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Abstract: Finger-vein recognition, which is one of the conventional biometrics, hinders fake attacks,
is cheaper, and it features a higher level of user-convenience than other biometrics because it
uses miniaturized devices. However, the recognition performance of finger-vein recognition
methods may decrease due to a variety of factors, such as image misalignment that is caused
by finger position changes during image acquisition or illumination variation caused by non-uniform
near-infrared (NIR) light. To solve such problems, multimodal biometric systems that are able
to simultaneously recognize both finger-veins and fingerprints have been researched. However,
because the image-acquisition positions for finger-veins and fingerprints are different, not to mention
that finger-vein images must be acquired in NIR light environments and fingerprints in visible
light environments, either two sensors must be used, or the size of the image acquisition device
must be enlarged. Hence, there are multimodal biometrics based on finger-veins and finger shapes.
However, such methods recognize individuals that are based on handcrafted features, which present
certain limitations in terms of performance improvement. To solve these problems, finger-vein
and finger shape multimodal biometrics using near-infrared (NIR) light camera sensor based on
a deep convolutional neural network (CNN) are proposed in this research. Experimental results
obtained using two types of open databases, the Shandong University homologous multi-modal traits
(SDUMLA-HMT) and the Hong Kong Polytechnic University Finger Image Database (version 1),
revealed that the proposed method in the present study features superior performance to the
conventional methods.
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1. Introduction

Biometrics are methods used for user identification using the unique behavioral and physiological
elements of the individual, including, inter alia, face, fingerprint, iris, and vein recognition.
These biometrics are used in a variety of fields, such as system security, electronic payment, patient
management in hospitals, access control, etc. Moreover, recently, the smartphone popularization has
led to the emergence of biometric authentication technologies, even other than the personal computer
(PC) environment. Because it features not only easier acceptability, but also a higher security level and
recognition accuracy than other conventional methods, such as passwords, patterns, and personal
identification numbers (PINs), which are more likely to be forged or lost, biometrics have come into
the spotlight in the mobile environment. Generally, after using sensors to collect and store data,
biometric systems go through a preprocessing process to reconstruct the distinctive features of the
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original data. This preprocessing process includes region-of-interest (ROI) segmentation, feature
extraction, and image enhancement. Finally, each individual is identified after selecting representative
models from feature samples of each class and comparing the similarities through a quantitative
measurement before making the final decision. Among these biometrics, several studies have been
conducted in the past on finger-based recognition due to its various advantages. Some of these
studies have proposed fingerprint recognition methods, finger-vein recognition methods that use
vein-pattern features, finger shape recognition methods that are based on the geometric features of
fingers, and finger-wrinkle recognition methods based on the contour of the outer surface of finger
joints. Such finger-based biometrics have not only lower risks of feature loss, but also reduced costs
because image acquisition is performed using smaller (miniaturized) devices than those that are used
in other biometrics. However, methods that use unimodal recognition still experience difficulties in
extracting patterns accurately for various reasons, such as illumination variations, finger positional
variation, shading, misalignment, and quality changes caused by finger pressure with respect to the
sensor, thus leading to decreased recognition performance. To overcome these limitations, the interest
in multimodal biometric recognition using two or more types of biometrics combined is emerging.
In relation to such a trend, in this research, finger-vein and finger shape multimodal biometrics based
on a deep convolutional neural network (CNN) are proposed. Section 2 explains various conventional
finger-based recognition methods.

2. Related Works

There are several types of finger-based biometrics, e.g., finger-vein recognition using vascular
patterns under the skin, fingerprint recognition using fine wrinkled skin textures, such as ridges at
the fingertips, finger shape recognition using geometric features, such as the thickness or shape of
the fingers, and finger knuckle-print recognition using patterns made based on the contour (line,
wrinkles, etc.) of the outer surface of the finger joints.

Particularly, most active studies have been conducted on fingerprint recognition [1,2]. Moreover,
in finger knuckle-print recognition studies conducted in the past, various studies were conducted on
feature extraction analyzing mostly outer surface wrinkles. Liu et al. performed finger separation in a
hand image with several fingers by detecting horizontal lines. Then, he enhanced the middle and ring
fingers, which have a high degree of reliability, using Gabor filtering, and finally used derivative line
detection to extract the knuckle wrinkle lines [3].

Kumar et al. could decrease the impact of hand movements by extracting contour boundaries
from images of the back side of fingers and detecting the area of each finger according to valley
points to segment subspaces. Then, finger knuckle ROIs were configured centered on areas with
many low-brightness pixels. Finally, the matching scores that were obtained by applying principal
component analysis (PCA), linear discriminant analysis (LDA), and independent component analysis
(ICA) to these ROI images were fused to conduct recognition [4]. Zhang et al. extracted local direction
information using Gabor filters as local operators. The extracted local features were calculated inside
local patches and used to express detailed features within specific regions. At this point, enlarging
the Gabor filter size enables it to contain more and more global information to the point that Fourier
transform coefficients can be obtained to analyze the image’s total frequency instead of extracting
local information. The obtained global and local information were appropriately combined to conduct
recognition [5]. In [6], two types of coding were combined to work as a band-pass filter. Then,
a primary Riesz transform-based mono-signal was used for the structural analysis of edges, lines,
etc. Secondary Riesz transform-based signals were used to analyze structures, such as corners and
junctions, the response of image patterns. This texture-based feature-extraction method is appropriate
for images containing abundant and valid line structures, and, in addition, requires relatively shorter
processing times. However, in the case of people with certain skin conditions, feature extraction
might be difficult while using image processing. To solve this problem, a study was conducted on
finger knuckle-print matching methods [7–10]. Aoyama et al. conducted a band-limited phase-only
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correlation (BLPOC)-based local block matching that features higher correlation as becoming more
similar images by extracting elliptic frequency bands that show the ridges of finger knuckle prints
through the cross-phase spectrum calculations in phase-only correlation (POC) functions [9]. In [10],
it was confirmed that the finger knuckle-print patterns of metacarpophalangeal (MCP) joints could be
recognized while using BLPOC as well.

Moreover, several studies have been conducted on finger-vein recognition methods that analyze
vein patterns hidden under the skin. Qin et al. used a Radon transform-based method that detects
valleys using square window patches of various sizes in the vein pixels and neighboring background
pixels and extracts lines corresponding to pixels that are darker than the surroundings as vein areas.
This method was able not only to detect disconnected vein areas using the Radon transform, but also to
extract vein lines from partial noise and irregular shading and backgrounds by inhibiting high-frequency
noises [11]. Song et al. extracted uneven vein lines in all directions through the mean curvature value
using geometrical brightness properties at each point of the image, and conducted matching using a
binary image-based template-matching method [12]. Miura et al. was able to extract vein areas based
on the fact that, if the vein profile’s curvature is large, the center position of veins can be obtained by
calculating the maximum curvature of the convex areas from the cross-profile of veins. That is to say, to
obtain vein patterns in various different directions from the full image, the profiles of all orientations
were analyzed in order to extract vein areas by asserting that areas with higher vein center position
scores were more likely to be veins [13]. Yang et al. proposed a method to extract the vein vector fields
(VVF) of finger-veins based on spatial curve filters (SCF), Gaussian weight models, and curve-length
fields (CLF), and conducted the matching based on phase-only correlation (POC) [14].

Miura et al. represented parts that look dark with valleys in the image due to intravenous
hemoglobin’s absorption of infrared light as cross-section brightness profiles. Here, the frequency of
detection of pixels was confirmed by tracking finger-vein lines that are based on the cross-sectional
brightness profile of any center pixel and repeating the same process. Then, pixel areas with frequent
high values were assumed as veins and were extracted to the finger-vein patterns, and areas with low
values were recognized as noise [15]. Huang et al. assumed the cross-section of most fingers to be an
ellipse and represented the curved areas as finger surfaces by projecting the finger surfaces in a plane.
Here, to obtain accurate contour information for line segmentation of the veins, a method that finds
the upper and lower finger contour lines and middle points by calculating active contour models and
ellipse projective coefficients was proposed [16].

To accurately detect the exact thickness of veins in different images, Liu et al. proposed a method
that performs finger-vein segmentation using a modified repeated line-tracking method that selects
useful starting points while using preprocessed images as input images through rough segmentation.
In other words, to extract vein patterns robustly, vein lines were tracked while moving repeatedly
towards nearby pixel points, giving consideration to eight directions at all of the locations that were
selected in the rough segmentation [17]. In addition to these methods, methods to improve the
full finger-vein image by increasing the contrast between finger-vein patterns and the background
were proposed. Pham et al. improved the contrast of finger-vein images through a method that
selects pixels with the lowest filtering value as the final value by applying Gabor filtering in four
directions. After this, matching was conducted based on the extracted code through local binary
patterns (LBP) [18]. Syarif et al. conducted finger-vein verification through Hessian enhancement and
enhanced maximum curvature (EMC) with the histogram of oriented gradient (HOG) [19]. Yang et al.
decreased useless background effects by cutting finger-vein ROIs from images using finger-vein image
subwindows of certain sizes. In addition, to improve the visibility of finger-vein images, the dehazing
technique was used by giving consideration to light scattering, and finger-vein information was used
for recognition in various sizes and directions using an even-symmetric Gabor filter [20].

In [21], a method based on adaptive direct fuzzy contrast enhancement was optimized to improve
the global contrast of images, and the Retinex theory was combined with optimal fuzzy conversion to
improve the pattern information of local veins. Although this finger-vein recognition is able to obtain
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images easily and simply without touch through the use of near-infrared (NIR) light, its recognition
performance is affected by different factors, such as illumination variations, finger positional variations,
shading, misalignment, and quality changes that are caused by the pression of fingers over the sensor.
According to this, studies have been conducted on recognition using the shape and geometry of
fingers. Su et al. aligned fingers in the center after extracting the finger area from hand edges and
extracting geometry descriptors. The geometrical features of each aligned finger were expanded using
a wavelet transform. The image subtraction obtained was likewise used to conduct each genuine
and imposter matching [22]. Asaari et al. used geometrical information while considering the finger
width and fingertip angles for recognition. To extract robust features for motion and rotation, Fourier
descriptors (FD) were used for feature extraction, and the orthogonality of the geometric information
was improved through PCA. After this, matching was conducted using the Euclidian distance [23].
However, methods that consider finger geometry experience difficulties in extracting the features
accurately when the fingers are too close together or too widely spread [22].

Recently, to make up for these shortcomings regarding the individual recognition of fingers,
the multimodal recognition, which fuses the results of more than two finger-based recognition
techniques, has come to the spotlight. Yang et al. proposed a fingerprint and finger-vein feature-level
fusion-based multimodal recognition method that uses the supervised local-preserving canonical
correlation analysis method (SLPCCAM) [24]. Peng et al. proposed a method for maximizing the
score fusion through triangular norms (t-norms) by normalizing the scores of four types of features for
finger-vein, finger shape, fingerprint, and finger knuckle-print score-level fusion [25]. In [26], before
matching, recognition was attempted using methods that use feature-level fusion of homogeneous
finger-vein, fingerprint, and finger knuckle-print features, and methods that use decision-level fusion
using the results of applying support vector machine (SVM), or that use cosine distance and K-nearest
neighbors (KNN) after conducting feature selection through kernel Fisher analysis (KFA), which applies
PCA and LDA simultaneously. In [27], fractional firefly (FFF) optimization was used to find the optimal
weight that expresses the best fused finger-vein and knuckle-print features. Moreover, classification
was conducted by performing binary classification at each stage through layered k-support vector
machine (K-SVM) combined with SVM and KNN. However, in [24], the experiment was conducted by
obtaining fingerprint and finger-vein image separately using two devices, whereas in reality, using
two devices would increase not only the size of the entire system but also its cost. Moreover, in [25–27],
because the experiments were conducted by generating a multimodal database virtually from the
existing finger-vein, finger shape, fingerprint, and finger knuckle-print databases, they do not apply
when using images obtained from one finger of a real person. To solve these problems, in [28,29],
a single device was used to obtain fingerprint, finger shape, and finger-vein images simultaneously.
However, as recognition is conducted based on handcrafted features, there are limitations in terms of
the performance improvement.

To overcome such limitations, this study proposes deep CNN-based finger-vein and finger shape
multimodal biometrics that use finger-vein and finger shape information extracted simultaneously
from finger images that were acquired with a single sensor-based single device using NIR light.
Our research is novel in the following four ways compared to previous works.

- Convex polygons were generated using the algorithm that finds the coordinates of the outermost
pixels of finger ROIs to calibrate the empty spaces of the images. Then, robust finger ROIs for
misalignment were extracted after conducting in-plane rotation compensation based on the angle
of tilting measured based on the boundaries of the upper, lower, left, and right pixels.

- Two-dimensional spectrogram images that express finger-thickness frequency-component
changes depending on the horizontal position of fingers were obtained and used as CNN inputs
for finger shape recognition.

- Matching distances calculated based on the features of finger-vein and finger shape that were
obtained using ResNet models were score fused using various fusion methods, such as the weight
sum, weighted product, and perceptron.
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- The trained CNN models and algorithms developed in this study were open through [30] so that
other researchers can use them in fair performance evaluations.

Table 1 shows the summarized comparisons on the proposed and previous studies on
finger-based recognition.

Table 1. Comparisons of proposed and previous research on finger-based recognition.

Category Methods Advantage Disadvantage

Single modal
based

Fingerprint
SVM-based quality
estimation [1] and
minutiae triplets [2]

Cost and size of system are
most effective

- Vulnerable to fake attack
- Affected by the skin
condition of finger

Finger knuckle
print

Subspace [4], Local and
global feature [5], Riesz
transform [6] and
Band-Limited Phase-Only
Correlation
(BLPOC) [5,9,10,31]

Less affected by the skin
condition of finger than
fingerprint recognition

More vulnerable to finger
movement and skin
deformations than
fingerprint recognition

Finger-vein

Radon transform [11],
mean curvature [12],
maximum curvature [13],
Gabor filter [18,20],
Hessian filter [19], fuzzy
system [21],
and convolutional neural
network (CNN) [32,33]

- More resistant to fake
attacks than fingerprint
and finger knuckle-print
recognition
- Not affected by the skin
condition of finger

Affected by shadows caused
by NIR light, finger
misalignment, and skin light
scattering blur

Finger shape

Wavelet transform [22],
and Fourier descriptor and
principal component
analysis [23]

Not affected by the skin
condition of finger

- Affected by thickness of
finger according to age or
health condition
- The device size is bigger than
fingerprint, finger
knuckle-print, and finger-vein
recognition devices
- Extraction is hindered by
stuck fingers

Multi-modal
based

Multiple sensors
based

Fusion of fingerprint and
finger-vein [24], Fusion of
finger-vein, finger shape,
fingerprint, and finger
knuckle print [25], fusion
of finger-vein, fingerprint,
and finger knuckle
print [26], and fusion of
finger-vein and finger
knuckle print [27]

Better recognition
performance than
single-model methods by
using 2 or more biometric
traits

- High cost and large
system size due to the
use of 2 or more
image-acquisition devices
- Slow image-acquisition
speed due to inability to
acquire multimodal images
simultaneously

Single-sensor
based

Handcrafted features and
SVM [28,29]

Simultaneous finger-vein,
fingerprint, and finger
shape recognition using 1
device [28]
Simultaneous finger-vein
and finger shape
recognition using 1
device [29]

Limited recognition
performance improvement
due to the use of
handcraft features

Deep features by CNN
(proposed method)

- Simultaneous finger-vein
and finger shape re
cognition with 1 device
- High recognition
performance through the
use of deep features

Requires intensive
CNN training

The composition of this paper is as follows. Section 3 explains about the proposed multimodal
finger-based recognition method. In Sections 4 and 5, experimental results with analyses and the
conclusion are provided, respectively.
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3. Proposed Method

3.1. Overview of Proposed Method

The overall flowchart of the proposed method is shown in Figure 1. The captured finger images
are binarized, and the binarized images are used to restore the collapsed areas through the convex
hull algorithm [34] to extract accurate finger regions. Then, a 4 × 20 mask is used to detect the upper
and lower boundaries to extract the finger regions more accurately than [18,32] (step 2 of Figure 1).
After this, the in-plane rotation of the extracted finger region is calibrated (step 3) to obtain the final
ROI image for CNN input (step 4). This ROI is used to find the spectrogram image (step 5), which is
obtained by converting the vertical length changes with respect to the horizontal pixel position of
the finger thickness. Then, the features of the finger shape are found using the CNN, which uses
this spectrogram image as input (step 6). Next, the Euclidean distance between the input image
features and the pre-enrolled image features is calculated and calibrated while using min-max scale
normalization to obtain the score of finger shape (step 7). In addition, the ROI obtained in step 4 is
normalized to the size of 224 × 224 (step 8), and the pixel-difference images from the pre-enrolled
image are found to calculate matching scores through the CNN, which uses such pixel-difference
images as input. Then, these scores are calibrated using mix-max scale normalization to obtain the
score of the finger-vein (steps 9 and 10). The two scores obtained through steps 7 and 10 are score-level
fused (step 11) to finally conduct multimodal recognition of the finger shape and finger-vein (step 12).
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3.2. Preprocessing and Detection of Finger Region

The Sobel operator and component labeling are applied to the captured finger images for noise
removal. Then, binarized images, such as that shown in Figure 2b, are obtained through image
thresholding. However, as shown in Figure 2b, incorrect binarized images are obtained often due
to non-uniform illumination inside the finger area. To solve this, the convex hulls are found and
calibrated [34]. Convex hulls are minimum-size convex polygons containing all areas. To set the part to
be calculated, the height and width of the x coordinate, y coordinate, and finger-vein area of the top-left
of the binarized images are calculated to set the bounding box that contains all of the finger-vein areas.
The outermost pixel coordinate of the bottom-right area inside the bounding box containing binarized
areas is determined as a starting point for convex hull construction. The outermost coordinate points
of pixels with the furthest distance counter-clockwise from the outermost pixel coordinate’s starting
point are considered boundary areas and are connected together. Here, the angle from the outermost
pixel coordinate to the next outermost pixel coordinate is clockwise, but nearby coordinate points are
ignored. This is repeated until the process returns to the starting point; all the pixels inside the area are
calculated and all of the pixels inside convex polygons are filled to calibrate the eroded area inside of
fingers [34]. Through this, as shown in Figure 2c,d, accurate finger regions without eroded areas inside
are obtained.
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3.3. In-Plane Rotation Compensation

Misalignment between enrolled and recognized images hinders matching and causes low
recognition performance. In this research, to solve these problems, in-plane rotation compensation
was conducted on the input finger images. As shown in Figure 2d, for an accurate rotation angle
measurement in the obtained finger images, a 4 × 20 mask was used to detect the upper and
lower boundaries of finger-veins, as shown in the red-colored lines of Figure 3b [18,32]. After this,
the two-dimensional moment of the finger region between these two boundaries is calculated and used
for in-plane rotation compensation [35]. Because there are many cases where the left and right ends of
the compensated finger regions contain areas unsuitable for recognition due to uneven illumination
that is caused by nails and finger thickness, the final finger ROIs are detected, as shown in Figure 3d,
after removing a defined portion of the left and right ends. These ROIs are used for finger shape and
finger-vein recognition.
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3.4. 2-Dimensional Spectrogram Image for Finger Shape Recognition

In this research, finger shape recognition was conducted after finding two-dimensional
spectrogram images (Figure 4) based on the finger thickness in the horizontal position. In various
signal-processing and -recognition fields containing speech recognition, spectrograms have been
widely used to extract meaningful features [36–42]. Spectrograms are general methods to indicate the
corresponding signals in time–frequency areas. In this study, as shown in Figure 4a,b, the finger
region-of-interest (ROI) thickness in the horizontal position is measured and expressed with a
one-dimensional graph to obtain the finger shape information. The frequency components were
extracted using short-time Fourier transform (STFT) (Equation (1)) at each location through sliding by
overlapping by 1 pixel in a fixed-size window on this graph [37,40].

STFT(n, w) =
R−1

∑
m=0

(x[m]W[n − m])e−i2πwm. (1)

Here, n is the horizontal position of the finger ROI, w is the frequency, x[m] is the signal to be
analyzed, and W[m] is a window. Through this, the two-dimensional spectrogram, which is the
magnitude of the frequency of each horizontal position, was found, as shown in Figure 4c, and used
as input images for CNN. This two-dimensional spectrogram image expresses the difference in the
frequency amplitude of the horizontal position axis as a color-density difference. That is to say, as
shown in Figure 4c, greater finger-thickness changes inside the corresponding window are indicated
by brighter high-frequency areas, and smaller changes are indicated by brighter low-frequency areas.

Generally, because CNN structures use one image as input, to conduct recognition using enrolled
and input images as in this research, each feature vector of both images in the layer before the CNN’s
fully connected layer was extracted to calculate the distance between the feature vectors of these two
images and determine which one is genuine and which is an imposter [43]. In this study as well,
two feature vectors of the CNN, which use the two two-dimensional spectrogram images that were
obtained in the enrolled and input images (such as in Figure 4c), were found and used for genuine-
and imposter-matching based on the Euclidean distance between them.
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3.5. Difference Image Finger-Vein Recognition

In previous CNN-based finger-vein recognition studies, instead of a method that determines the
genuine or imposter by extracting the feature vectors of two images in the CNN’s fully connected
layer or the layer before that, then finding the distance between these two feature vectors, a method
using one difference image found in both the enrolled and input finger-vein images as the CNN input
image was found to provide a higher recognition accuracy [32]. Based on these results, in this study,
one different image (Figure 5c,f) obtained from the finger ROI image of the enrolled and input images
found, as shown in Figure 3d, was used as the CNN input. As shown in Figure 5, the difference image
of two images of the same class shows a dark pixel value due to the difference between the pixels of
both images being small (Figure 5c, and the difference image of two images of different class shows
a relatively bright pixel value due to the difference between the pixels of both images being large
(Figure 5f). Genuine and impostor matches are finally determined based on the CNN output result.
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3.6. CNN-Based Finger-Vein and Finger Shape Recognition

In this study, the same structure of ResNet-50 and ResNet-101 [44] was used, excluding the output
node. The experiment was conducted by fine-tuning the training data used in this study. In other
words, for finger-vein recognition, both genuine and imposter matches were set as the output class.
Additionally, for finger-vein recognition, the number of classes contained in the training data was set as
the number of CNN output nodes. Figure 6 and Table 2 show the structure of the RestNet CNN model
that was used in this study. According to the proposed structure, the input images were resized to
224 × 224 pixels. The feature map size output based on the input image is calculated, as follows: Feature
map width (or height) = (Input width (or height) − kernel width (or height) + number of padding
pixels × 2)/number of strides + 1 [45]. For example, in Table 2, the feature map width (or height) output
in the first convolutional layer (Conv1) is 112 (= (224 − 7 + 3 × 2)/2 + 1). For structure optimization,
batch normalization and rectified linear units (ReLU) are passed through each convolutional layer.
During batch normalization, the mean and covariance of the features are found and normalized in
uncorrelated mini-batch units [46]. The following is the equation of normalization of the mean and
covariance of mini-batches.

x̂i =
xi − µm

σm
. (2)

Here, xi is the mini-batch data consisting of n units, µm is the mean of the corresponding
mini-batch, σm is the square-root value of covariance of the corresponding normalized mini-batch,
and x̂i is the corresponding normalized mini-batch. Through the internal covariate shift of Equation
(3), this can prevent vanishing gradient problems that fall in the local minimum during learning due
to weight changes in the hyperparameters of all the data with the same learning rate [46].

BN(xi) = γx̂i + β. (3)
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Here, BN means batch normalization, γ is the scale and β is the shift parameter. After this,
as shown in Equation (4), ReLU functions, which only process negative values as 0, were used
as activation functions to improve the training convergence speed more than when using sigmoid
functions [47].

y = max (0, x), (4)

where x and y are the input and output of a ReLU function, respectively. Because the output range of y
can be reduced to 0 or a positive value, the ReLU function can be partially or sparsely activated, and can
thus facilitate the training of the CNN model. The mathematical equation for training becomes simpler
and can prevent the vanishing gradient problem [47]. Moreover, after the first convolutional layer,
it acts as subsampling, using the greatest value within a 3 × 3 window area through 3 × 3 max pooling.
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Table 2. The proposed CNN configuration used in our research (3 * indicates that three pixels are
included as padding in, respectively, the left, right, up, and down positions of an input image of
224 × 224 × 3 pixels, whereas 1 * means that one pixel is included as padding in the left, right, up,
and down positions of the feature map) (2/1 ** means 2 at the first iteration and 1 from the second
iteration) (in finger-vein recognition, #class is 2, and in finger shape recognition, it indicates the class
number of the learning data).

Layer Name Number
of Filters

Size of Feature
Map

Size of
Filters

Number
of Strides

Number of
Padding

Number of
Iterations

Image input layer 224 × 224 × 3

Conv1 64 112 × 112 × 64 7 × 7 × 3 2 3 * 1

Max pool 1 56 × 56 × 64 3 × 3 2 0 1

Conv2

Conv2_1 64 56 × 56 × 64 1 × 1 × 64 1 0

3

Conv2_2 64 56 × 56 × 64 3 × 3 × 64 1 1 *

Conv2_3 256 56 × 56 × 256 1 × 1 × 64 1 0

Conv2_4
(Shortcut) 256 56 × 56 × 256 1 × 1 × 64 1 0

Conv3

Conv3_1 128 28 × 28 × 128 1 × 1 × 256 2/1 ** 0

4

Conv3_2 128 28 × 28 × 128 3 × 3 × 128 1 1 *

Conv3_3 512 28 × 28 × 512 1 × 1 × 128 1 0

Conv3_4
(Shortcut) 512 28 × 28 × 512 1 × 1 × 256 2 0

Conv4

Conv4_1 256 14 × 14 × 256 1 × 1 × 512 2/1 ** 0

23

Conv4_2 256 14 × 14 × 256 3 × 3 × 256 1 1*

Conv4_3 1024 14 × 14 × 1024 1 × 1 × 256 1 0

Conv4_4
(Shortcut) 1024 14 × 14 × 1024 1 × 1 × 512 2 0

Conv5

Conv5_1 512 7 × 7 × 512 1 × 1 × 1024 2/1 ** 0

3

Conv5_2 512 7 × 7 × 512 3 × 3 × 512 1 1*

Conv5_3 2048 7 × 7 × 2048 1 × 1 × 512 1 0

Conv5_4
(Shortcut) 2048 7 × 7 × 2048 1 × 1 × 1024 2 0

AVG pool 1 1 × 1 × 2048 7 × 7 1 0 1

FC layer #class 1

Softmax #class 1

In ResNet CNN, a bottleneck structure is used [44]. As shown in Table 2, first, the feature map
dimension was downscaled in a 1 × 1-size convolution layer, and features were extracted in a 3 × 3-size
convolution layer. To connect the previous feature map with the feature map that passed through a
shortcut path that is transmitted as-is to the following layer, a 1 × 1-size convolution layer was used
again in the following convolution layer to expand it to the same size of the feature map dimension
that passed through the shortcut path. Through this bottleneck structure, the number of learning
parameters decreases more than in a single 3 × 3-size convolution process, thus reducing the amount
of computation that is required [44]. By transmitting the previous feature map as-is to the following
layer using a shortcut path, which is an important characteristic of ResNet structures, the loss of
important residual information of the feature map, which is lost during convolution processing, can be
somewhat reduced. This feature map, which has passed through convolutional layers, finally goes
through an average pooling, which processes the average value within a window and recognizes the
label class through a fully connected layer. Due to this, degradation problems occurring when the
layers become deep are solved and the learning is optimized.
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The softmax function [48] can be applied to the fully convolutional layer output, as shown in
Equation (5).

σ(s)j =
esj

∑K
n=1 esn

, (5)

when the array of output neurons is set to s, the probability of the neurons belonging to the jth class is
obtained by dividing the value of the jth element by the sum of the values of all elements.

3.7. Finger Recognition Based on Score-Level Fusion

As shown in step (11) of Figure 1, the two matching scores obtained through the two CNNs
for finger shape and finger-vein recognition are combined through score-level fusion to obtain the
final matching score. In other words, as explained before, in finger-vein recognition, the scores of
genuine and imposter matches in the fully connected layer of Table 2 are calculated and used, and in
finger shape recognition, 2048 features in the average pooling layer of enrolled and input images are
extracted, and the Euclidean distance between these 2048 features is used as the matching distance.

As the scales of these two scores are different, it is necessary to convert them to the same numerical
range. Min-max normalization is conducted while using the maximum and minimum values of the
scores that were extracted based on training data from each recognition method to convert the score
range into a number between 0 and 1. The two normalized matching scores were used to compare the
recognition performance applying score-level fusion based on the weighted sum, weighted product,
Bayesian rule, and perceptron rule [49], as shown in Equations (6)–(9).

Sws = w × S1 + (1 − w)× S2, (6)

Swp = S1
w × S2

1−w, (7)

SB =
S1S2

(1 − S1)(1 − S2) + (S1S2)
, (8)

SP =
1

1 + e−(w0+w1S1+w2S2)
. (9)

Here, S1 and S2 are the scores of finger-vein and finger shape recognition, respectively. w, w0,
w1, and w2 represent the weighted values. The sum of w0, w1, and w2 is always 1. Based on the final
score obtained through score-level fusion, if the score is higher than the threshold, it is considered an
imposter, and if it is lower, it is considered to be a genuine match.

4. Experimental Results

4.1. Experimental Data

In this study, to verify the robustness of the proposed method under severe finger database
noise or when a part of the finger-vein area is damaged, two open databases were used. The first
database was the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein
database. This database is composed of six images from the index, middle, and ring fingers of both
hands of 106 people for a total of 3816 images (106 people × 2 hands × 3 fingers × 6 images) [50].
The second database is the Hong Kong Polytechnic University Finger Image Database (version 1),
which is composed of two sessions [35]. The first session is composed of six images from the index and
middle fingers of one hand of 156 people for a total of 1872 images (156 people × 2 fingers × 6 images).
The second session is composed of six images from the index and middle fingers of one
hand of 105 people from the 152 people of the first session for a total of 1260 images
(105 people × 2 fingers × 6 images). In this study, the experiment was conducted using the database
of the first session. Figure 7 shows an example of the database used in this study. From now on,
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the SDUMLA-HMT database shall be referred to as SDU-DB, and the Hong Kong Polytechnic University
Finger Image Database (version 1) shall be referred to as PolyU-DB.Sensors 2018, 18, 2296 13 of 33 
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Figure 7. Examples of input images of different trials from the same finger of one individual from each
database: (a) SDU-DB; (b) PolyU-DB.

SDU-DB is composed of 636 (106 × 2 × 3) classes and PolyU-DB is composed of 312 (156 × 2)
classes. The data of the different classes were tested using two-fold cross-validation to be included in
training and testing data. In other words, in the first validation, the images of 318 classes from SDU-DB
were used in training, and the remaining 318 were used in test. Similarly, the images of 156 classes
of the PolyU-DB were used in training, and the remaining 156 classes were used in test. Then, in the
second validation, the data used in training and testing were interchanged to conduct training and
testing one more time. The mean accuracy that was obtained through this double experiment was
used as the final recognition accuracy.

4.2. Data Augmentation

It is difficult to learn the many parameters and weights within the deep CNN structure that is
used in this study with only the training data explained in Section 4.3, and overfitting problems occur.
To solve these problems, the number of classes was maintained and the pixel position of the training
images of each class was converted using translation and cropping to conduct data augmentation,
which is a method that is used to increase the amount of training data. This data-augmentation method
based on image translation and cropping has been widely used in previous studies [51].

Finger shape images were translated and cropped by 1–5 pixels at a time in input images in four
directions (up, down, left, and right), and then resized to obtain 121 images. As described before,
in SDU-DB, 318 classes were used in training and 318 were used in test. Because six images exist in each
class in the training data of 318 classes, they were augmented 121 times through data augmentation
for a total of 230,868 (318 × 6 × 121) images. Similarly, in PolyU-DB, six images exist in each of
the 156 classes of the training data, which were augmented 121 times as well for a total of 113,256
(156 × 6 × 121) images.

Finger-vein images are divided into two different cases of the generation of training images for
genuine and imposter matching. In SDU-DB, when generating training images for genuine matching,
first, the six images of each class are translated and cropped by 1–4 pixels at a time randomly in the
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horizontal and vertical directions and then resized, augmenting them by 13 for a total of 78 images.
Then, 77 difference images between the one image to be used for enrollment and the remaining
77 images are obtained. This process is repeated for all of SDU-DB’s training classes (318 classes) to
finally obtain a total of 24,486 ((6 × 13 − 1) × 318) training images. When generating training images
for imposter matching, because the number of difference images between the images of the different
classes is significantly more than the number of training images that is used for genuine matching,
a total of 24,486 images are selected through random selection from all of the difference images to
balance the number of training images for genuine matching and imposter matching. Through this,
the CNN training is prevented from being biased towards any side. In PolyU-DB as well, the same
method is used to obtain 12,012 ((6 × 13 − 1) × 156) training images for genuine matching along with
the same amount for imposter matching. The description of the databases and augmented images
is shown in Table 3. This data-augmentation process was conducted only for training data. For the
testing data, non-augmented original images were used.

In this study, training and testing were conducted in a desktop computer environment (Intel®

Core™ i7-6700 CPU @ 3.4 GHz (4 cores) (Intel, Santa Clara, CA, USA) with 32 GB of RAM, and NVIDIA
GeForce GTX Titan X (3072 CUDA cores) (Nvidia, Santa Clara, CA, USA) with graphics memory of
12 GB [52]). The algorithm was implemented using Caffe Framework [53] and Microsoft Visual Studio
2013 [54].

Table 3. Descriptions of two databases used in our research.

SDU-DB PolyU-DB

Original images

# of images 3816 1872

# of people 106 156

# of hands 2 1

# of fingers
3

(index, middle,
and ring fingers)

2
(index and

middle fingers)

# of classes
(# of images per class)

636
(6)

312
(6)

Data augmentation
for training

Finger shape image # of images
230,868

(318 classes ×
6 images × 121 times)

113,256
(156 classes ×

6 images × 121 times)

Finger-vein image

# of images 48,972 24,024

# of images
for genuine matching

24,486
(6 images × (13 times
− 1) × 318 classes)

12,012
(6 images × (13 times
− 1) × 156 classes)

# of images
for imposter matching

(Random selection)
24,486 12,012

4.3. Training of CNN

The data-augmented input images were used to conduct learning using the proposed CNN
structure. For optimized CNN learning, the stochastic gradient descent (SGD) method was used [55].
This SGD method rapidly converges the training accuracy and loss while reducing the learning rate
with the value that was calculated by multiplying gamma values step by step so that the training does
not diverge at each epoch by mini-batch units. In this experiment, it was verified that convergence
occurs rapidly when using a learning rate of 0.001, a momentum of 0.9, a gamma of 0.1, a mini-batch of
20 for ResNet-50 (15 for ResNet-101), and a maximum epoch of 10. After five epochs, the learning rate
was reduced. The result of dividing the entire training data by the mini-batch size is called the number
of iterations. One epoch is when as much training has been performed as the total number of iterations.
Therefore, the total number of trainings is equivalent to the number of iterations × epoch. Table 4
shows an explanation of the initial parameters used during CNN training, and Figure 8 shows the
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training accuracy and loss of the VGG Net-16 [56] used for ResNet CNN and performance comparison
in this study. The x axis in Figure 8 shows the number of epochs, and the y axis shows the training loss
and accuracy of each epoch. As shown in Figure 8, through training, the accuracy converges near 100
and the loss becomes nearer to 0.
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PolyU-DB database. In (a)–(d), the left and right figures show the results of the first and second cross 
validation, respectively. 
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The finger-vein recognition accuracy was measured through the first experiment. As explained 
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Figure 8. Examples of loss and accuracy curves with training data of two-fold cross validation
according to databases. Using (a) finger-vein images in SDU-DB database, (b) finger shape images
in SDU-DB database, (c) finger-vein images in PolyU-DB database, and (d) finger shape images in
PolyU-DB database. In (a)–(d), the left and right figures show the results of the first and second cross
validation, respectively.

Table 4. Descriptions of initial parameters for training of various CNN models (“# of” represents “the
number of”).

Dataset # of Output
Class CNN Model Max. # of

Iteration (Epoch)
Mini-Batch

Size
Learning

Rate
Momentum/

Gamma

SDU-DB

Finger-vein 2

VGG Net-16 7651
(10) 64

0.001 0.9/0.1

ResNet-50 24,486
(10) 20

ResNet-101 32,648
(10) 15

Finger shape 318

VGG Net-16 36,073
(10) 64

ResNet-50 115,434
(10) 20

ResNet-101 153,912
(10) 15

PolyU-DB

Finger-vein 2

VGG Net-16 3753
(10) 64

ResNet-50 12,012
(10) 20

ResNet-101 16,016
(10) 15

Finger shape 156

VGG Net-16 17696
(10) 64

ResNet-50 56,628
(10) 20

ResNet-101 75,504
(10) 15

4.4. Testing of Proposed CNN-Based Recognition

4.4.1. Comparison of the Accuracy of Finger-Vein Recognition

The finger-vein recognition accuracy was measured through the first experiment. As explained in
Section 4.1, all of the experiments were conducted with two-fold cross-validation, and the average
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value of both testing errors were shown. The false acceptance rate (FAR) and false rejection rate
(FRR) are the methods that are used for recognition error rate measurement. FAR shows the error
rate of incorrectly judging different classes as genuine matches, and FRR shows the error rate of
incorrectly judging equal classes as imposter matches. In FAR and FRR, when both classes have
trade-off characteristics, the error at the moment when FAR and FRR become the same is called the
equal error rate (EER).

As shown in Table 5, the EER of the method that is proposed in this study is 3.3653% for SDU-DB
and 1.0779% for PolyU-DB. Moreover, the accuracy of the method proposed in this study and the
accuracy of the methods proposed in previous studies were compared. As for the previous methods,
the non-training-based Gabor filtering, maximum curvature [13], repeated line tracking [15], wide line
detector [16], and Gabor filtering + LBP [18] were compared with the VGG Net-16-based finger-vein
recognition method [32], which is training-based. As shown in Table 5, it was confirmed that the
accuracy of the method proposed in this study is higher than that of previous methods.

Moreover, Figure 9 shows the receiver operating characteristic (ROC) curves. Here, the genuine
acceptance rate (GAR) is calculated as 100−FRR (%). As described before, this was expressed as the
mean curve of the two ROC curves obtained through two-fold cross-validation. As shown in Figure 9,
it was confirmed that the accuracy of the finger-vein recognition method proposed in this study is
higher than that of existing methods.
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(a) SDU-DB and (b) PolyU-DB.

In addition, we included the additional experimental results by combining the different CNNs in
Tables 5 and 6 and Figures 9 and 10. Because the ResNet-50 and ResNet-101 show the better accuracies
than other model, as shown in Tables 5 and 6, the results by ResNet-50 and ResNet-101 models
are combined by score-level fusion of weighted sum, weighted product, Bayesian, and perceptron
rules of Equations (6)–(9) after score normalization according to comment. Experimental results
showed that the weighted product rule shows the higher accuracy than other rules in both cases
of finger-vein and finger shape recognition. Based on them, we included the accuracies by the
weighted product rule in Tables 5 and 6 and Figures 9 and 10. The accuracies by this score-level
fusion are a little higher than those only by ResNet-50 and ResNet-101, as shown in Tables 5 and 6
and Figures 9 and 10. However, the accuracies by the score-level fusion are lower than those by our
method based on the combination of finger-vein and finger shape recognition using either ResNet-50
or ResNet-101. In addition, the processing time increases by executing both ResNet-50 and ResNet-101
for the score-level fusion compared to that by our method.

As the next test, we included the additional experimental results by combining trained and
non-trained based methods in Tables 5 and 6 and Figures 9 and 10. In the case of finger-vein recognition,
the results by Gabor + LBP [18] and ResNet-101 are combined by score-level fusion of weighted sum,
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weighted product, Bayesian, and perceptron rules of Equations (6)–(9) after score normalization
according to comment. In case of finger shape recognition, the results by FD + PCA [28] and ResNet-50
for SDU-DB (ResNet-101 for PolyU-DB) are combined by score-level fusion of weighted sum, weighted
product, Bayesian, and perceptron rules of Equations (6)–(9) after score normalization. Experimental
results showed that the weighted product rule shows the higher accuracy than other rules in both
cases of finger-vein and finger shape recognition. Based on them, we included the accuracies by the
weighted product rule in Tables 5 and 6 and Figures 9 and 10. The accuracies by this score-level
fusion are a little higher than those only by ResNet-50 and ResNet-101, as shown in Tables 5 and 6
and Figures 9 and 10. However, the accuracies by the score-level fusion are lower than those by our
method based on the combination of finger-vein and finger shape recognition using either ResNet-50
or ResNet-101, respectively. In addition, the processing time increases by executing both ResNet model
and non-trained method for the score-level fusion when compared to that by our method.

Table 5. Comparison of finger-vein recognition accuracy (unit: %) (The “number*” is referred from [19]).

Method
EER

SDU-DB PolyU-DB

Non-training based method

Maximum Curvature [13] 4.54* 3.51

Repeated line tracking [15] 5.46* 2.17

Wide line detector [16] 22.7* 1.80

Gabor + LBP [18] 8.096 3.61

Training-based method

VGG Net-16 [32] 3.906 2.491

ResNet-50 3.4931 1.3435

ResNet-101 3.3653 1.0779

Score-level fusion of ResNet-50 and
ResNet-101 by weighted product rule 3.0653 0.8888

Non-training and
training-based method

Score-level fusion of Gabor + LBP [18]
and ResNet-101 by weighted product rule 3.2426 0.9138

Table 6. Comparison of finger shape recognition accuracy (unit: %) (*: ResNet-50 is used for SDU-DB
whereas ResNet-101 is used for PolyU-DB).

Method
EER

SDU-DB PolyU-DB

Non-training-based method
Fourier descriptor (FD) [29] 13.8753 22.855

FD + PCA [28] 13.574 22.8718

Training-based method

VGG Net-16 [56] 13.2758 19.2294

ResNet-50 7.98 10.914

ResNet-101 8.305 9.9553

Score-level fusion of ResNet-50 and
ResNet-101 by weighted product rule 7.5665 9.5631

Non-training and
training-based method

Score-level fusion of FD + PCA [28] and
ResNet * by weighted product rule 7.8147 9.8094
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4.4.2. Comparison of the Accuracy of Finger Shape Recognition

In the second experiment, the accuracy of finger shape recognition was measured. For finger
shape recognition, spectrogram images were generated in both input and enrolled images, as explained
in Section 3.4, to extract 2048 features from the average (AVG) pool layer of Table 2. Then, the Euclidian
distance between these features was calculated. The thereby calculated distance value was used to
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measure the recognition performance through genuine and imposter matching. The method that was
proposed in this study was compared against the non-training-based FD method used in a previous
study [29], which expresses the thickness data of the finger-vein horizontal length as a frequency
band, and against the existing method [28], which combines FD and PCA. Moreover, to compare the
performance of different CNN models, the accuracy obtained when using VGG Net-16 [16] was also
compared based on the same spectrogram images that were used in this research. As shown in Table 6
and Figure 10, it can be known that the recognition performance of the method used in this study is
higher than the accuracy of the existing method and the accuracy obtained when using VGG Net-16.

In the next experiment, we compared the accuracies of finger shape recognition based on one
channel gray spectrogram image and three channels color spectrogram image of Figure 11 because
the three channels color spectrogram image has been widely used in previous researches [38–40,42].
As shown in Table 7, the method using one channel gray spectrogram image outperforms that using
three channel color spectrogram image on both SDU-DB and PolyU-DB. The reason why the method
using three channel color spectrogram image shows lower accuracy is as follows. The three channel
color spectrogram image presents the frequency information by pseudo-colors, as shown in Figure 11,
and the level of discontinuity in this presentation is larger than that in one channel gray spectrogram
image using continuous gray level of Figure 4c, although the human visibility in three channel color
spectrogram image is better. This discontinuity causes the generation of incorrect filters of CNN,
which can reduce the recognition accuracy.

Table 7. Comparison of the accuracies of finger shape recognition according to one channel and three
channel spectrogram images (unit: %).

Method
EER

SDU-DB PolyU-DB

1 channel gray spectrogram image
(Proposed method)

1st fold 5.35 10.096
2nd fold 11.26 9.8146
Average 8.305 9.9553

3 channels color spectrogram image
1st fold 6.431 13.748
2nd fold 14.711 18
Average 10.571 15.874
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4.4.3. Comparison of the Accuracy of Multimodal Recognition of Finger-Vein and Finger Shape
According to Various Score-Level Fusion Methods

In the following experiment, the recognition performance of the various score-level fusion
methods explained in Section 3.7 was compared against the finger-vein and finger shape recognition
methods that were proposed in this study. Moreover, to compare the performance of various CNN
models, the accuracy obtained when VGG Net-16 was used [56], not the ResNet method used in this
study, was also compared. As shown in Table 8 and Figure 12, the perceptron rule-based method
displayed the best performance, and SDU-DB and PolyU-DB displayed an EER of 2.3445% and
0.7859%, respectively.

Table 8. Comparison of the accuracy of multimodal recognition according to various score-level fusion
methods (unit: %).

Method
EER

SDU-DB PolyU-DB

Model VGG Net-16 ResNet-50 ResNet-101 VGG Net-16 ResNet-50 ResNet-101

Score-level
fusion

Weighted sum 3.892 2.4718 2.4258 2.491 1.1145 0.8255
Weighted product 3.7217 2.4015 2.4088 2.3763 1.143 0.8265

Perceptron 3.8516 2.3445 2.398 2.4433 1.0235 0.7859
Bayesian 4.3621 4.3857 3.509 3.7196 1.0965 1.706
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Figure 13 shows the correct recognition cases by our method. Figure 13a,b show the correct 
acceptance cases, and the input images are correctly recognized as genuine matching, although there 
exists the misalignment of finger-vein positions between the enrolled and input images. Figure 13c,d 
present the correct rejection cases, which means the enrolled and input images are from a different 
class. As shown in Figure 13c,d, input images are correctly rejected as imposter matching based on 
the difference of finger shapes between the enrolled and input images, although finger-vein patterns 
are difficult to be observed in these two images due to low illumination. Figure 14 shows the error 
cases of the method proposed in this study. False rejection cases mainly occur because of the 
misalignment between finger-vein images due to finger position changes between the enrolled and 
recognized images (Figure 14a,b), and because of the difference between finger shape spectrogram 
images due to finger rolling (Figure 14a,b). False acceptance cases mainly occur because areas of 
finger are so dark (Figure 14c) or bright (Figure 14d). In addition, in the case of Figure 14d, the correct 
boundary of finger shape cannot be extracted by the highly saturated region inside of finger. To solve 

Figure 12. Comparison of ROC curves of multimodal recognition according to various score-level
fusions in the case using (a) ResNet-50 with SDU-DB, (b) ResNet-50 with PolyU-DB, (c) ResNet-101
with SDU-DB, (d) ResNet-101 with PolyU-DB, (e) VGG Net-16 with SDU-DB, and (f) VGG Net-16
with PolyU-DB.

Figure 13 shows the correct recognition cases by our method. Figure 13a,b show the correct
acceptance cases, and the input images are correctly recognized as genuine matching, although there
exists the misalignment of finger-vein positions between the enrolled and input images. Figure 13c,d
present the correct rejection cases, which means the enrolled and input images are from a different
class. As shown in Figure 13c,d, input images are correctly rejected as imposter matching based on the
difference of finger shapes between the enrolled and input images, although finger-vein patterns are
difficult to be observed in these two images due to low illumination. Figure 14 shows the error cases of
the method proposed in this study. False rejection cases mainly occur because of the misalignment
between finger-vein images due to finger position changes between the enrolled and recognized
images (Figure 14a,b), and because of the difference between finger shape spectrogram images due to
finger rolling (Figure 14a,b). False acceptance cases mainly occur because areas of finger are so dark
(Figure 14c) or bright (Figure 14d). In addition, in the case of Figure 14d, the correct boundary of finger
shape cannot be extracted by the highly saturated region inside of finger. To solve these problems,
the study on compensation method of severe finger rolling and illumination variation is necessary as
the future work.
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Figure 13. Examples of the correct recognition cases. (a,b) the correct acceptance cases with SDU-DB 
and PolyU-DB, respectively. (c,d) the correct rejection cases with SDU-DB and PolyU-DB, 
respectively. In (a–d), upper and lower images show the enrolled and input images, respectively. In 
(a–d), left and middle images present the input and corresponding finger ROI. The right-upper 
images show that for obtaining the difference image for finger-vein recognition, whereas the right-
lower images present the spectrogram images for finger shape recognition. 

Figure 13. Examples of the correct recognition cases. (a,b) the correct acceptance cases with SDU-DB
and PolyU-DB, respectively. (c,d) the correct rejection cases with SDU-DB and PolyU-DB, respectively.
In (a–d), upper and lower images show the enrolled and input images, respectively. In (a–d), left and
middle images present the input and corresponding finger ROI. The right-upper images show that for
obtaining the difference image for finger-vein recognition, whereas the right-lower images present the
spectrogram images for finger shape recognition.



Sensors 2018, 18, 2296 29 of 34Sensors 2018, 18, 2296 28 of 33 

 

 
(a) 

 
(b) 

Figure 14. Cont.



Sensors 2018, 18, 2296 30 of 34Sensors 2018, 18, 2296 29 of 33 

 

 
(c) 

 
(d) 

Figure 14. Examples of incorrect recognition cases. (a,b) False rejection cases with SDU-DB and 
PolyU-DB, respectively. (c,d) False acceptance cases with SDU-DB and PolyU-DB, respectively. In (a–
d), upper and lower images show the enrolled and input images, respectively. In (a–d), left and 
middle images present the input and corresponding finger ROI. The right-upper images show that 
for obtaining the difference image for finger-vein recognition whereas the right-lower images present 
the spectrogram images for finger shape recognition. 

Figure 14. Examples of incorrect recognition cases. (a,b) False rejection cases with SDU-DB and
PolyU-DB, respectively. (c,d) False acceptance cases with SDU-DB and PolyU-DB, respectively. In (a–d),
upper and lower images show the enrolled and input images, respectively. In (a–d), left and middle
images present the input and corresponding finger ROI. The right-upper images show that for obtaining
the difference image for finger-vein recognition whereas the right-lower images present the spectrogram
images for finger shape recognition.
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5. Conclusions

In this study, finger-vein and finger shape multimodal biometrics based on a deep convolutional
neural network (CNN) were proposed. Following are the details about what we achieved, the scientific
contributions, how much important, and from which point of view, our results are different from the
state of the art.

First, convex polygons were generated using the algorithm that finds the coordinates of the
outermost pixels of finger ROIs to calibrate the empty spaces of the images. Then, the robust finger
ROIs for misalignment were extracted after conducting in-plane rotation compensation based on the
angle of tilting measured based on the boundaries of the upper, lower, left, and right pixels.

Second, two-dimensional spectrogram images that express finger-thickness frequency-component
changes depending on the horizontal position of fingers were obtained and used as CNN inputs for
finger shape recognition.

Third, matching distances calculated based on the features of finger-vein and finger shape
obtained using ResNet models were score fused using various fusion methods, such as the weight
sum, weighted product, and perceptron.

Fourth, trained CNN models and algorithms developed in this study were open through [30],
so that other researchers can use them in fair performance evaluations.

Through an experiment conducted using two open databases, the accuracy of the method
proposed in this study was confirmed to be higher than the state of the art, and those of existing
methods and other CNN models. The experimental results revealed that most false rejection cases
occurred because of misalignment between finger-vein images due to finger position changes between
the enrolled and recognized images, and because of the difference between finger shape spectrogram
images due to finger rolling. False acceptance cases occurred because the regions of finger were so
dark or bright, and the correct boundary of finger shape could not be extracted by the highly saturated
region inside of finger.

To solve these problems, the study on compensation method of severe finger rolling and
illumination variation is necessary as the future work. Moreover, in future study, the possibility
of performance improvement by combining the multimodal recognition method proposed in this
study with scattering blur-restoration methods to reduce the blurring effects in finger-vein images
shall be investigated.
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