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Abstract: Parameter estimation of Poisson-Gaussian signal-dependent random noise in the complementary
metal-oxide semiconductor/charge-coupled device image sensor is a significant step in eliminating noise.
The existing estimation algorithms, which are based on finding homogeneous regions, acquire the pair
of the variances of noise and the intensities of every homogeneous region to fit the linear or piecewise
linear curve and ascertain the noise parameters accordingly. In contrast to the existing algorithms, in this
study, the Poisson noise samples of all homogeneous regions in every block image are pieced together to
constitute a larger sample following the mixed Poisson noise distribution; then, the mean and variance of
the mixed Poisson noise sample are deduced. Next, the mapping function among the noise parameters
to be estimated—variance of Poisson-Gaussian noise and that of Gaussian noise corresponding to the
stitched region in every block image—is constructed. Finally, the unbiased estimations of noise parameters
are calculated from the mapping functions of all the image blocks. The experimental results confirm that
the proposed method can obtain lower mean absolute error values of estimated noise parameters than the
conventional ones.

Keywords: parameter estimation; signal-dependent random noise; numerical characteristic of
mixed Poisson noise samples; complementary metal-oxide semiconductor/charge-coupled device
(CMOS/CCD) image sensor

1. Introduction

In digital imaging systems, images are deteriorated by random noise coming from the complementary
metal-oxide semiconductor/charge-coupled device (CMOS/CCD) image sensor [1–16]. Compared with
the additive signal-independent noise model, the signal-dependent noise model is more accurate at
characterizing random noise of the CMOS/CCD image sensor [1–12]. Most researchers assumed that
the signal-dependent noise model of the digital imaging sensor is cond as a Poisson-Gaussian noise
model and the validity of the Poisson–Gaussian noise model was certified by CMOS sensors from Nokia
camera phones, CCD sensors from Fujifilm cameras and CMOS sensors from Canon cameras [1–12].
The Poisson-Gaussian noise model is composed of a signal-dependent term accounting for photon
noise (Poisson) and a signal-independent term accounting for the remaining noise in the readout data
(Gaussian) [1], as shown in (1).

y(m, n) = x(m, n) + nP−G(x(m, n)) = x(m, n) + ηp(x(m, n)) + ηg(m, n) (1)
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In (1), m and n are the horizontal and vertical coordinates of the image pixel, respectively, y(m,n)
is the noisy pixel value and x(m,n) is the noiseless value. Further, ηg(m, n) ∼ N(0, b) is the zero-mean
signal-independent Gaussian noise, ηp(x(m, n)) is the signal-dependent Poisson noise and the mean
and variance of ηp(x(m, n)) are equal to ax(m, n). Moreover, a is the variance of noise that is associated
with analog gain of the CMOS/CCD image sensor and b is the variance of noise that is related to readout
noise of the CMOS/CCD image sensor [1]. In this study, noise parameters, a and b, are estimated.

Because the Gaussian noise and Poisson noise are uncorrelated, (2) can be deduced from (1).

σ2
nP−G

= ax + b (2)

In (2), σ2
nP−G

is the variance of noise nP−G.
Parameter estimation is a vital step in achieving a noiseless image. Many algorithms for estimating

parameters of the Poisson–Gaussian noise model were presented [1,2,5–7]. Owing to the linear relationship
between the pixel intensity and the variance of noise, as verified in (2) and the intensity similarity of pixels
in the homogeneous region, the main focus of most estimation algorithms is to acquire the parameters of
the signal-dependent noise by finding the homogeneous regions [1,5,6]. In [1], analysis and smoothing
in wavelets were used to ascertain the local estimation pairs of the pixel intensity and noise variance.
Then, the maximum-likelihood approach was employed to fit the global noise model function. In [5], image
patches were classified based on their intensity and variance for finding the homogeneous regions that
best represent the noise. Then, the weights of the cluster of connected patches were calculated based on
the degree of similarity to the noise model. In [6], the true parameter values of Poisson-Gaussian noise
were estimated by searching for intersections of the unitary variance contours. Furthermore, methods in
other related works did not strive to find the homogeneous regions to address this problem. For example,
expectation-maximization was employed to estimate the parameters of Poisson-Gaussian noise in [2]. In [7],
the generic Poisson-Gaussian noise model was simplified to a Gaussian-Gaussian noise model and the least
squares method was used to estimate the noise model parameters.

The general idea of the existing estimation algorithms based on finding homogeneous regions is to
first calculate the noise variance and noiseless intensity of every homogeneous region; then, the pairs
of noise variances and noiseless intensities obtained from all homogeneous regions are used to fit the
linear or piecewise linear curve; finally, the noise parameters from the fitting curve are acquired.

With consideration of effectiveness to detect and denoising of images, the proposed estimation method
is also based on finding homogeneous regions to determine the noise parameters. However, different from
the existing estimation algorithms, the proposed algorithm estimates the noise parameters by deriving
the mean and variance of the mixed Poisson noise samples that are composed of the Poisson noise of all
homogeneous regions in every block image and by building the mapping function among noise parameters
to be estimated—variance of Poisson-Gaussian noise and that of Gaussian noise corresponding to the
stitched region in every block image.

In this study, the input image is divided into 16 blocks. Then, all homogeneous regions in every block
image are detected and denoised in the wavelet domain. Next, all the denoised homogeneous regions are
pieced together to form a new stitched image in every block image and histogram analysis is used to obtain
the intensities and the corresponding number of every intensity in the stitched noiseless image of every block
image. Thus, the mixed Poisson noise samples corresponding to the stitched image in every block image
can be obtained according to the definition of the signal-dependent Poisson noise in (1). Next, the mean
and variance of the mixed Poisson noise samples in every block image are deduced. The mapping function
among noise parameters to be estimated—variance of Poisson-Gaussian noise and that of Gaussian noise
corresponding to the stitched region of every block image—is constructed accordingly. Finally, the unbiased
estimations of noise parameters are obtained from the mapping functions of 16 block images.

The remainder of the paper is organized as follows. Section 2 presents the proposed algorithm.
The experimental results and performance comparison with other state-of-the-art parameter estimation
approaches are reported in Section 3. Section 4 concludes our study.
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2. Proposed Method

The flowchart of the proposed method is shown in Figure 1. It is comprised of the following eight
main steps.

Figure 1. Flowchart of the proposed algorithm.

Step 1©: Block the input noisy image. With consideration of computational efficiency, the input
noisy image is divided into 16 large blocks.

Step 2©: Detect the homogeneous regions of every block in the wavelet domain. Owing to the
good performance of detecting the homogeneous region in the wavelet domain in [1], each block image
is decomposited into four sub-band images LL, HL, LH and HH, as shown in Figure 2.

Figure 2. Flowchart of the image wavelet decomposition.

The LL sub-band image consists of wavelet coefficients that are obtained by performing low-pass
wavelet filtering in the row and column of the block image; the HL sub-band image consists of wavelet
coefficients that are obtained by performing high-pass wavelet filtering in the row and low-pass wavelet
filtering in the column of the block image; the LH sub-band image consists of wavelet coefficients
that are obtained by performing low-pass wavelet filtering in the row and high-pass wavelet filtering
in the column of the block image; and the HH sub-band image consists of wavelet coefficients that
are obtained by performing high-pass wavelet filtering in the row and column of the block image.
With respect to the orthogonality and regularity, the Daubechies wavelet basis (db6) is employed in
this study. With consideration of complexity and accuracy of computation, the standard deviation of
the 5 × 5 slipping window in the LL sub-band is calculated and compared with the threshold shown
in (3) to ascertain the homogeneous region.
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
µLL = 1

25

5
∑

i=1

5
∑

j=1
W{LL}(i, j)

SDLL =

√
5
∑

i=1

5
∑

j=1
(W{LL}(i,j)−µLL)

2

25 < δ

(3)

In (3), W{LL} is the wavelet coefficient of the 5 × 5 slipping window in the LL sub-band, µLL is the
mean of the 5 × 5 slipping window in the LL sub-band, SDLL denotes the standard deviation of the
5 × 5 slipping window in the LL sub-band and δ represents the threshold of SDLL. If the standard
deviation of the 5 × 5 slipping window is less than δ, this region is homogeneous and the coordinates
of the central wavelet coefficient in the 5 × 5 slipping window are recorded.

Furthermore, the pixel intensities in the homogeneous region are close and the maximal intensity
difference of two pixels in the homogeneous region can be set to 15, according to the literature [17].
The setting of threshold δ of SDLL in (3) is explained in Figure 3. The base value of the homogeneous
region is the minimal value of this homogeneous region. Because the LL sub-band image is obtained
by performing low-pass filtering between adjacent pixels in the row and column, the range of LL
wavelet coefficient corresponding to the homogeneous region is from base value corresponding
to this homogenous region to base value +7.5. That is, the value range of all the LL wavelet
coefficients in the 5 × 5 window is from the base value of this homogeneous region to base value +7.5.
Through calculation, the value of SDLL in the 5 × 5 window will reach its maximum when there are
13 LL wavelet coefficients equal to base value +7.5 and the remaining 12 LL wavelet coefficients equal
to base value. As a result, δ in (3) is set to the maximum of SDLL, that is, δ = 3.75.

Figure 3. Setting method of threshold.

Step 3©Combine all homogeneous 5× 5 windows to form the stitched sub-band image. According
to the coordinates of the central wavelet coefficient in the 5 × 5 slipping window, all homogeneous
windows in the LL sub-band of each block are extracted and stitched to form a new stitched image.
The same operation will be performed for LH, HL and HH sub-bands and the stitched images in
LH, HL and HH sub-bands can be obtained accordingly. The extraction and combination process is
depicted in Figure 4. The stitched wavelet coefficients in LL, LH, HL and HH wavelet sub-band can be
reconstructed as a stitched image in every block, denoted as ySi, i = 1~ 16.

Step 4© Parameter estimation of Gaussian noise of the stitched image in every block. The median
absolute deviation (MAD) is used to estimate the standard deviation of Gaussian noise of the stitched
image ySi [7] as shown in (4).

σ̂g−Si =
Median(|W{HH}|)

0.6745
, i = 1 ∼ 16 (4)

In (4), σ̂g−Si (i = 1~16) is the estimated standard deviation of the Gaussian noise of the stitched
image ySi in every block, Median( ) is the MAD value and W{HH} is the HH sub-band wavelet
coefficient of the stitched image in every block shown in Figure 4. It can be determined from (1) that
bi = σ̂2

g−Si
, i = 1~ 16.
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Figure 4. Extracting all homogeneous 5 × 5 windows to form the stitched sub-band image.

Step 5© Denoise the stitched sub-band image of every block. In order to obtain the denoised
stitched sub-band image, the mean values of the 5 × 5 slipping window in LH, HL and HH
sub-bands—which are located in the corresponding position as the 5 × 5 slipping window in the LL
sub-band—are calculated as (5). Then, all the wavelet coefficients of the 5 × 5 slipping window in LH,
HL and HH sub-bands are replaced by these three mean values.

µ{LH,HL,HH} =
1

25

5
∑

i=1

5
∑

j=1
W{LH, HL, HH}(i, j) (5)

In (5), µ{LH,HL,HH} are the mean values of the 5 × 5 slipping window in the LH, HL and HH
sub-bands and W{LH, HL, HH} are the wavelet coefficients of the 5 × 5 slipping window in LH, HL
and HH sub-bands of the noisy image.

After all the homogeneous regions are denoised, the block image in the wavelet domain is
translated into a temporal image, denoted as Si, i = 1~ 16.

Step 6© Calculate the variance and mean of the mixed Poisson noise samples. According to (1),
the Poisson-Gaussian noise corresponding to the noiseless stitched region Si is denoted as nP−G−Si

(i = 1~16); the mixed Poisson noise corresponding to the noiseless stitched region Si is denoted as
ηp−Si (i = 1~16); and the Gaussian noise corresponding to the noiseless stitched region Si is denoted as
ηg−Si (i = 1~16). The forming process of the mixed Poisson noise ηp−Si (i = 1~16) corresponding to the
noiseless stitched image Si is shown in Figure 5.

Figure 5. Forming process of the mixed Poisson noise ηp−Si .

It can be seen from Figure 5 that the histogram analysis offers the pixel value x (x = 0~255) and the
corresponding pixel number (denoted as ni(x) (i = 1~16, x = 0~255)) of every noiseless stitched image (denoted
as Si (i = 1~16)). Because the parasitic Poisson noise is signal-dependent and ηp(x) ∼ P(ax), as shown
in (1), the Poisson noise samples ηpi(x) (i = 1~16, x = 0~255) and the corresponding sample size ni(x)
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(i = 1~16, x = 0~255) can be obtained according to histogram analysis. All the noise samples ηpi(x) constitute
the mixed Poisson noise sample ηp−Si =

{
ηpi(0), ηpi(1), ηpi(2) . . . . . . ηpi(255)

}
(i = 1~16) corresponding to

Si (i = 1~16) and the sample size of ηp−Si can be represented as Ni (i = 1~16). As a result, Ni =
255
∑

x=0
ni(x)

(i = 1~16) and the unbiased estimations of the mean of ηp−Si (i = 1~16) can be obtained as (6).

µ̂p−Si =

Ni
∑

k=1
ηp−Si (k)

Ni
=

255
∑

x=0

ni(x)
∑

j=1
ηpi(x,j)

Ni
=

255
∑

x=0
ni(x)µ̂pi(x)

Ni
=

255
∑

x=0

ni(x)
Ni

(aix) (6)

In (6), µ̂p−Si is the unbiased estimation of the mean of the mixed Poisson noise sample ηp−Si and
µ̂pi(x) is the unbiased estimation of mean of Poisson noise samples ηpi(x).

The unbiased estimations of the variance of ηp−Si (i = 1~16) can be obtained as (7).

σ̂2
p−Si

= 1
(Ni−1)

Ni
∑

k=1

(
ηp−Si (k)− µ̂p−Si

)2 (7)

Substituting µ̂p−Si with (6), the unbiased estimations of the variance of ηp−Si can be obtained as (8).

σ̂2
p−Si

= 1
(Ni−1)

Ni
∑

k=1

(
ηp−Si (k)− µ̂p−Si

)2

= 1
(Ni−1)

Ni
∑

k=1

ηp−Si (k)−
255
∑

x=0
ni(x)µ̂pi(x)

Ni


2

= 1
(Ni−1)

 255
∑

X=0

Ni(x)
∑

J=1

ηpi(x, j)−
255
∑

x=0
ni(x)µ̂pi(x)

Ni


2

= 1
(Ni−1)

 255
∑

X=0

Ni(x)
∑

J=1

ηpi(x, j)− µ̂pi(x)−
255
∑

x=0
ni(x)µ̂pi(x)

Ni
+ µ̂pi(x)


2

= 1
(Ni−1)

[
255
∑

X=0
(ni)(x)− 1)σ̂2

pi(x) + 1
Ni

(
254
∑

X=0

255
∑

k=x+1
ni(x)ni(k)

(
µ̂pi(x)− µ̂pi(k)

)2
)]

= 1
(Ni−1)

[
255
∑

X=0
(ni)(x)− 1)(aix) + 1

Ni

(
254
∑

X=0

255
∑

k=x+1
ni(x)ni(k)(aix− aik)

2

)]
i = 1 ∼ 16

(8)

In (8), σ̂2
p−Si

is the unbiased estimation of variance of the mixed Poisson noise sample ηp−Si and
σ̂2

pi(x) is the unbiased estimation of the variance of Poisson noise samples ηpi(x).
Step 7© Build the mapping function among the noise parameters to be estimated, variance of

nP−G−Si and variance of ηg−Si . nP−G−Si can be obtained by calculating the difference between the
noisy stitched image ySi and the noiseless stitched image Si, i = 1~16. The unbiased estimation of
variance of nP−G−Si (i = 1~16) can be calculated by (9).

µ̂nP−G−Si
=

Ni
∑

k=1
nP−G−Si (k)

Ni

σ̂2
nP−G−Si

= 1
(Ni−1)

Ni
∑

k=1

(
nP−G−Si (k)− µ̂nP−G−Si

)2
, i = 1 ∼ 16 (9)

In (9), µ̂nP−G−Si
is the unbiased estimation of the mean of nP−G−Si and σ̂2

nP−G−Si
denotes the

unbiased estimation of the variance of nP−G−Si .
As the Poisson noise and Gaussian noise are irrelevant, the variance of nP−G−Si is the sum of the

variance of ηp−Si and the variance of ηg−Si , as shown in (10).

σ̂2
nP−G−Si

= σ̂2
p−Si

+ σ̂2
g−Si

(10)

From (7) to (10), let Li =

255
∑

x=0
(ni(x)−1)x

Ni−1 and Mi =

254
∑

x=0

255
∑

k=x+1
ni(x)ni(k)(x−k)2

Ni(Ni−1) . Thus, (11) can be obtained.
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aiLi + ai
2Mi = σ̂2

nP−G−Si
− σ̂2

g−Si
, i = 1 ∼ 16 (11)

As a result, the estimation of parameter ai in every block can be acquired from (12).

ai =
−Li±

√
(Li)

2−4×Mi×
(

σ̂2
g−Si
−σ̂2

nP−G−Si

)
2Mi

, i = 1 ∼ 16 (12)

In (12), the values of ai (i = 1~16) are positive.
Step 8© Perform unbiased parameter estimation of 16 block images. From (7) and (12), the parameters

a and b in each block image are acquired. To improve the estimation accuracy, the unbiased estimations of a
and b in 16 blocks are calculated as (13).

â =

16
∑

i=1
ai

16 , b̂ =

16
∑

i=1
σ̂2

g−Si

16 (13)

3. Simulation Results and Comparison

The proposed method is compared with the parameter estimation methods in [1,5] that are based
on finding the homogeneous region. In addition, the proposed method is compared with the parameter
estimation method in [7]; the latter method is not based on finding the homogeneous region but it has
good performance in estimating the noise parameter.

3.1. Simulation and Comparison Results with Kodak Test Image

In order to evaluate different estimation methods fairly and objectively, ten 512 × 768 noiseless
and standard test images supplied by Kodak company, as shown in Figure 6, are employed as testing
images. The sets of noise parameters, a = {0.005, 0.010, 0.015} and b = {0.016, 0.036, 0.064}, are placed
into the R, G, B channels of ten testing images respectively, to construct the noisy images.

Figure 6. Cont.
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Figure 6. Ten Kodak standard noiseless testing images.

Figure 7 shows the average values of estimated signal-dependent noise parameters a and b in R, G, B
channels of the ten Kodak testing images, which were processed by different parameter estimation methods.
In Figure 7, es_a is the estimated value of parameter a and es_b is the estimated value of parameter b.
Figure 8 presents the average estimation values of ten testing images processed by different parameter
estimation methods, where sit 1 means {a = 0.005 and b = 0.0016}, sit 2 means {a = 0.005 and b = 0.0036},
sit 3 means {a = 0.005 and b = 0.0064}, sit 4 means {a = 0.01 and b = 0.0016}, sit 5 means {a = 0.01 and
b = 0.0036}, sit 6 means {a = 0.01 and b = 0.0064}, sit 7 means {a = 0.015 and b = 0.0016}, sit 8 means {a = 0.015
and b = 0.0036}, sit 9 means {a = 0.015 and b = 0.0064}.

Figures 7 and 8 clearly show that the estimated value of parameter a processed by the proposed
method is closer to the preset parameter than that processed by other methods, even when the Poisson
noise component is strong. On the contrary, the proposed method obtains comparable results to those
of the other methods when the Gaussian noise component is strong.
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Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. The average values of estimated noise parameters in R, G, B channels of the ten Kodak testing
images, by using different estimation methods.
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Figure 8. The average values of estimated noise parameters of the ten Kodak testing images, by using
different estimation methods.

To assess the complexity of different estimation methods, the running times of Matlab 7.1
implementations to process the Kodak testing images are listed (a = 0.015 and b = 0.0064). The hardware
simulation environments consisted of an Intel Core™ 2 1.8 GHz CPU and 1 GB RAM. The average
running times of the green channel of ten testing images are given as follows: that of the method
in [1] was 12 s; the method in [5] was 5 s; that in [7] was 4 s; and that of the proposed method was
2 s. It should be emphasized that this comparison only serves as a reference; the running times also
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heavily depend on the optimization of the program codes. It is observed that the proposed method is
faster than other methods for the given noise parameters.

3.2. Simulation and Comparison Results with Actual Image of CMOS Image Sensor

The aforementioned parameter estimation methods are assessed with the actual 640 × 480 images
of CMOS image sensor in Figure 9. Every testing image in Figure 9 is taken by ov5640 CMOS image
sensor 50 times to the same static scene; then, the 50 static images are averaged to form the noiseless
database. Next, the sets of noise parameters, a = {0.005, 0.010, 0.015} and b = {0.016, 0.036, 0.064},
are placed into the R, G, B channels of six testing images to construct the noisy images.

Figure 9. The actual testing images captured from CMOS image sensor.

Figure 10 shows the average mean absolute error (MAE) values of estimated signal-dependent
noise parameters a and b of the R, G, B channels of the six testing images. The meanings of sit 1-sit
9 in Figure 10 are similar to those in Figure 8. The MAE values of a and b can be calculated by
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(14). The smaller the MAE value is, the closer the estimated parameter value is to the preset noise
parameter value. 

MAE_a = 1
10

10
∑

i=1
|âi − a|

MAE_b = 1
10

10
∑

i=1

∣∣∣b̂i − b
∣∣∣ (14)

In (14), MAE_a and MAE_b are the MAE values of noise parameters a and b, respectively. In (14),
a and b are the given noise parameters and â and b̂ are the estimated noise parameters of the green
channel of the ten testing images.

Figure 10. The average MAE values of estimated noise parameters of the six actual testing images from
CMOS image sensor, by using different estimation methods.
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It can be seen from Figure 10 that the proposed method stably outperforms the other methods even
when the Poisson noise component is strong; further, the proposed method obtains results comparable
to those of the other methods when the Gaussian noise component is strong. A similar conclusion
can be derived from Figures 7, 8 and 10 that the proposed estimation method can steadily obtain
a more accurate estimated value of the Poisson noise parameter than other methods. This is because
parameter estimation is based on the numerical characteristics of mixed Poisson noise samples.

4. Conclusions

In this paper, a parameter estimation method of signal-dependent random noise based on the
numerical characteristics of mixed Poisson noise samples was proposed. By deducing the mean and
variance of the mixed Poisson noise samples corresponding to the stitched region and building the
mapping function among the parameters to be estimated—variance of the Poisson-Gaussian noise and
that of Gaussian noise corresponding to the stitched region in every block image—the noise parameters
were estimated. The experimental results indicated that the proposed method achieved lower MAE
values of the noise parameter and lower computational complexity than the existing algorithms.

Author Contributions: Y.Z. conceived and designed the experiments; Y.Z. performed the experiments; J.X.
analyzed the data; G.W. contributed analysis tools; Y.Z. wrote the paper.

Funding: This paper was supported by the National Natural Science Foundation of China under Grant
No. 61372156.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Foi, A.; Trimeche, M.; Katkovnik, V.; Egiazarian, K. Practical Poissonian-Gaussian noise modeling and fitting
for single-image raw data. IEEE Trans. Image Process. 2008, 17, 1737–1754. [CrossRef] [PubMed]

2. Jezierska, A.; Chaux, C.; Pesquet, J.C.; Talbot, H.; Engler, G. An EM approach for time variant Poisson-
Gaussian model parameter estimation. IEEE Trans. Image Process. 2014, 62, 17–30. [CrossRef]

3. Zhang, J.; Hirakawa, K.; Jin, X. Quantile analysis of image sensor noise distribution. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia,
19–24 April 2015; pp. 19–24.

4. Zhang, J.; Hirakawa, K. Improved denoising via Poisson mixture modeling of image sensor noise.
IEEE Trans. Image Process. 2017, 26, 1565–1578. [CrossRef] [PubMed]

5. Rakhshanfar, M.; Amer, M.A. Estimation of Gaussian, Poissonian-Gaussian and processed visual noise and
its level function. IEEE Trans. Image Process. 2016, 25, 4172–4185. [CrossRef] [PubMed]

6. Mäkitalo, M.; Foi, A. Noise parameter mismatch in variance stabilization, with an application to
Poisson–Gaussian noise estimation. IEEE Trans. Image Process. 2014, 23, 5348–5359. [CrossRef] [PubMed]

7. Jeong, B.G.; Kim, B.C.; Moon, Y.H.; Eom, I.K. Simplified noise model parameter estimation for
signal-dependent noise. Signal Process. 2014, 96, 266–273. [CrossRef]

8. Luisier, F.; Blu, T.; Unser, M. Image denoising in mixed Poisson–Gaussian noise. IEEE Trans. Image Process.
2011, 20, 696–708. [CrossRef] [PubMed]

9. Begovic, B.; Stankovic, V.; Stankovic, L. Contrast enhancement and denoising of Poisson and Gaussian
mixture noise for solar images. IEEE Int. Conf. Image Process. 2011, 6626, 185–188. [CrossRef]

10. Benvenuto, F.; La Camera, A.; Theys, C.; Ferrari, A.; Lantéri, H.; Bertero, M. The study of an iterative
method for the reconstruction of images corrupted by Poisson and Gaussian noise. Inverse Probl. 2012, 24,
35016–35020. [CrossRef]

11. Yang, S.; Lee, B.U. Poisson–Gaussian noise reduction using the hidden Markov model in contourlet domain
for fluorescence microscopy images. PLoS ONE 2015, 10, e0136964. [CrossRef] [PubMed]

12. Jezierska, A.; Chouzenoux, E.; Pesquet, J.C.; Talbot, H. A primal-dual proximal splitting approach for
restoring data corrupted with Poisson–Gaussian noise. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 25–30.

http://dx.doi.org/10.1109/TIP.2008.2001399
http://www.ncbi.nlm.nih.gov/pubmed/18784024
http://dx.doi.org/10.1109/TSP.2013.2283839
http://dx.doi.org/10.1109/TIP.2017.2651365
http://www.ncbi.nlm.nih.gov/pubmed/28092536
http://dx.doi.org/10.1109/TIP.2016.2588320
http://www.ncbi.nlm.nih.gov/pubmed/27411221
http://dx.doi.org/10.1109/TIP.2014.2363735
http://www.ncbi.nlm.nih.gov/pubmed/25343760
http://dx.doi.org/10.1016/j.sigpro.2013.10.002
http://dx.doi.org/10.1109/TIP.2010.2073477
http://www.ncbi.nlm.nih.gov/pubmed/20840902
http://dx.doi.org/10.1109/ICIP.2011.6115829
http://dx.doi.org/10.1088/0266-5611/24/3/035016
http://dx.doi.org/10.1371/journal.pone.0136964
http://www.ncbi.nlm.nih.gov/pubmed/26352138


Sensors 2018, 18, 2276 17 of 17

13. Lebrun, M.; Colom, M.; Morel, J.M. Multiscale image blind denoising. IEEE Trans. Image Process. 2015, 24,
3149–3161. [CrossRef] [PubMed]

14. Lee, M.S.; Park, S.W.; Kang, M.G. Denoising algorithm for CFA image sensors considering inter-channel
correlation. Sensors 2017, 17, 1236. [CrossRef] [PubMed]

15. Wang, F.; Wang, Y.; Yang, M.; Zhang, X.; Zheng, N. A denoising scheme for randomly clustered noise removal
in ICCD sensing image. Sensors 2017, 17, 233. [CrossRef] [PubMed]

16. Liu, Z.; Xu, J.; Wang, X.; Nie, K.; Jin, W. A fixed-pattern noise correction method based on gray value
compensation for TDI CMOS image sensor. Sensors 2015, 15, 23496–23513. [CrossRef] [PubMed]

17. Zhang, Y.; Wang, G.; Xu, J.; Shi, Z.; Dong, D. The modified gradient edge detection method for the color filter
array image of the CMOS image sensor. Opt. Laser Technol. 2014, 62, 73–81. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2015.2439041
http://www.ncbi.nlm.nih.gov/pubmed/26080052
http://dx.doi.org/10.3390/s17061236
http://www.ncbi.nlm.nih.gov/pubmed/28555044
http://dx.doi.org/10.3390/s17020233
http://www.ncbi.nlm.nih.gov/pubmed/28134759
http://dx.doi.org/10.3390/s150923496
http://www.ncbi.nlm.nih.gov/pubmed/26389917
http://dx.doi.org/10.1016/j.optlastec.2014.02.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Method 
	Simulation Results and Comparison 
	Simulation and Comparison Results with Kodak Test Image 
	Simulation and Comparison Results with Actual Image of CMOS Image Sensor 

	Conclusions 
	References

