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Abstract: Vision sensor systems (VSS) are widely deployed in surveillance, traffic and industrial
contexts. A large number of images can be obtained via VSS. Because of the limitations of vision
sensors, it is difficult to obtain an all-focused image. This causes difficulties in analyzing and
understanding the image. In this paper, a novel multi-focus image fusion method (SRGF) is proposed.
The proposed method uses sparse coding to classify the focused regions and defocused regions
to obtain the focus feature maps. Then, a guided filter (GF) is used to calculate the score maps.
An initial decision map can be obtained by comparing the score maps. After that, consistency
verification is performed, and the initial decision map is further refined by the guided filter to
obtain the final decision map. By performing experiments, our method can obtain satisfying fusion
results. This demonstrates that the proposed method is competitive with the existing state-of-the-art
fusion methods.
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1. Introduction

A large number of images can be obtained via vision sensor systems (VSS). These images are
employed in many applications, such as surveillance, traffic and industrial, as is shown in Figure 1.
For example, these images can be used to build an urban surveillance system, as in [1]. Besides, these
images can be utilized to monitor objects and behavior in [2]. Images with sufficient information are
required to achieve these goals. However, Since the depth of field (DOF) is limited in vision sensors,
it is hard to obtain an all-focused image, which can provide more information compared to the single
multi-focus image. This causes difficulties for VSS in analyzing and understanding the image. In
addition, it also causes redundancy in storage. To address those problems, multi-focus image fusion
technology can fuse the complementary information from two or more defocused images into a single
all-focused image. Compared with each defocused image, the fused image with extended DOF can
provide more information and can thus better interpret the scene.

Of the popular multi-focus image fusion methods, there are two major branches [3]: spatial
domain methods and transform domain methods.

Sensors 2018, 18, 2143; doi:10.3390/s18072143 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9675-9016
http://dx.doi.org/10.3390/s18072143
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2143 2 of 17

Figure 1. Applications of vision sensor systems (VSS) in real life.

Spatial domain methods directly fuse source images via specific fusion rules. The primitive
way is to calculate the mean of the source images pixel by pixel. To avoid the same treatment of
pixels, Tian et al. [4] used a normalized weighted aggregation approach. Li et al. [5] decomposed the
source image into the detail layer and base layer, then fused them by using a guided filter. However,
the pixel-based fusion methods are often subject to noise and misregistration. To further enhance
the fusion performance, some block- and region-based methods have been proposed. For instance,
Li et al. [6] chose the image blocks based on spatial frequency. Miao et al. [7] measured the activity
of blocks based on image gradients. Song et al. [8] fused source images adaptively by using the
weighted least squares filter. Jian et al. [9] decomposed images into multiple scales and fused them
through a rolling guidance filter. Zuo et al. [10] fused images based on region segmentation. Besides
spatial frequency and image gradients, the energy of Laplacian method is also an important method
to evaluate the sharpness measures. Although the influences of noise and misregistration become
smaller, those methods often suffer from block artifacts and contrast decrease.

Unlike the former, the main idea of transform domain methods is to fuse multi-focus images
in the transform domain. Those methods include the Laplacian pyramid (LP) [11], the ratio of the
low-pass pyramid (RP) [12], the gradient pyramid (GP) [13], discrete wavelet transform (DWT) [14],
dual-tree complex wavelet transform (DTCWT) [15] and discrete cosine harmonic wavelet transform
(DCHWT) [16]. Nowadays, some multi-scale geometry analysis tools are employed. For instance,
Tessens et al. [17] used curvelet transform (CVT) to decompose multi-focus images. Zhang et al. [18]
used nonsubsampled contourlet transform (NSCT) to decompose multi-focus images. Huang et al. [19]
fused source images in the non-subsampled shearlet transform domain. Wu et al. [20] used the
hidden Markov model to fuse multi-focus images. Besides the transform domain methods listed
above, some new transform domain method such as independent component analysis (ICA) [21] and
sparse representation (SR) [22,23] are also used to fuse multi-focus image. To avoid block effects and
undesirable artifacts, those methods often employ the sliding window technique to obtain image
patches. For instance, SR-based image fusion methods divide source images into patches via a sliding
window with a fixed size and transform the image patches to sparse coefficients, then apply the
L1-norm to the sparse coefficients to measure the activity level.

Although some of the multi-focus fusion methods perform well, there are still some drawbacks
that remain to be settled. For spatial domain methods, some of them are subject to noisy and
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misregistration, and block effects may be caused in the fused images. Besides, some methods also result
in increased artifacts near the boundary, decreased contrast and reduced sharpness. For transform
domain methods, the fusion rules are based on the relevant coefficients; thus, a small change in the
coefficients would cause a huge change in pixel values, which would cause undesirable artifacts.

Sparse representation [22] has drawn much attention in recent years for its outstanding ability
in computer vision tasks and machine learning, such as image denoising [24], object tracking [25,26],
face recognition [27] and image super-resolution [28–30]. Similarly, sparse representation has achieved
great success in the field of multi-focus image fusion [31–35]. Yang et al. [31] brought SR to multi-focus
image fusion. Based on this work, Liu et al. [32] fused the multi-focus images based on SR with
adaptive sparse domain selection. In their method, different categories of images were utilized to
learn multiple sub-dictionaries. However, this often leads to overfitting of the sub-dictionaries and
causes obvious artificial effects. To address this problem, Liu et al. [33] decomposed source images
into multiple scale and fused them by using SR. To further improve the resolution of the fused image,
Yin et al. [34] combined image fusion and image super-resolution together based on SR. Besides,
Mansour et al. [35] proposed a novel multi-focus image fusion method based on SR with a guided
filter, and the Markov random field was also utilized to refine the decision map in their method. These
methods can achieve good performances. However, there are still some drawbacks that remain to
be settled:

1. Some SR-based methods [31–35] obtain the fused image by fusing the corresponding sparse
coefficients directly, while a small change in the coefficients may cause a huge variation in pixel
values. This would lead to undesirable effects on the fused image.

2. For some ambiguous areas in the multi-focus image, the sparse coefficients cannot determine if
they are focused or not. This often causes spatial inconsistency problems. For example, the initial
map obtained by Mansour’s method [35] suffered from spatial inconsistency. The following
process to refine the decision map requires much computational cost.

3. The boundary between the focused area and the unfocused area is smooth, while the final decision
map obtained by Mansour’s method [35] was sharp on the boundary. This may lead to halo
effects on the boundary between the focused area and the unfocused area.

To solve these problems, we propose a novel multi-focus image fusion method (SRGF) by using
sparse coding and the guided filter [36]. The proposed method uses sparse coefficients to classify the
focused regions and defocused regions to obtain the focus feature maps, as shown in Figure 2b. Then,
the guided filter is used to calculate the score maps as shown in Figure 2c. An initial decision map as
shown in Figure 2d can be obtained via comparing the score maps. After that, consistency verification
is preformed, and the initial decision map is further refined by the guided filter to obtain the final
decision map, as shown in Figure 2e. Compared with these traditional SR-based methods, there are
three major contributions:

1. We use sparse coefficients to classify the focused regions and the unfocused regions to build an
initial decision map, as shown in Figure 2d, rather than directly fusing the sparse coefficients.
The initial decision map would be optimized in the latter steps. In this way, we avoid the artifacts
caused by improper selection of the sparse coefficients.

2. To address the spatial inconsistency problem, we use the guided filter to smooth the focus feature
maps, as shown in Figure 2b, fully considering the connection with the adjacent pixels. In this
way, we effectively preserve the structure of images and avoid the spatial inconsistency problem.

3. To generate a decision map, which concerns the the boundary information, a guided filter is used
to refine the initial decision map. By doing so, the boundary of the final decision map, as shown
in Figure 2e, is smoothed, and it has a slow transition. Thus, the halo artifact of the fused image is
efficiently reduced.
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Figure 2. Framework of the proposed method.

To validate the proposed method, we conduct a series of experiments. By the experiments,
we demonstrate that the proposed method can obtain satisfying fusion results. Moreover, it is
competitive with the existing state-of-the-art fusion method.

The remainder of paper is organized as follows. In Section 2, the SR theory and the guided filter
are briefly reviewed. Section 3 describes the proposed multi-focus image fusion method in detail.
Section 4 analyzes the experimental results. Finally, Section 5 concludes the paper.

2. Related Work

Basic theories of sparse coding and the guided filter are reviewed briefly in this section.

2.1. Sparse Coding

Sparse signal coding [22] has drawn much attention in recent years for its outstanding ability
in computer version tasks and signal processing. This is mainly because a signal can be composed
into a dictionary and correlating sparse coefficients. In other words, given a set of N input signals
Y = {y1, · · ·yN} ∈ Rd×N , each signal yi can be represented as:

min
xi
‖yi − Dxi‖2

2 s.t. ‖xi‖0 ≤ k0, 1 ≤ i ≤ N (1)

where yi ∈ Rd, D ∈ Rd×m is an over-complete dictionary, which has M atoms; X= {xi}N
i=1 , xi ∈ RM

is the sparse coefficient of the input signal Y; T is a threshold of non-zero elements in each sparse
coefficient. The basic concept is shown in Figure 3.
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Figure 3. Sparse coding of a signal yi.

2.2. Guided Filter

GF [36] is an edge-preserving smoothing filter. It can avoid ringing artifacts since strong edges
would not be blurred during the operation. In this paper, GF is used to smooth the focus feature maps
and refine the decision map.

Given an input image P, with a guidance image I, in a local window ωk, and pixel k being the
central pixel, we assume that the resulting image O is linear correlated with I.

Oi = ak Ii + bk ∀i ∈ ωk (2)

where ωk is a square window and its size is (2r + 1)× (2r + 1). To estimate the linear coefficients ak
and bk, the goal is to minimize the squared difference between O and P.

E(ak, bk) = ∑
i∈ωk

(
(ak Ii + bk − Pi)

2 + εa2
k) (3)

where ε is set manually. The following linear regression is used to calculate ak and bk.

ak =
1
ω ∑i∈ωk

IiPi − µkPk

δk + ε

bk = PK − akµk

(4)

where |ω| means the count of pixels in a local window size of ωk. µk and σk are the mean and variance
of I in ωk respectively. Pk is the mean of P in ωk. Output image O would be obtained according to
Equation (2). The guided filter used for smoothing is shown in Figure 4.

Figure 4. Two source images and the filtered images via the guided filter. The guidance images are the
source images themselves, and parameters r and ε are set to three and 0.16, respectively.
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3. Proposed Multi-Focus Image Fusion Method

In the proposed method, an over-complete dictionary is trained, and the correlating sparse
coefficients are calculated. The coefficients would be used to measure the activity level, then the focus
feature maps would be obtained according to the activity level. The guided filter is applied to the
focus feature maps to generate the score maps. An initial decision map is obtained via comparing the
score maps. Then, the guided filter is used for refining the initial decision map.

As shown in Figure 2, the proposed method can be divided into three parts:

1. Learning dictionary
2. Calculating the sparse coefficients and obtaining the initial decision map
3. Refining the initial decision map

The following subsections will introduce these steps mentioned above in detail.

3.1. Learning Dictionary

Considering the differences between the focused regions and defocused regions, we want to learn
a dictionary that can perform well on both types. We blur the nature images several times using a
Gaussian filter, since the blurred images have a similar visual effect as the defocused image patches;
besides, we can control the blur level according to the actual needs. This process is shown in Figure 5.

Next, many image patches of a fixed size would be randomly sampled from the nature images and
the corresponding blurred images. This aims to extend the patch diversity [37] for a better sparse dictionary
compared with traditional SR methods. Then, these will be used for learning the dictionary D, which can
be calculated by solving Equation (1) via the K-SVD [22] algorithm. Figure 6 shows the general process.

To train the dictionary D, the related parameters are set as follows. The standard deviation
and size of the Gaussian filter are set to three and 5 × 5, and the blur iteration number is set to
five, respectively. The dictionary size is set to 64× 512; the patch size is 8× 8; the threshold of the
non-zero numbers T is set to five. We randomly selected 10,000 patches from the source images to train
the dictionary.

Figure 5. Nature images and filter results of a Gaussian filter with the standard deviation of three and
a size of 5× 5.
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Figure 6. The general process of training a dictionary.

3.2. Sparse Coding and Obtaining Initial Decision Map

After the dictionary D is learned, it would be used for calculating the sparse coefficients of the
N input multi-focus images. In the sparse coding phase, we adopt a sliding window with the same
size as the patch size we adopted in the training phase (i.e., eight). Then, we use a sliding window
to sample patches, from the source images pixel by pixel. When the patches are sampled, they will
be expanded into column vectors X̂i = {xi1, xi2, · · · , xi(n−1), xin}, and the sparse coefficients will be
calculated by solving Equation (5) via the OMP [38] algorithm.

X̂i = min
Xi
‖Xi‖1 s.t.‖Yi − DXi‖2 ≤ δ, (5)

where σ is a constant (it is set to 15 in this experiment) and Yi, (0 < i ≤ n) is the input images.
X̂i = {xi1, xi2, · · · , xi(n−1), xin} (n denotes the number of patches). The output coefficients reflect if the
input image patches are focused or not. An activity level measure function is set up as shown below:

f (i) = ‖X̂i‖0, 0 < i ≤ n (6)

Given the input multi-focus images I1 in Figure 7a and I2 in Figure 7b, the related activity
level vector f1 = ( f11, f12, · · · , f1(n−1), f1n), f2 = ( f21, f22, · · · , f2(n−1), f2n), can be calculated via
Equation (6). The focus feature maps Ei, i ∈ {1, 2} can be calculated by reshaping the related activity
level measure vector fi, i ∈ {1, 2} as follows:

Ei = reshape( fi), i ∈ {1, 2} (7)

The focus feature maps are shown in Figure 7c,d. Since the difference between focused regions
and defocused regions in Ei is not obvious, GF is adopted to smooth the focus feature map. The score
maps can be obtained as follows:

Si = GF(Ei, Ei, r1, ε1), i ∈ {1, 2}. (8)

where GF (•) represents the guided filter operator; the guidance images of the guided filter are focus
feature maps themselves; and the parameters are set as r1 = 8, ε1 = 0.16, respectively. The score maps
are shown in Figure 7e,f.

After obtaining the score maps, the initial decision map can be calculated as follows:

Qi(x, y) =

{
1 S1(x, y) > S2(x, y)

0 else
(9)
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Figure 7. Obtaining the decision map and multi-focus image fusion.

3.3. Refining the Decision Map

The initial decision map Qi obtained by comparing the score maps may lead to some
non-smoothing edges and some small holes, as shown in Figure 7g. This is because some regions
have a similar visual effect on both input images, and the sparse coefficient cannot determine if they
are focused or not. To remove those small holes, the small region remove strategy is adopted in our
proposed method. The decision map after applying this strategy is shown in Figure 7h. Many small
holes have been removed obviously. Then, the decision map would be up-sampled to the size as input
images. This process can be expressed as follows:

Qr(x, y) = Qi(x, y)− small holes

Q(x, y) = upsample(Qr(x, y))
(10)

In addition, the boundary between the focused area and the unfocused area is smooth, while the
decision map Q is sharp on the boundary. To address this problem, the guided filter is adopted to
optimize the decision map Q. In this section, we fuse the multi-focus images using decision map Q,
then the fused image would be served as the guidance image of the guided filter. This process can be
described according to the equation below:

W = Q(x, y)I1(x, y) + (1−Q(x, y))I2(x, y)

Q = GF(Q, W, r2, ε2)
(11)

where GF (•) represents the the guided filter operator and the two parameters r and ε are set to eight
and 0.1, respectively. The filtered result of the decision map is shown in Figure 7i.

3.4. Fusion

Finally, the fused image F can be obtained by:

F(x, y) = Q(x, y)I1(x, y) + (1−Q(x, y)I2(x, y)) (12)

Figure 7j shows the fused image of the given source images.
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4. Experiments

To verify the proposed method, we performed experiments on twenty groups of colorful
multi-focus images selected from the image dataset “Lytro” [35]. The size of all test images is 520× 520.
Part of the test images is shown in Figure 8.

The proposed method is compared with some popular methods, such as DTCWT [15], CVT [17],
GFF [5], NSCT [18], SR [31], NSCT-SR [33] and CSR [39]. The parameters of those methods are set
according to related publications.

To evaluate the proposed method objectively, four representative evaluation metrics are adopted
as follows:

• Mutual information MI [40] measures how much information from the source images the fused
image contains. When the value of MI is high, it indicates that the fused image contains more
information from the source images.

• Edge retention QAB/F [41] calculates how much edge information transferred from the input
images to the fused image. When the value of QAB/F is high, it indicates that the fused image
contains more edge information from the source images. The ideal value is 1.

• Feature mutual information FMI [42] is a non-reference objective image fusion metric that
calculates the amount of feature information, like gradients and edges, existing in the fused
image. When the value of FMI is high, it indicates that the fused image contains more feature
information from the source images. The ideal value is 1.

• The standard deviation SD is used to measure the contrast in the fused image. When the value of
SD is high, it indicates that the contrast of the fused image is higher.

To evaluate the fusion performance, the colorful images are transformed to gray images. For all
these quality evaluation metrics, the larger value denotes the better performance. Moreover, the largest
values are shown in bold.

Figure 8. Portion of the test images in the “Lytro” dataset.

4.1. Fusion of Multi-Focus “Face” Images

Experiments are performed on the “face” images. As Figure 9a,b shows, Source Image 1 is focused
on the left part; on the contrary, Source Image 2 is focused on the right part. The man’s face and glasses
separate the focused region and defocused region. The decision map and the refined decision map are
shown in Figure 9c,d; the decision map separates the boundary of the focused region and the defocused
region precisely. The fused result by the proposed method is shown in Figure 9l. Figure 9e–k shows the
fused results of the DTCWT-, CVT-, NSCT-, GFF-, SR-, NSCT-SR- and CSR-based methods, respectively.
As Figure 9 shows, the fused results make full use of the two source images. Compared with the DTCWT,
CVT and NSCT methods, the proposed method produces an edge-smoothing fused image. Besides,
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the quantitative assessments are shown in Table 1. Bold denotes the largest value. The glasses in Figure 9f,k
are not clear enough. This is mainly because of the CVT method and CSR method losing some edge
information of the source images. This also leads to a low score in QAB/F. Besides, the fused results
obtained by the DTCWT method and NSCT method suffer a slight color distortion. The MI and FMI
scores for the two fusion results are relatively low. This is because much spatial information is lost during
the image decomposition process. The other methods, namely the GFF-, SR- and NSCT-SR-based methods,
work well in visual observation. Combining Figure 9 and Table 1, the superiority of the proposed method
is demonstrated.

Figure 9. Fusion of “face” images. DTCWT, dual-tree complex wavelet transform; CVT, curvelet
transform; NSCT, nonsubsampled contourlet transform; SR, sparse representation.

Table 1. Quantitative assessments of “face” images.

Methods DTCWT CVT NSCT GFF SR NSCT-SR CSR SRGF

MI 7.9033 7.5579 7.9802 8.9431 8.8896 8.1653 8.2092 9.3347
QAB/F 0.7313 0.7141 0.7283 0.7419 0.7392 0.7294 0.7130 0.7450
FMI 0.6190 0.5790 0.6092 0.6517 0.6263 0.6125 0.5278 0.6594
SD 59.3473 59.3677 59.4553 59.5281 59.4959 59.2802 59.3981 59.5499

4.2. Fusion of Multi-Focus “Golf” Images

In this part, experiments are performed on “golf” images, as shown in Figure 10a,b. Source
Image 1 is focused on the man and the golf club, while Source Image 2 is focused on the background.
The two regions are separated by the decision map shown in Figure 10c,d. The fusion result obtained
by the proposed method is shown in Figure 10l. Figure 10e–k shows the fused results of the DTCWT-,
CVT-, NSCT-, GFF-, SR-, NSCT-SR- and CSR-based methods, respectively. The quantitative assessments
are shown in Table 2. It can be seen that the ringing effect around the edge of the DTCWT-based and
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CVT based methods is obvious. Besides, the contrast of the fused image is reduced at the edge of the
hat. These are because of the inappropriate image decomposition level, and the fused coefficients of
DTCWT and CVT cannot represent the edge information. The QAB/F and SD scores for their fused
images are pretty low. Besides, The results of the SR-based method and CSR-based method contain
some “artifacts”. Some artificial edges are introduced in the T-shirt and the background. The GFF and
NSCT methods yield some artifacts in the man’s hair. The result of our method has the best visual
effects. Namely, the proposed method outperforms all comparative methods in both visual effects and
evaluation indicators.

Figure 10. Fusion of “golf” images.

Table 2. Quantitative assessments of “golf” images.

Methods DTCWT CVT NSCT GFF SR NSCT-SR CSR SRGF

MI 6.5533 6.2184 6.7132 7.3211 7.0351 6.9582 6.6367 7.5833
QAB/F 0.7546 0.7396 0.7571 0.7613 0.7564 0.7583 0.7448 0.7658
FMI 0.6397 0.6122 0.6365 0.6597 0.6328 0.6405 0.5836 0.6660
SD 39.1174 39.1125 39.2127 39.4650 39.4650 39.3129 39.4160 39.4795

4.3. Fusion of Multi-Focus “Puppy” Images

Experiments are performed on the “puppy” images, as shown in Figure 11a,b. Source Image 1 is
focused on the puppy and the foreground; Source Image 2 is focused on the background. The decision
map and the refined decision map are shown in Figure 11c,d. The border between the focused region
and the defocused region is obviously separated by the decision map. The proposed method fusion
result is shown in Figure 11a. From Figure 11e–k, the fused results of the DTCWT-, CVT-, NSCT-, GFF-,
SR-, NSCT-SR- and CSR-based methods, respectively. The quantitative assessment for this experiment
is shown in Table 3. Compared with the proposed method, the DTCWT-, CVT- and NSCT-based
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methods choose irrational regions, which leads to unclear edges. For these methods, the quantitative
assessments in terms of QAB/F and FMI are relatively low. The fused images of the SR-based method
and NSCT-SR-based method look better with respect to this issue, but there are still some small
blocks in the fused images. This is mainly for the traditional SR-based methods using the sparse
coefficients to fuse the multi-focus images, which often lead to block effects. The fused image of
the GFF-based method performs well, but the contrast of the fused image is decreased due to the
unsuitable proportion of the “detail layer” and “base layer”. The proposed method fusion result
retains abundant information and handles the boundary well. Figure 11 and Table 3 demonstrate that
the proposed method outperforms all comparative methods in this experiment.

Figure 11. Fusion of “puppy” images.

Table 3. Quantitative assessments of “puppy” images.

Methods DTCWT CVT NSCT GFF SR NSCT-SR CSR SRGF

MI 5.4492 5.3010 5.6032 6.8045 6.7931 5.9459 6.2977 7.5010
QAB/F 0.7617 0.7555 0.7625 0.7735 0.7713 0.7643 0.7618 0.7771
FMI 0.6229 0.6097 0.6220 0.6560 0.6387 0.6259 0.6013 0.6767
SD 46.6263 46.6002 46.7993 47.4477 47.2562 47.1882 47.3329 47.5366

4.4. Statistical Analysis of Fusion Results

Experiments were performed other images in the “Lytro” dataset. Some fusion results are shown
in Figure 12. The proposed method can produce a precise decision map, which separates the focused
region from the unfocused region accurately. Besides, the refined decision map obtained by the guided
filter is robust to edges, which effectively avoids the artifacts on the edge.
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Figure 12. Fusion of a portion of the test images in the “Lytro” dataset.

To further demonstrate the effectiveness of our method, a one-way ANOVA test was performed
to statistically compare the quantitative assessment distributions of all images in the “Lytro” dataset.
The threshold of p-value was set to 0.05. Table 4 shows the results of the ANOVA test. Smaller values
mean more significant differences. The p-values smaller than the threshold are shown in bold.

Table 4. ANOVA test for the quantitative assessment distributions of the “Lytro” dataset.

Methods Sum of Squares F-Value p-Value

MI 198.053 9.869 0.000
QAB/F 0.166 1.812 0.089
FMI 0.324 17.777 0.000
SD 11,717.513 0.001 1.000
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It can be seen that the p-values for MI and FMI are smaller than the pre-defined threshold.
This means that there are significant overall differences in MI and FMI. To figure out where these
differences occurred, post hoc tests were performed on MI and FMI. The threshold of the p-value
was also set to 0.05, and the post hoc test results are shown in Table 5. All values less than the
threshold are bolded. It can be seen that there are significant differences between our methods and
other methods in terms of MI and FMI. Moreover, the boxplots of the statistical results are shown
in Figure 13. In terms of MI and FMI, the results obtained by our method have larger values and
more concentrated distributions. In terms of QAB/F and SD, our method has a slight advantage. The
proposed method achieves slightly larger values, and the distribution is similar to other methods.
According to the statistical results and the boxplots, it can be concluded that the proposed method can
obtain significantly better results than other methods for MI and FMI and slightly better than other
methods for QAB/F and SD. In other words, the proposed method outperforms most of the existing
fusion methods, and it achieves better performance.

Table 5. Post hoc tests for MI and FMI for the proposed method.

Metrics MI FMI

Methods p-value p-value
GFF 0.185 0.437
CSR 0.000 0.000

DTCWT 0.000 0.001
CVT 0.000 0.000

NSCT 0.000 0.000
SR 0.308 0.027

NSCT-SR 0.000 0.000

Figure 13. Boxplots of the statistical results.
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4.5. Comparison of Computational Cost

To evaluate the required computation power of these methods, we evaluate the running time for
each method. Table 6 shows the average running time for all the test images in the “Lytro” dataset. It
can be seen that these SR-based methods (namely SR, NSCT-SR, CSR and SRGF) require more running
time than other methods. That is due to the fact that calculating the sparse coefficients requires much
computational cost. However, as we mentioned, it is obvious that the proposed method can achieve
promising results. Besides, by using parallel computing with two threads and four threads, the running
time is effectively reduced. This demonstrates that there is much room for improvement. On the
one hand, we think it is tolerable to sacrifice a little time for a promising improvement. On the other
hand, with the development of parallel computing and the wide use of the graphical processing unit
(GPU), the time cost will be reduced soon. In our next work, we will further accelerate our method
by using a GPU, which has many more cores than a CPU, to train the dictionary and to calculate the
sparse coefficients.

Table 6. Average running time for all the test images in the “Lytro” dataset (×1,×2,×4 denote the
number of threads used for parallel computing).

Methods DTCWT CVT NSCT GFF SR NSCT-SR CSR SRGF (×1) SRGF (×2) SRGF (×4)

Running time (S) 1.012 1.841 6.4687 1.181 60.226 42.739 105.692 120.300 67.671 43.023

5. Conclusions

In this paper, a novel multi-focus image fusion method is proposed. The proposed method utilizes
sparse coefficients to produce focus feature maps, and the guided filter is used to generate an initial map
and to refine the decision map. The decision map obtained by our method separates focused regions
from defocused regions precisely. Compared to traditional SR-based methods, the proposed method
avoids the block effect and produces an edge-preserving fusion result. By performing experiments,
we demonstrate that the proposed method outperforms other popular approaches, and it is competitive
with the state-of-the art image fusion method.
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