si
k/k−1 = cholupdate

{
Si

k/k−1, xi
0,k/k−1 − xi

k/k−1, Wc
0

}
(13)

where cholupdate{·} represents the update operator of Cholesky factorization factor.
By using the adaptive factor αi

k, Si
k/k−1 can be modified

Si
k/k−1 = Si

k/k−1/
√

αi
k (14)

where αi
k is constructed as (4) and the variance Pi

ykyk
of observation information can be calculated by

Si
yk

and Si
ŷk

.
According to the observation model, the observation vector can be written as

Yi
k|k−1 = h(χi

k|k−1) (15)

The estimate of the observation vector is calculated as

yi
k/k−1 =

2N

∑
j=0

Wc
j Y

i
j,k|k−1 (16)

Applying Cholesky factorization to the covariance matrix of the observation vector yields

Si
yk

= qr
{[√

Wc
1(Y

i
1:2n,k/k−1 − yi

k/k−1)
√

Pi
k−1

]}
(17)

Si
ŷk

= cholupdate
{

Si
ŷk

, Yi
0,k/k−1 − yi

k/k−1, Wc
0

}
(18)

where qr{·} represents the QR factorization of matrices.
The covariance matrix of χi

j,k|k−1 and Yi
j,k|k−1 can be obtained as

Pxkyk =
2N

∑
j=0

Wc
j [(χ

i
j,k|k−1 − xi

k|k−1] · [Y
i
j,k|k−1 − yi

k|k−1]
T

(19)

Update the state vector
xi

k = xi
k|k−1 + Ki

k(yk − yi
k|k−1). (20)

Update the covariance matrix of the estimated state vector

Ui = Ki
kSi

ŷk
(21)

Si
k = cholupdate

{
Si

k/k−1, Ui,−1
}

(22)

Pi
k = Si

k(S
i
k)

T
(23)

where the gain matrix is expressed as

Ki
k = (Pi

xkyk
/(Si

yk
)

T
)/Si

yk
(24)

It can be seen from above that the covariance matrix of the state vector is directly transmitted and
updated in the form of Cholesky factorization factor, thus ensuring the positive definiteness of the
covariance matrix and enhancing the numerical stability of the update process of the covariance matrix.
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When the kinematic model is disturbed, the predicted residual increases and the adaptive factor αi
k

decreases, leading to the reduced utilization of the predicted state. Accordingly, the interference of
model abnormality will be suppressed.

Let N(xi
k, Pi

k) calculated by (20) and (23) be the important density function and conduct importance
resampling to obtain the new particle xi

k ∼ N(xi
k, Pi

k).

Step 3: Calculate the weights

wi
k = wi

k−1

p(yk

∣∣∣xi
k)p(xi

k

∣∣∣xi
k−1)

q(xi
k

∣∣∣xi
k−1, yk)

(25)

and normalize them as w̃i
k = wi

k/
n
∑

i=1
wi

k.

Step 4: Calculate the estimate threshold

N̂e f f = 1/
N

∑
i=1

(w̃i
k)

2
(26)

The severity of particle degeneracy can be determined by comparing the result obtained from (26)
with the established threshold. The smaller N̂e f f is, the worse the particles degeneracy is. In this case,
in order to inhibit particles degeneracy, M new particles can be resampled from the posterior density
function obtained above. Then, a common weight 1/M is assigned to each new particle.

Step 5: Calculate the estimate of the nonlinear state vector

x̂k =
N

∑
i=1

w̃i
kxi

k (27)

Step 6: Go to Step 2 for the state estimation at the next epoch.

In the above recursive process of filtering, the proposed filter constantly checks whether there
is a change in the kinematic model. The original kinematic model will be modified according to
the change (if any) such that it can adapt to the dynamic change. In other words, the filter itself
constantly uses the noise statistical characteristic or gain matrix to reduce the estimated state error,
improve the filtering accuracy and provide a better sampling function for the importance sampling
process. Simultaneously, the Cholesky factorization of covariance matrices guarantees the stability of
the filtering process.

4. Performance Evaluation and Discussion

Experimental analysis was conducted to evaluate the performance of the proposed ASUPF.
The comparison analysis of ASUPF with EKF, UKF, PF and UPF was also conducted for the
performance evaluation.

4.1. Experimental Setup

An experiment was designed for ground vehicle navigation using a SINS/GPS integrated
navigation system. The experimental setup is shown in Figure 1. The test vehicle is a white urban
off-road vehicle, where an SINS/GPS integrated navigation system is mounted on the vehicle via
the fixed plate dynamic navigation. The vehicle also carries auxiliary facilities including a DC
power supply which is mounted on the vehicle via the fixed plate, an industrial personal computer



Sensors 2018, 18, 2337 7 of 15

(IPC), a data memory and an ampere-voltage meter. Table 1 provides the specifications of these
auxiliary facilities.Sensors 2018, 18, x 7 of 15 
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Table 1. Specifications of the auxiliary facilities.

Item Model Specifications

IPC ADLINK RK-610A
It is a 2.73 GHz Intel Core Duo CPU and 2.00 GB RAM PC, installed with GPS
Status Toolbox PRO v5.1. This PC is equipped with a navigation system interface
board and a 17-inch LCD monitor.

Data memory LCW-S02

It has a RS-232/485 interface, the storage rate is 10 KB/s and the storage capacity is
32 G that can be expanded. The optional baud rate is 4800~115,200 bps. The file
system is FAT32 and the storage file format is * .txt. The operating temperature is
−35 ◦C~85 ◦C.

DC power supply Sail 6-GFM-100
It consists of four groups of sustainable and stable discharge batteries, where each
battery rated voltage is 12 V and the rated capacity is 30.0 AH (10 h and the
termination voltage of 10.8 V).

Ampere-voltage meter Transmit G-2505 The voltage range is 0~50 V, the current range is 0~5 A and the measurement
accuracy is 0.5% FS.

Fixed plate — It is a 10 mm thick steel plate with screw holes and bracket.

The framework of the experimental system is shown in Figure 2. The SINS/GPS integrated
navigation system provides SINS measurement, GPS positioning and integrated navigation results
(position, velocity and attitude), respectively. These navigation data are stored to the data memory
through the RS-232 interface and further transferred to IPC for post-processing and filtering.
In addition, the GPS Status Toolbox in IPC is adopted to dynamically monitor the environment
for GPS measurement, check the number and distribution of observable GPS constellations and control
the GPS initialization and operation. The monitoring data are fed back to IPC through the system
interface board. The ampere-voltage meter is used to dynamically measure the current and voltage of
the system interface to determine whether the SINS/GPS integrated navigation system works normally
or not.
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The parameters of the SINS/GPS integrated navigation system are provided in Table 2.

Table 2. The parameters of the SINS/GPS integrated navigation system.

Parameter Value

Update Rate SINS 125 Hz, GPS 5 Hz
Start Time <1 s

Operating Temperature −30 ◦C~+60 ◦C

Angular Velocity Measurement

Measuring Range ±200 ◦/s
Zero-bias Stability 10.0 ◦/h (1σ)

Scale Factor 0.1% (1 σ)
Non-linear 0.01% FS (1σ)

Random Walk Coefficient 1.0 ◦/hr1/2 (1σ)

Acceleration Measurement

Measuring Range ±20 g
Zero-bias Stability 2 mg (1σ)

Scale Factor 0.1% (1σ)
Non-linear 0.01% FS (1σ)

Random Walk Coefficient 0.005 m/s/hr1/2 (1σ)

GPS Measurement

L1/L2 Horizontal Accuracy 1.0 m,
Vertical Accuracy 1.5 m (1σ)

SBAS Horizontal Accuracy 0.6 m,
Vertical Accuracy 1.0 m (1σ)

DGPS Horizontal Accuracy 0.3 m,
Vertical Accuracy 0.5 m (1σ)

Velocity Accuracy 0.02 m/s (1σ)

After the one-minute initialization of the SINS/GPS integrated system, the test vehicle started
to travel to the East along the Huanshan Road to the Fengyu Kou roundabout. The start position
of the vehicle was (E108◦46′05.89”, N34◦01′41.24”). When arriving at the Fengyu Kou roundabout,
the vehicle turned at the position (E108◦49′04.61”, N34◦03′10.28”) and then travelled back to the
start position. The travelling trajectory of the test vehicle and associated position coordinates are
shown in Figures 3 and 4, respectively. The travelling distance was 12.38 km, the travelling time was
19 min and the average speed of the vehicle was 39.1 km/h. During the test process, the GPS receiver
received signals from at least seven navigation stars. The data obtained from the high-precision
differential GPS receiver C-Nav3050 were used as reference for the comparison with the positioning
results from the SINS/GPS integration system.
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4.2. System Models of SINS/GPS Integrated Navigation

The navigation frame is the E-N-U (East-North-Up) geographic coordinate system. The state
vector x(t) of the SINS/GPS integrated navigation system is defined as

x(t) =
[
φE, φN , φU , δvE, δvN , δvU , δL, δλ, δh, εx, εy, εz, ∇x,∇y, ∇z

]T (28)

where (φE, φN , φU) is the attitude error, (δVE, δVN , δVU) is the velocity error, (δL, δλ, δh) is the position
error in latitude, longitude and altitude, (εx, εy, εx) represents the random drift of the gyroscope and
(∇x,∇y,∇z) is the constant bias of the accelerometer.

The kinematic model of the SINS/GPS integrated navigation system is expressed as

.
x(t) = f (x, t) + G(t)w(t) (29)
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where f (x, t) is the nonlinear state function of the system, w(t) = [wgx, wgy, wgz, wax, way, waz]
T is the

system noise consisting of gyro’s Gaussian white noise (wgx, wgy, wgz) and accelerometer’s Gaussian
white noise

(
wax, way, waz) and G(t) is the coefficient matrix of the system noise.

The observation model is described as

zk = δρk = Hkxk +
1
2


xT

k ·
(

DT
v · Ce

g
T ·H(1)(rins) · Ce

g ·Dv

)
· xk

xT
k ·
(

DT
v · Ce

g
T ·H(2)(rins) · Ce

g ·Dv

)
· xk

xT
k ·
(

DT
v · Ce

g
T ·H(3)(rins) · Ce

g ·Dv

)
· xk

xT
k ·
(

DT
v · Ce

g
T ·H(4)(rins) · Ce

g ·Dv

)
· xk

+ vk (30)

where δρk is the pseudo-range difference of GPS satellites, Hk is the observation matrix, vk is the
observation noise, Ce

g is the transformation matrix from the geographic coordinate system to the earth
coordinate system, rins is the INS position vector and Dv is an auxiliary matrix, which is expressed as

Dv =
[

03×6 I3×3 03×8

]
(31)

4.3. Filtering Accuracy

For comparison analysis, trials based on the above experimental design were conducted by using
EKF, UKF, PF, UPF and ASUPF, respectively. The unscented transformation parameters were α = 0.5
and β = 2. The adaptive factor calculation parameters were c0 = 1 and c1 = 3.5. The sampling time
was 1000 s. 50 Monte Carlo simulations were conducted for each of the five filters.

Since the position errors in the other directions have the similar trends as that in the longitude
direction, only the position error in the longitude direction is discussed for conciseness. Figure 5 shows
the longitude errors of EKF and UKF. It can be seen that EKF has the poor filtering accuracy, due to the
error caused by the linearization of the nonlinear state model. Although UKF improves the filtering
accuracy of EKF, the improved accuracy is still limited. This is because UKF approximates the posterior
probability distribution of the system state using the Gaussian distribution. Its filtering accuracy is
significantly degraded when the posterior probability distribution of the system state is non-Gaussian
distribution, which is the case of the experimental test. Therefore, both EKF and UKF have limited
accuracy for strongly nonlinear systems.
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Figure 5. The longitude errors of EKF and UKF. Figure 5. The longitude errors of EKF and UKF.

Figure 6 shows the longitude errors of PF, UPF and ASUPF, where the particle number is M = 200.
Compared to Figure 5, it is obvious that all three particle filters (PF, UPF and ASUPF) have higher
accuracy than both EKF and UKF. This is mainly because these three particle filters describe the priori
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and posteriori information using samples instead of a function, thus overcoming the limitation of
both EKF and UKF that random variables must satisfy the Gaussian distribution. However, PF suffers
from the particle degradation phenomenon, leading to the limited filtering accuracy. UPF improves
the filtering accuracy of PF, as it generates the importance function and conducts resampling using
UT to weaken the phenomenon of particle degradation. However, due to the influence of abnormal
interference on the state estimation, the filtering curve of UPF still involves large oscillations. As clearly
shown in Figure 6, the abnormal interference caused by the sharp U-turn travelling at around
t = 500 s significantly affects the performances of PF and UPF. In contrast, ASUPF improves UPF by
introducing the adaptive factor to suppress the influence of abnormal interference on the kinematic
and observation models. Therefore, ASUPF has much higher accuracy than both PF and UPF. Table 3
lists the root mean square errors (RMSEs) in the longitude direction for each nonlinear filter.
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Figure 6. The longitude errors of PF, UPF and ASUPF (M = 200).

Table 3. The mean values of the longitude RMSEs for EKF, UKF, UPF and ASUPF.

Filter Mean Value of Longitude RMSEs/m Normalized Mean Value

EKF 3.62 0.7240
UKF 2.56 0.5120

PF (M = 200 ) 2.13 0.4260
UPF (M = 200 ) 1.15 0.2300

ASUPF (M = 200 ) 0.46 0.0920

Figure 7 shows the means of the longitude RMSEs for the five filters, where the means of
the RMSEs of the three particle filters (PF, UPF and RAUPF) are subject to three different particle
numbers M = 50, M = 200 and M = 500. It can be seen that both EKF and UKF involves
a large error. However, all three particle filters still have higher accuracy than both EKF and UKF,
even with the small number of particles (M = 50).
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4.4. Computational Performance and Filtering Robustness

Trials were conducted with Matlab programs on a 2.93 GHz dual-core CPU and 2 G RAM PC
to analyse the computational performances of EKF, UKF, PF, UPF and ASUPF, where the particle
number was set to M = 200 for PF, UPF and ASUPF. Table 4 shows the computational performances of
each filter.

Table 4. Computational performances of EKF, UKF, PF, UPF and ASUPF.

Filter Equivalent
Computational Complexity

Peak of
CPU Utilization Running Time/s Normalized

Running Time/s

EKF O(n3) 18% 0.202 0.0505
UKF O(n4) 23% 0.958 0.2395
PF O(Mn3) 42% 2.411 0.6028

UPF O(Mn3 + n4) 48% 3.078 0.7695
ASUPF O(Mn3 + n4) 49% 3.089 0.7722

It can be seen that the computational times of PF, UPF and ASUPF are obviously larger than
those of EKF and UKF. This is because the computational processes of these three particle filters are
more complex, involving sampling a large number of particles, allocating weights and resampling.
Thus, they require more CPU utilizations.

In order to analyse the robust performances of EKF, UKF, PF, UPF and ASUPF, the above
experimental data were divided into two groups. One was within the sharp U-turn time period
(484.2 s, 512.8 s) and the other was within the rest time periods. Based on each group of experimental
data, the longitude RMSEs of EKF, UKF, PF, UPF and ASUPF were calculated, where the particle
number was set to M = 200 for PF, UPF and ASUPF. The RMSE differences between the two groups
of experimental data indicate the robust performances of each filter. Table 5 shows the results on the
robustness of each filter.
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Table 5. Robust performances of EKF, UKF, PF, UPF and ASUPF.

Filter
Longitude Direction Position RMSE/m Normalized

DifferenceThe Sharp U-turn Time Period The Other Time Periods Difference

EKF 5.3584 3.5753 1.7831 0.8915
UKF 4.1364 2.8243 1.3121 0.6561
PF 3.1658 2.0370 1.1288 0.5644

UPF 1.5469 0.8663 0.6806 0.3403
ASUPF 0.5517 0.4191 0.1326 0.0663

It can be seen from Table 5 that abnormal disturbances affect EKF, UKF and PF more significantly
than UPF and ASUPF. This is also in agreement with the oscillations in the error curves of EKF, UKF
and PF as shown in Figures 5 and 6. However, the influence of abnormal disturbances on ASUPF is
even more than twice smaller than that on UPF. This is because ASUPF can control the noise statistics
of the kinematic and observation models by adjusting the adaptive factor to suppress the influence of
abnormal interferences.

4.5. Overall Performance

Define the overall performance index of a filtering algorithm as

S = f (p, RT, R) =
1

W·(p, RT, R)T (32)

where S represents the overall performance index of the filtering algorithm and the larger the value
is, the better the performance of the algorithm is p, RT and R are the three performances of the
filtering algorithm, that is, the accuracy, computational performance and robustness, respectively.
W = (β1, β2, β3), where βi (i = 1, 2, 3) are the weights of the three performances, respectively, and

3

∑
i=1

βi = 1 0 ≤ βi ≤ 1 (33)

Under different performance requirements of a navigation system, the value of W = (β1, β2, β3)

is different. For example, W = (0.6, 0.2, 0.2) indicates that the priority of the navigation system is
the positioning accuracy, while the computational performance and robustness are subservient to the
positioning accuracy.

Table 6 shows the overall performance indices of EKF, UKF, UPF and ASUPF under three different
priorities of accuracy, computational performance and robustness (represented by the three values
of W), where the values of p, RT and R correspond to the normalized values of the three performances
as shown in Tables 3–5, respectively.

Table 6. Overall performance indexes of the nonlinear filtering algorithms.

Filtering Algorithms Accuracy Priority
W = (0.6,0.2,0.2)

Timing Priority
W = (0.2,0.6,0.2)

Robustness Priority
W = (0.2,0.2,0.6)

EKF 1.6056 2.8296 1.4496
UKF 2.0563 2.6503 1.8385
PF 2.0449 1.7866 1.8369

UPF 2.7781 1.7368 2.4748
ASUPF 4.4861 2.0202 4.7030

The overall performance indices of EKF and UKF under the three different priorities show that
both EKF and UKF have a strong advantage in the computational performance. Although both
accuracy and robustness are weak, the accuracy performance is better than the robustness performance
for both EKF and UKF. This is also in agreement with the experimental results of EKF and UKF
(see Figures 5 and 7 and Table 5).
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The overall performance indices of ASUPF under the three different priorities show that ASUPF
has strong accuracy and robustness performances and its robustness is highest in Table 6. This proves
that the improvement of ASUPF in adaptability and stability is effective. Although the computational
performance of ASUPF is lower than those of EKF and UKF, ASUPF has a much better overall
performance than the other filters for the integrated navigation system.

In general, the performance requirements of a navigation system determine the selection of
an appropriate filter. For a navigation system desiring high accuracy and strong robustness, ASUPF
should be considered. For a navigation system desiring a high computational performance, either EKF
or UKF should be considered.

5. Conclusions

This paper presents a new ASUPF for nonlinear systems by combining adaptive filtering and
square-root filtering into UPF. This algorithm improves UPF by using the adaptive factor to refrain
from the disturbances of the noise statistics of observation and kinematic models, thus overcoming
the particle degeneracy problem involved in UPF. It also applies Cholesky factorization to suppress
the negative definiteness of the covariance matrices of predicted state vector and observation vector.
Experiments and comparison analysis demonstrate that the proposed ASUPF can effectively prevent
particles from degeneracy and improve the filtering accuracy of dynamic navigation. Future work will
focus on the sensitivity analysis of the proposed ASUPF in comparison with the existing nonlinear
filtering algorithms such as EKF, UKF, PF and UPF.
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