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Abstract: In this paper, a new method for planning coverage paths for fixed-wing Unmanned Aerial
Vehicle (UAV) aerial surveys is proposed. Instead of the more generic coverage path planning
techniques presented in previous literature, this method specifically concentrates on decreasing flight
time of fixed-wing aircraft surveys. This is achieved threefold: by the addition of wind to the survey
flight time model, accounting for the fact fixed-wing aircraft are not constrained to flight within the
polygon of the region of interest, and an intelligent method for decomposing the region into convex
polygons conducive to quick flight times. It is shown that wind can make a huge difference to survey
time, and that flying perpendicular can confer a flight time advantage. Small UAVs, which have very
slow airspeeds, can very easily be flying in wind, which is 50% of their airspeed. This is why the
technique is shown to be so effective, due to the fact that ignoring wind for small, slow, fixed-wing
aircraft is a considerable oversight. Comparing this method to previous techniques using a Monte
Carlo simulation on randomised polygons shows a significant reduction in flight time.

Keywords: dynamic programming; remote sensing; polygon decomposition; coverage path
planning (CPP); Boustrophedon paths; fixed wing UAV

1. Introduction

The world’s population is exploding and, in order to keep up with the increasing levels of demand,
we will have to produce 50% more food by 2050 [1]. In order to meet these demands, with the finite
arable land we have available, it needs to be farmed far more efficiently. This can be achieved, in part,
through the use of precision agriculture.

Technology has advanced significantly in precision agriculture over the years, giving farmers
access to advanced farming tools, vehicles and data. Examples of the type of datas; weed distribution,
soil pH, yield and crop health. This data, with the increasing availability of analytic technologies,
mean that farmers can now use this data to provide actionable information, for example where
and at what rate to apply water or fertilizer to a field. This data is normally gathered by hand by
agronomists, dividing a field into sections and sampling. However, farms can be vast (Average US farm
175 ha [2]) so gathering any data by this meahod can be prohibitively time-consuming and expensive.
Remote sensing has a possibility to change all of this. Remote sensing is where measurements are taken
at a distance from the object.

Remote sensing on farms is primarily done using aerial images, using a number of spectral
frequency ranges. In 1972, the Landsat-1 satellite was launched with an imaging package, capable
of taking images in red, green, and two infra-red frequencies. This was to be the first of many
satellites with the intention of performing remote sensing from space. Aerial imagery has a large
number of uses—for example, soil moisture content [3], weed mapping [4] and yield calculation [5].
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Unfortunately, the resolution of satellite images is low, using Landsat-1 as an example each pixel
of an image was 79 m on the earth, while newer satellites (e.g., WorldView-2) boast a resolution of
0.5 m/pixel [6]. The lower resolutions of satellites are acceptable for some applications, however
there are many that require sub centimetre Ground Sample Distances (GSD), which is impossible for a
satellite. Satellite availability leaves much to be desired; depending on what orbit they are in, they can
take a long time to be able to re-image a target, and images are easily blocked by haze or cloud.

One alternative is to collect images from manned aircraft that can fly underneath cloud cover. This is
able to produce a finer GSD because photos are taken at lower altitude. However, these sorts of surveys
are very expensive and are still constrained by weather, and their own operational safety concerns.

The final alternative is to take aerial photos and perform the remote sensing from a small unmanned
aircraft equipped with an imaging system. Using an unmanned vehicle confers a number of advantages,
discussed in the next section. Drone based remote sensing is becoming increasingly popular, and has
been shown to be effective across a huge range of applications—for example, forestry and agriculture [7],
coastal and environmental remote sensing [8]. In the area of precision agriculture, remote sensing has
been shown to be a very successful tool in many areas like, disease mapping [9], or yield prediction in
barley [10].

1.1. Advantages of UAV Surveying

With advances in sensor and embedded hardware technology, we are seeing a huge proliferation
in the use of UAVs across many applications. This includes the essential sector of agriculture. It has
been shown that performing remote sensing from a UAV is a cheap and effective way of gathering GIS,
and spectral image data of arable land. This data can then in turn be turned into actionable information,
e.g., variable rate fertilizer of pesticide application. This could in turn lead to the efficiency gains
needed to keep feeding the ever increasing population of the Earth.

Low cost remote sensing can be performed by small fixed or rotary wing UAVs, taking multiple
low altitude aerial images with a fixed or gimbaled imaging systems [11]. These have big advantages
over using manned aircraft, as they are much cheaper, less restricted by weather and can be flown
more regularly. To get a single high resolution image that covers an entire Region of Interest (ROI),
a number of aerial images need to be stitched together to make what is known as an orthophoto.
A Digital Elevation Model (DEM) of the ROI can also be produced. These post processing tasks can
be performed using a large number of commercially available photogrammetry software packages,
which use structure from motion algorithms to generate these outputs [12].

The task of generating a path that a vehicle’s coverage area will pass over all points of the ROI is
called Coverage Path Planning (CPP). This can be mathematically formulated as a trajectory through
the workspace W that will result in a set of N sensor readings: Z1, Z2, ..., Zk such that the union of their
area covers the whole of workspace W:

k⋃
k=1

Zk ⊇W. (1)

1.2. Literature Review

There are a large number of applications that use overage path planning, and so have been
studied in detail in previous literature. A few example applications are lawn mowing, path planning
for milling [13], indoor robotics [14], farm vehicle field coverage [15], fixed-wing surveys [16] and
surveying using multi rotor aircraft [17]. The optimum path for a standard vehicle to cover a convex
polygon is a simple back and forth sweep patten, presented in [18,19], and extended to 3D [20]. This is
known as a Boustrophedon path. These paths also have the advantage of being very easy to generate
with: knowledge of the ROI polygon, the heading of the sweeps, spacing between each sweep, which is
calculated using the UAV’s sensor footprint, and required image overlap. An example Boustrophedon
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path in displayed in Figure 1, additionally showing each image footprint that needs to be taken to
ensure complete coverage.

Camera
footprint

x2 overlap

x1 overlap

x3 overlap

ROI

Flight path

Wind

Figure 1. Example convex survey with a sidelap 40% and an overlap 40%, showing the Boustrophedon
Coverage Path Planning (CPP), also showing the image footprints.

Most literature assumes that the path following for the vehicle is perfect, which for ground
robots is a reasonable assumption. However, as fixed-wing aircraft are more susceptible to external
disturbances, such as wind, and are limited in their manoeuvrability due to the fact that they need to
maintain forward motion during flight, accurate path following is made much more difficult.

This sweep method is not used in [16]; they aim to generate a path in real time, which attempts
to maximise the information gain image coverage. While this ensured total coverage, the flight time
is increased and requires the camera to be gimbaled to compensate for the attitude of the aircraft.
In addition to this, UAVs are not constrained to manoeuvring within the ROI like the ground vehicles
described in most previous literature. They can, in fact, cut corners and overfly obstacles; therefore, this
can be utilised in order to find faster paths.

A small study was conducted in Finland to attempt to quantify this. Some rough statistics on the
general shape of Finish farm fields were generated in [15]. It reported that only 13% of fields are convex,
and of those roughly 25% are simple shapes like circles, rectangles or triangles. Meaning that potentially
75% are complex shapes requiring smart path planning to find a fast path through the NP-hard solution
space. Therefore, there is a real requirement for the development of efficient techniques for CPP of farm
fields with complex shapes, as Boustrophedon paths are inadequate for these complex concave fields.

A number of papers solve this problem by using Boustrophedon Cell Decomposition (BCD) to
separate the concave polygon into a number of convex polygons and then the Boustrophedon path
is used to define paths for each individual cell. The problem of decomposing a polygon with holes
into the minimum number of convex pieces is known to be NP-hard [21]. There are a number of
decomposition techniques, such as triangular [22], visibility [23] and approximate decomposition [24].
A review of all these techniques are detailed in [18]. The BCD method is detailed in [25] where the
exact decomposition is performed using trapezoidal decomposition [26]. Despite producing fewer
cells than other decomposition methods [13,27], trapezoidal decomposition still tends to over-segment
the ROI, resulting in wasted flight time transitioning between the cells, and, therefore, a recombination
step is very important. BCD also doesn’t account for any survey or environmental factors and thus
creates non-optimal cells. One method proposed is to use Dynamic Programming (DP) to recombine
the cells [28]. Using DP ensures that the entire solution space is searched, meaning that the optimal
solution for that search space is found.
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In order to produce an optimal solution, an appropriate cost function needs to be defined, which is
generally based around the aircraft’s flight time. Under ideal conditions, the path with the lowest
Number of Turns (NT) will be the shortest [19,25].

The most common method to minimise turns is to simply align the sweep angles with the long axis
of one of the decomposed cells, as this will increase the length of each leg of the path thus decreasing
NT. An alternative method is to Minimise the Sum of the Altitudes (MSA) [28]. However, a fixed-wing
aircraft’s ground speed, and time in a turn, depend heavily on its airspeed and the wind direction and
speed. This could mean that NT is an inadequate optimisation parameter for fixed-wing UAV CPP
under real-world conditions.

Small UAVs tend to be light and fly slow, and this makes them more vulnerable to the effects
of wind. This is described in [19] in a simulated survey of an 1 × 0.6 km area, and wind extended
their nominal 21 min flight by 6 min. This means that accounting for the wind in any kind of path
optimisation is imperative; otherwise, the aircraft may not have the flight time to achieve a full survey.
A flight time survey model for fixed wing aircraft in a steady uniform wind field was presented in [29].
It was also shown that wind will have a huge impact on flight time and taking it into account for
planning a survey is essential.

1.3. Contributions

The aim of this paper is to generate survey flight paths for a survey UAVs in complex shaped
ROIs, which takes into account environmental and operational factors not previously considered.
In order to generate these paths, the complex ROI polygon needs to be decomposed into convex
regions that can be covered by Boustrophedon paths. While the idea of this kind of decomposition is
not completely novel, the significant additions and modifications in this proposed technique make it
specifically tailored for fixed wing remote sensing, which have led to reduced survey times. One could
extend this approach to other areas such as water-borne search and rescue in water currents.

One of the main contributions of this work also exploits the potential for the aircraft to fly outside
the ROI in order to reduce the flight time. This is achieved by the inclusion of “optional” external
cells which allows many decomposed cells to be recombined, which would otherwise create a concave
polygon. As a result, a novel “bottom up” dynamic programming approach has been developed which
improves computational efficiency dramatically compared to previous work. The work from [29] has
been extended to prove that the minimum flight time exists when the survey direction is perpendicular
to the wind.

A summary of the specific contributions from this paper is as follows:

• “Bottom up” DP approach speeds up optimal polygon decomposition.
• Optional cells external to ROI considered as part of decomposition to find alternate

decompositions with lower flight times.
• Novel cost function for calculating flight time in the presence of wind.
• Mathematical proof of minimum flight time with the survey direction perpendicular to the wind.

A summary of the stages of the proposed technique is shown in Figure 2. First, the polygon will be
decomposed using trapezoidal decomposition for multiple rotations of the polygon. This produces a
large number of small cells that will be merged to make convex polygons, enabling the fastest coverage
path plan in wind for each initial polygon rotation. The rotation with the lowest overall cost is chosen
and the cell merge from this rotation will be used as the final polygon decomposition. Then, minimum
time traversal path is planned around this decomposition to give the final path and waypoints to be
used by the fixed-wing survey vehicle itself.
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Figure 2. A summary of the major steps of the proposed technique, including trapezoidal
decomposition, optimal cell merge, polygon rotation, then finally generating the full flight path.

1.4. Report Structure

The rest of paper is organised as such; Section 2 presents the Boustrophedon path definition to
guarantee coverage of a convex polygon ROI in wind. Section 3 describes how to decompose a concave
polygon into a number of segmented convex polygons using trapezoidal polygon decomposition.
This section also explains how the optional external cells are generated from the concave ROI’s convex
hull. Section 4 details how many of the over-segmented cells can be recombined to give an optimal
convex decomposition of the ROI for aerial surveying in wind. Section 5 explains how the actual
flight path is generated by finding a minimum time traversal of all convex cells. In Section 6, a few
example fields have a mission planned using the proposed method for illustrative purposes. Then, this
method is compared to previous methods from literature on a number of real arable fields. Section 7
summarises the findings and concludes the work.

2. CPP in Convex Survey Regions

The CPP Boustrophedon paths consist of two different states of flight: the straight sweep paths
when the photos are taken, and the turns used to transition to the next sweep.

The start and the end of each sweep can be represented by waypoints, defined where the locations
where the sweep lines intersect with the ROI polygon, as shown in Figure 3. Two waypoints represent
a single survey sweep line with the coordinates xi

w, yi
w, as there will be multiple sweeps, and i is

the index:

xi
w =

[
xi

o
xi

f

]
yi

w =

[
yi

o
yi

f

]
, (2)

where start indicates the start waypoint of the sweep, and end is the end waypoint of the sweep.
The waypoint, where the aircraft initially intercepts the sweep path is defined as [x f , y f ] with the

heading in the direction of the sweep angle ψs, and the waypoint that defines the end of the sweep is
[xo, yo], at a heading of (ψs). There are four corners (ck = {c1, c2, c3, c4}) the aircraft can chose to start
from; once selected, this will dictate the correct order of the waypoints to achieve the appropriate back
and forth motions.

In Figure 3, a Boustrophedon path is generated at a sweep angle of 45◦. This is clearly not optimal
as some of the straight paths are extremely short and will include many more turns than required.
A simple but highly effective way to select a sweep angle that minimises the number of turns is to
align the sweep with the long axis of the polygon [25]. This is achieved by finding the minimum area
bounding box that encloses the polygon. Then, the bounding boxes known long axis angle (ψbb) is
used as the sweep angle.
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Figure 3. Sweep line intersections with the Region of Interest (ROI) polygon define the straight line
waypoints. Showing the order of the traversal of all the sweeps in a convex survey. Additionally, it
shows that the survey can start in one of four corners.

The spacing between the sweeps is calculated to give a user defined sidelap between the images
for a survey flight at a fixed altitude. The sidelap is set based on the requirements of the mission.
For example, if high accuracy digital elevation models are needed, a high sidelap of >70% is required;
however, if only the orthophotos is needed, the sidelap flown can be reduced to approximately 50%.
The altitude to fly at is set by the required GSD, which is also based on the needed resolution of the
application. This is calculated below:

h =
NxGSD

f ovx
, (3)

where h is the height of the aircraft above ground level, the units for GSD are m
pix , and Nx is the number

of horizontal sensor pixels. f ovx is the horizontal angular field of view of the sensor. Then, the track
spacing Dx (also shown in Figure 3) can be calculated as:

Dx = 2h tan( f ovx
2 )(1− ws),

Dy = 2h tan( f ovy
2 )(1− wo),

(4)

where wo ws are the desired image overlap and sidelap between tracks, respectively. This makes the
assumption that the images are taken orthogonal to the surface.

In addition to sidelap, there is also longitudinal overlap, and this is the same as sidelap, but
it is the overlap of the images along the sweep path. The requirements for these are the same as
sidelap. The distance between successive photos along each sweep path (Dy) is dictated by an equation
analogous to Dx, also shown in Equation (4). Therefore, the frequency of photos can be calculated
using the aircraft’s forward velocity. Most cameras and imaging systems have a cycle time between
taking images due to limitations of processing time and memory write speeds. As an example, the
Sony Nex 7 has a minimum time between photos of 0.7 s; a survey of a fixed wing flying at 15 m/s
will lead to a minimum Dy of 10.5 m. This parameter tends not to be a consideration as most cameras
will take photos fast enough; however, if flying low or fast, this needs to be checked.

For the aircraft to transition from one sweep path to the next, it needs to perform a turn manoeuvre.
These turns alternate between the left and right hand, and involves a turn of 180◦ to its reciprocal
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heading. To complete the flight time model, this manoeuvre needs to be defined. This can be realised
with the use of Dubins paths. A Dubins path is the shortest curve that connects two points in a 2D
plane with a constraint on the curvature (in this case, aircraft maximum turn rate) [30]. A Dubins
path is shown in Figure 4, and it completes the path between the adjacent tracks to give a continuous
flight path. Figure 4 shows how these paths are constructed from two turn circles (whose radius is
calculated from airspeed and maximum turn rate) positioned relative to the start and end points of the
manoeuvre. All internal and external common tangents are found between the two circles, and only
some of will form feasible flight paths. In the case of Figure 4, only a single external tangent exists that
is feasible. All parts of the manoeuvre are simple geometric shapes, which lend themselves to easy
length and flight time calculations.

Sweep portion on survey

D
u

b
in

s p
a

th
 tu

rn
 m

a
n

o
e

u
v

re

Waypoint

single edge of

survey polygon

Waypoint

Figure 4. Turn manoeuvre between sweeps in zero wind using Dubins Paths. This demonstrates the
fundamental setup for the survey model.

2.1. Survey Flight Time Model in Wind

Wind can have a significant effect on small aircraft; the wind-speed experienced by a small UAV
can easily be 50% of the airspeed. As a result, it is vital to account for wind for small survey UAVs.
Wind will have a number of effects on a UAV survey. Firstly, the ground speed between opposing
sweeps will be different. In addition to this, wind will have an effect on the alignment of the images;
this is discussed in more detail later in this section. Finally, in the turns, Dubin’s curves assume
zero wind; when performing the same manoeuvre in wind, the turn shape will be a geometric shape
called a trochoid in the ground frame, while still being circular in the wind frame [30]. To achieve the
same minimum distance path and hence minimum time path, the trochoidal turns are incorporated
into Dubins framework; this then gives a path length and time that accounts for the wind in a turn
manoeuvre at maximum turn rate.

This section details how to calculate the flight time of a fixed-wing aircraft surveying a convex
polygonal area. This will be used in a later section to define the cost function used in the optimisation
stage of this algorithm. The cost function developed will be henceforth referred to as Flight Time in
Wind (FTIW). The wind field is assumed to be steady and uniform, as the survey is conducted over
a relatively small area over a short time, making spacial and temporal variability minimal.

The wind will push the aircraft slowly off its course while flying along the straight sweep paths.
To stop this, the aircraft must fly at a corrected heading, which will be slightly into the wind. This is in
order to cancel out the velocity component of the wind to keep the ground velocity vector parallel
to the sweep path. This heading correction is know as the Wind Correction Angle (WCA) (ψWCA).
The WCA is derived from using the sine rule, with the wind triangle, shown below:

ψWCA = arcsin((
Vw

V
) sin(ψwta)), (5)
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where V and Vw are airspeed and wind-speed, respectively, ψwta is the wind to track angle, which is the
aircraft’s heading relative to the wind, calculated by ψs − ψw, where ψw is the wind direction, and ψs is
the sweep direction angle. Now, the WCA is known, the ground speed (Vg) and sweep flight time can
be calculated. Vg is the sum of the x-components velocity through the air mass and the x-component
of the wind velocity, shown below:

Vg = (V cos(ψWCA)) + (Vw cos(ψwta)). (6)

Note the assumption that the small angles of WCA will mean that the rotation of the images
coursed will not have any effect on the % sidelap. However, this can happen with WCA angles over 40◦,
which will only happen with perpendicular winds at Vw

V of 0.65%, as calculated using Equation (5).

Theorem 1. A fixed wing UAV will have a lower flight time in the straight and level sweep portions of
a Bousdophodon survey path, whose sweep angle is perpendicular to the wind, than a sweep angle directly
into wind.

Proof of Theorem 1. To prove that this is true, the most simple survey scenario will be assumed.
This is a survey aircraft flying just two parallel tracks of the same length, one after the other, in the
presence of a steady uniform wind field, shown in Figure 5. This represents a single back and forth
survey path for coverage of a small rectangular ROI, the simplest example of a survey possible. If these
two paths are rotated to a different relative angle to the wind ψwta, the distance travelled will not
change. However, as the ground speed along each track changes in a nonlinear fashion with ψwta the
time optimal angle is not obvious. To prove the theorem, an equation for flight time along the two
tracks need to be generated. By deriving the first and second derivative of the equation, we can show
that ψwta of 90◦ will always be the maximum and 0◦ will be the minimum.

Wind

ψs

ψwta

d
sweep paths 

Vg along sweep = Vg1

Vg along sweep = Vg2

ψwca

ψw

Figure 5. The illustration of a scenario designed to show that flying perpendicular to the wind is
always faster than directly into it along the sweep portion of the survey.

Equations to calculate the total time of these parallel tracks are generated using Equation (5)
and Equation (6). The constant ground speed for each track is generated below:

Vg1 = (V cos(arcsin(β sin(ψwta)))) + (Vw cos(ψwta)),
Vg2 = (V cos(arcsin(β sin(ψwta + π)))) + (Vw cos(ψwta + π)),

(7)

where Vg1 and Vg2 are the ground speed along the first and second track, which have ground track
headings of ψwta, and the reciprocal ψwta + π, respectively. β is the wind to airspeed ratio Vw

V . ψwta will
in the interval (0, 2pi]. This is because the aircraft will turn around after the first track and head back
in the opposite direction.
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The time taken to fly the straight and level tracks (not the turns) is shown below:

t = d(
1

Vg1
+

1
Vg2

), (8)

where d is the equal distance of both tracks, and t is the time taken.
By substituting Equation (7) in to Equation (8), a full equation for t will be given below:

f (ψwta) = −
2V
(
(V2

w cos(ψwta)2 + V2 −V2
w)/V2)0.5

(V2 −V2
w)

. (9)

The ψwta angles which minimise survey time can be found by ascertaining where the first
derivative of Equation (9) is zero ( f ′(ψwta) = 0). Its derivative can be seen below:

f ′(ψwta) =
−(2V2

w cos(ψwta) sin(ψwta))

(V(V2 −V2
w)((V2

w cos(ψwta)2 + V2 −V2
w)/V2)0.5)

. (10)

By equating this equation to zero and simplifying 2V2
wcos(ψwta)sin(ψwta) = 0, all solutions can be

calculated using:

ψwta =
nπ

2
. (11)

This gives critical points at 0, π/2, pi, 3π
2 in the given interval which are for the following values

of n n = [1, 2, 3, 4]. These are both the maximum and minimum points. By taking the second derivative
of Equation (9) and substituting the critical ψwta angles given above into f ′′(ψwta), we can find if
each point is a minimum or a maximum. The result will be −ve for maximum and +ve for minimum.
f ′′(ψwta) is not included here due to its complexity.

The results of these substitutions: f ′′(0) = −ve, f ′′(π
2 ) = +ve, f ′′(π) = −ve, f ′′( 3π

2 ) = +ve.
This means that the minimum points are π

2 and 3∗π
2 , and the maximum to be 0, π. This proves that

flying with perpendicular to the wind i.e., ψwta angles of π
2 and 3π

2 minimise the survey time along the
sweep tracks, whereas flying parallel to the wind increases flight time, by how much depends on β.
This can clearly be seen in Figure 6 which contains plots generated from Equation (9) that show the
total flight time to fly both 500 m parallel tracks in a range of wind-speeds.
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Figure 6. Total flight time for the portion of the flight along two parallel 500 m tracks as defined in
Figure 5 for a range of wind/airspeed ratio.

2.2. Trochoidal Turn Paths

The time taken in the turns between sweep paths needs to be calculated. To achieve this, the path
taken needs to be defined. However, wind needs to be taken into account. Dubin’s style path planning
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is used to define these turns; however, in wind, the previous circular turns will be not be circular due
to the wind. When a circle is drawn in a steady moving frame of reference, it becomes a shape called
a trochoid. It was shown in previous literature that this Dubins style path planning can be applied in
wind by finding the feasible tangents between the two trochoids at the start and the end of the turn
manoeuvre [29,31].

There are a number of feasible paths that can be generated, and the two turns in the manoeuvre
are either right r or left l, joined with a straight s tangent between them with four combinations
lsl lsr rsr rsl. Due to the nature of the Boustrophedon path, all turns will be the same side turns,
leaving two possibilities rsr, lsl. If it turned in different directions, it would imply that the aircraft
would need to turn more than 180◦. It makes the problem simpler, as there is an analytical solution to
the angle of tangency for the same side turns, as opposed to different side turns, which requires a root
finding technique to solve.

Figure 7 shows the same turn from the Boustrophedon path as Figure 4; however, the circular turns
have been replaced with trochoids to give a similarly smooth trajectory while in wind. Equation (12)
shows the parametric equation for a trochoid. It has been rotated in order to put the equation into the
trochoidal frame with subscript, t, and this means that everything is rotated to make the y-axis in line
with the direction of wind, which is why the wind term β only appears in the y-axis in Equation (12):

xt = −Rcos(α),
yt = Rsin(α) + Rβα,

(12)

where R is the turn radius, calculated from (R = V
ψ̇
), and α is the angle subtended in the turn.

The construction of these trochoidal turn paths can be performed by knowing the start [xo, yo] and
end point [x f , y f ], the initial (ψo) and final headings (ψ f ) of the manoeuvre, the airspeed (V), turn rate
(ψ̇) and wind-speeds.

The calculations to achieve this are laid out in [29,31].

Tu
rn

 1

Wind β = 0.33
Turn 2

Straight Tangent

Turn 2 Trochoid

 α = 2π -> -2π

Turn 1 Trochoid

 α = 2π -> -2π

[X]

Waypoints

Sweep lines

2nd Trochoid

Turn manouvre

path

1st Trochoid

[Xf,Yf ]

[Xo,Yo]

Ψo

Ψf

Figure 7. From Figure 4, showing the path layout for the survey model in wind using trochoidal turn
paths in addition to the the full trochoids for α of 2π → −2π, where portions of these are used to
generate the paths. In this example, the aircraft is flying sweeps parallel to the wind direction, known
from Theorem 1 to be the least efficient.

2.3. Full Survey Model

In order to find the total flight time over the full convex survey, the calculations for time in the
turns and on the straight level sweep paths need to be combined in to tk

conv, which is the time for
a complete convex polygon at the k starting corner. Firstly, the time along each sweep path needs to be
summed. As all the tracks are parallel, the aircraft’s heading will be either ψs or its reciprocal when it
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is flying in the opposite direction. All the times for each sweep is summed to give the total time in the
sweeps ts below, where ns is the total number of sweep paths:

ts =
ns

∑
i=1

 if i odd
(

‖xi
w−yi

w‖
V cos(arcsin(β sin(ψwta))))+(Vw cos(ψwta)

)
,

if i even
(

‖xi
w−yi

w‖
V cos(arcsin(β sin(ψwta+π))))+(Vw cos(ψs+π)

)
.

(13)

The time for the full turn manoeuvre is found by summing the time in each turn:

tt =
ns−1

∑
i=1

t1 + t2 +


√
(xi

w2 − xi+1
w1 )2 + (yi

w2 − yi+1
w1 )2

V cos(arcsin(β sin(arctan xi+1
w −xi

w
yi+1

w −yi
w
))) + Vw cos(arctan xi+1

w −xi
w

yi+1
w −yi

w
)

 , (14)

where t1 and t2 are the times in the turns and the third term is the time in the straight portion of the
turn manoeuvre. These are generated using equations laid out in [29,31]. This can be achieved using
the inputs [x0, y0] [x f , y f ], and angles ψo and ψ f . [x0, y0] [x f , y f ] are equivalent to [xi

w2, yi
w2] [xi+1

w1 , yi+1
w1 ],

respectively. The trochoid calculations are performed in the wind frame, thus the points need to be
rotated by −ψw, shown in Equation (15). The angles ψo and ψ f are aligned with ψs or the reciprocal
angle, and this relationship depends on the sweep index being odd or even, shown in Equations (16)
and (17): [

xt0
yt0

]
=

[
cos(−ψw) − sin(−ψw)

sin(−ψw) cos(−ψw)

] [
x0

y0

]
, (15)

ψ0 =

{
if i is odd ψs,

if i is even ψs + π,
(16)

ψ f =

{
if i is odd ψs + π,

if i is even ψs.
(17)

The final full flight time taken to fully cover a convex polygon from the starting corner, k, is simply
the addition of the time summations in the turns and along the sweeps:

tk
conv = ts + tt. (18)

3. Cell Decomposition

In cases where the ROI is concave, the polygon will need to be initially decomposed into a number
of convex polygons. There are a number of uses for these decomposition techniques, for example:
3D model mesh generation, robotic motion planning and computational geometry. Robotic motion
planning is achieved by decomposing an area into a set of geometric shapes, whose centre can be used
as potential waypoints for finding the fastest route [32]. The general aim in the development of these
algorithms is to make them run as fast and as efficiently as possible to minimise computational time.

3.1. Trapezoidal Decomposition

Trapezoidal decomposition was chosen as the initial decomposition technique. This technique was
chosen as it offers a number of advantages over other methods. By far, the most important advantage
is the shape; a trapezoid is a much more efficient geometric shape to cover in the Boustrophedon paths
described in Section 2. This is because the long thin trapezoids that are generated by the algorithm
require significantly fewer turns of the survey aircraft to provide complete photo coverage than
a triangle from example. The number of cells also needs to be kept to a minimum to speed up the
recombination optimisation because this will lower the number of options. Trapezoidal decomposition
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tends to generate fewer cells than triangulation, or an approximate decomposition techniques. A good
description of the general workings of trapezoidal decomposition is detailed in [26]. Shown in
Figure 8a is a polygon decomposed using trapezoidal decomposition. The vertical sweep lines whose
intersections with the polygon define the vertices of all the decomposed cells.

Using the specific trapezoidal decomposition technique laid out in [33] a solution can be found in
O(nv log(nv)) time, where nv is the number of vertices. This means high vertex count polygons will
have acceptable computational time. Another important output of the initial decomposition is the cell
connectivity graph, which will be used in the recombination phase. Knowledge of the cell adjacency
is required to define a search space, but more importantly to identify which cells can be combined.
Using the same polygon example, the adjacency graph is shown in Figure 8b.
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Figure 8. Example trapezoidal decomposition. (a) trapezoidal decomposition of polygon, showing
vertical slice lines generated at each vertex; (b) cell connectivity graph of the example trapezoidal
decomposition, where each node represents a decomposed cell, and each edge a cell adjacency.

As the slices are always vertical, the final decomposition for a particular polygon depends
on its initial rotation. If the polygon is rotated, decomposed, and then rotated back to its original
orientation, then an infinite number of decomposition possibilities exist. This means that there could
be different and possibly more preferable decompositions at other rotation angles. An example
trapezoidal decomposition is performed on a rotated version of the example polygon in Figure 9.
Without consideration of wind, the optimal path is found by simply using the longest axis of the
cell and minimising the number of turns. However, it has also been shown (Section 2.1) that flying
perpendicular to wind is also advantageous. Therefore, the inclusion of wind results in two competing
factors, meaning that a larger search space is necessary to find a preferable solution.

Each vertex of the polygon must be rotated about polygon rotation angle ψp. Let P be a polygon
with nv verities ν = {v1, v2, ..., vnv}, then P can be rotated as show in Equation (19), where Pr is the
rotated Polygon, P, and ψp is the angle of rotation.

Pr =

[
cos ψp − sin ψp

sin ψp cos ψp

]
P. (19)
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Figure 9. Example initial trapezoidal decomposition run on the example polygon from Figure 8a
rotated by 90◦.

3.2. External Cell Decomposition

Unlike ground-based robots, the path of UAVs is not generally constrained to be completely
within the ROI (unless there are any no-fly zones). They can fly over awkward corners and transfer
between one convex cell survey to others by a direct route. This ability has been completely over
looked in previous literature, so we propose a method to extend trapezoidal decomposition to include
potential external cells that might shorten overall flight time.

These external cells need to be found and generated. The method to achieve this is based around
the concave polygon’s convex hull. Given a set of points, its convex hull is the subset of points in
Euclidean space that has the smallest set of points that create a convex polygon. In effect, a convex hull
is the most simple convex polygon that contains all vertices of the concave polygon. The technique
used from [34] is summarised below:

• determine the four external points of the set, discarding all points interior to the convex
quadrilateral they form,

• break points into four regions that can be solved separately,
• use vector crossproducts to determine feasible convex paths in each sub region.

Shown in Figure 10 is the convex hull of the previous example ROI at ψp of 345◦. The convex
hull of a polygon represented by Pchull . By performing a polygon subtraction P− Pchull , the external
optional polygon is generated, and this is also shown in the figure as the solid red polygon. A polygon
subtraction is when the area of one polygon is removed from another polygon. The algorithm to
preform this task is laid out in [35]. The external polygon can then, itself, be decomposed to give all
the optional cells using trapezoidal decomposition, shown in Figure 11. As the ROI and the external
polygon share vertices, the decomposed cells will always line up with each other in the direction of
the vertical slice from the trapezoidal decomposition. This means that the cell merge algorithm will
generate more long, thin convex polygons, which are more conducive to quick surveys. Shown in
Figure 12 is an example recombination between cell 9, 8, 6, 7 and optional cell 13. This gives a large
single convex area much better for surveying then the three cells that would be left if there were no
optional cells.
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Figure 10. Convex hull, and optional external cells from the example concave polygon.
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Figure 11. Full trapezoidal decomposition of ROI and optional external polygon.
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Figure 12. Cell merge preformed on the decomposed cells generated for Figure 11, where the merged
cell number 2 contains the shortcut granted by combining normal and optional cells to make for a more
efficient survey.

4. Cell Recombination Using Dynamic Programming

Dynamic Programming (DP) is a technique that can be used to solve complex problems by
breaking them down into simpler sub-problems. The full solution can then be built by optimally
combining the solutions to the smaller problems. Like “brute-force” methods, DP examines every
single possible solution and therefore guarantees the optimality of the solution. However, DP offers
the advantage that solutions to the simpler problems can be stored or “memo-ized”, meaning that
the solutions to identical sub-problems can be re-used, resulting in considerable computational time
savings if there is significant overlap of sub-problems. The cell recombination problem is highly suited
to DP optimisation, due to the fact that it exhibits “optimal substructure”. This means that it can be
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solved optimally by breaking it down into smaller sub-problems and then using a recursive algorithm
to compare the optimal solution to each of the sub-problems with the solution to the area as a whole
(see Equation (20))

Jπ(G) = min
{

C(G), min
k

[
Jπ(Gk

1) + Jπ(Gk
2)
]}

. (20)

Jπ(G) represents the optimal cost of searching region, G, as the minimum of either the simple
cost, C(G), of searching the entire region or the sum of the optimal costs of searching any two
sub-regions, Gk

1 and Gk
2, which combine to cover the entire search area. This algorithm can then be

applied recursively by solving the two sub-problems, Jπ(Gk
1) and Jπ(Gk

2), using the same equation.
The cost, C(G), of searching region G is defined as the flight time Equation (18) if the polygon is
convex, otherwise it is given a very high penalty cost (e.g., infinite) (see Equation (21))

C(G) =

{
tk
conv, if polygon is convex,

∞, otherwise.
(21)

Dynamic programming calculates the optimal recombination by searching every possible partition
of the set and as a result is still very computationally intensive. Huang et al. [28] have applied this
algorithm directly in a “top-down” approach; this results in an exponential algorithm which requires
slightly less than O(cn), (c > 1) time, where n represents the number of cells in the decomposed
search area.

However, in this work, the dynamic programming formulation used is a “bottom-up” approach
beginning with a single starting cell and building the complete search area one cell at a time.
This approach has been found to be more efficient due to the ability to immediately discount
certain recombination patterns, such as those which would form a concave cell. In this case,
the sub-region is assigned an infinite cost and all subsequent recursions from this branch are not
calculated. From extensive testing of real and randomly generated fields, the optimisation time has
been reduced to approximately O(cn/2), (c > 1).

4.1. Bottom-Up DP Formulation

Mathematically, the bottom-up formulation is the same Equation (20); however, algorithmically,
the order of calculations is performed slightly differently, resulting in a lower memory usage and
significantly fewer unneeded computations of the cost function. Instead of starting with the simple cost,
C(G), of searching the entire region and then gradually breaking the area up into smaller sub-regions,
Gk

1 and Gk
2, the bottom-up approach begins with a single cell and gradually builds the search graph by

either recombining neighbouring cells or remaining unmerged (see Figure 13).
From any initial point, a number of potential actions can be performed. Either the cell may merge

with any adjacent cell (Figure 13a, b or c), or the current merge may be declared complete and a new
merge sequence may begin with any other adjacent cell in the search area (Figure 13d, e or f). Each of
these actions will result in a new starting point and the algorithm works recursively until every internal
cell in the search area is accounted for.

At each step, the cost of the current merge is calculated and memo-ized for potential re-use in
future steps. For example, the subsequent steps from Figure 13e,f will both result in recombining G{4,5}
resulting in C(G{4,5}) being required. The first time this calculation is encountered, it will be calculated
and stored, and any subsequent times it will simply be recalled from memory.

The bottom-up approach allows for external cells to be optionally included much more efficiently.
With a top-down approach, it would be necessary to initialise the problem multiple times for every
combination of potential external cells, some of which may result in no additional viable solutions.
With a bottom-up approach, the algorithm is allowed to continue until it finds every possible solution
that accounts for every required (internal) cell, whether or not external cells are included in the solution.
The recursive function described is laid out in pseudocode in Algorithm 1.



Sensors 2018, 18, 2132 16 of 28

Algorithm 1 My algorithm

1: procedure DP RECOMBINATION
2: initialise (
3: CurrentSuperCell = 1
4: CurrentMerge := 1)
5: function RECURSIVEFUNCTION(data, CurrentMerge, CurrentSuperCell)
6: end function
7: %Step 1. Merge with Any Neighbour
8: List All Neighbours to CurrentSuperCell
9: for ForEachNeighbour do

10: NewMerge := CurrentMerge + Neighbour
11: if NewMerge doesn’t already exist in data then
12: data.createNode(NewMerge)
13: data.buildEdge(NewMerge← CurrentMerge, 0)
14: NewSuperCell = CurrentSuperCell + Neighbour
15: RECURSIVEFUNCTION(data, NewMerge, NewSuperCell)
16: end if
17: end for
18: %Step 2. Calculate Cost of Current Merge (inc. memo-ization)
19: if Costs of CurrentSuperCell already been calculated then
20: NewCost = data.Cost(CurrentSuperCell)
21: else
22: NewCost = f Cost(CurrentSuperCell)
23: data.Cost(CurrentSuperCell) = NewCost
24: end if
25: %Step 3. Start New Merge with Any Required Cell
26: List all new internal cells not already included in CurrentMerge
27: for Each NewInternalCell do
28: NewMerge := CurrentMerge + NewInternalCell
29: if NewMerge doesn’t already exist in data then
30: data.createNode(NewMerge)
31: data.buildEdge(NewMerge← CurrentMerge, NewCost)
32: NewSuperCell = NewInternalCell
33: RECURSIVEFUNCTION(data, NewMerge, NewSuperCell)
34: end if
35: end for
36: %Step 4. Create Edge to Exit
37: if all internal cells are already included in CurrentMerge then
38: buildEdge(Exit← CurrentMerge, NewCost)
39: end if
40: return data
41: end procedure

Original Search Area

b) Merge with Cell 4a) Merge with Cell 3
d) Start New 

Subregion at Cell 3
e) Start New 

Subregion at Cell 4

1 2 3

54

1 2 3

54

1 2 3

54

1 2 3

54

1 2 3

54

1 2 3

54

1 2 3

54

f) Start New 
Subregion at Cell 5

Calculate Merge 
Cost C(G{1,2})

b) Merge with Cell 5

1 2 3

54

Figure 13. “Bottom Up” Dynamic Programming Solution Formulation—showing a single cell merge
step, where each adjacent cell is either merged or a new subregion is started.
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4.2. Example Recombination

Figure 14 shows an example recombination of a decomposed ROI with three internal cells and
two external cells (Figure 14a). In addition to the co-ordinates of the decomposed cells, the optimiser is
also provided with an adjacency graph which shows how the cells can be merged (Figure 14b) and the
list of external cells (cells 4 and 5, highlighted in red).

The first step of the optimiser is to build up the search network shown in Figure 14c.
For decomposed ROIs with a large number of cells, this search graph can become very large, so, for
legibility, this example has been deliberately kept very small using just five cells. Using a recursive
algorithm, the optimiser builds this graph starting with the lowest (displayed) branch from the start
node on the left-hand, side moving towards the exit node on the right-hand side. Once the optimiser
reaches a node from which no more forward branches are possible (such as the exit node), the optimiser
takes one step back and tests for alternative solutions. This recursion continues until all possible
branches have been exhausted. Any node which includes all internal cells is allowed to branch directly
to the exit node and therefore represents a possible final solution.

Detailed examination of Figure 14c highlights the effect of some of the optimisations applied
to the recombination process. Firstly, it can be seen that, in the first stage, the optimiser examines
recombination with both adjacent cells, 2 and 4 (Rule 2), but only examines starting a new polygon
with cell 2. This is because cell 4 is an optional external cell (Rule 3). The net result of this rule is
that “1|4|...” is never examined; however, cell 4 may still be included subsequently if it merges with
a required cell later on, for example “1|2&4&5”.
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Figure 14. “Bottom Up” Dynamic Programming Recombination Example. (a) decomposition of ROI
with two external polygons; (b) adjacency graph of decomposed polygons; (c) full search network
using dynamic programming (Notation: “1|2” denotes that cells one and two are separate polygons,
“1&2” denotes that they have been recombined); (d) recombined ROI into two polygons. Note that only
one (#5) of the two optional cells has been chosen by the optimiser.
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Secondly, it can be seen that node “1|2|3”, at the top of the diagram has a branch going straight
to the exit. This is because this solution already contains all of the required internal cells and therefore
represents a solution in and of itself (Rule 5).

In addition, although node “1&2&3” also contains all of the required cells, this node does not
have a branch to the exit node. In fact, this node only has branches which perform further merging
with other cells. This is because the recombination of G{1,2,3} would result in a concave cell, for which
the cost has been defined as infinite. Therefore, the optimiser does not attempt to calculate the cost of
these further branches (Rule 4).

Finally, there are no branches from “1&2&3&5”. As for “1&2&3”, this sub-region is concave and
therefore must be merged with additional cells to create a viable sub-region. In this case, the only viable
additional cell is cell 4; however, the resulting sub-region “1&2&3&4&5” has already been found (branched
from “1&2&3&4”) and therefore it is unnecessary to calculate it again (Rule 1). Similarly, there are no
branches from “1&2&4&5” and “1&2&5”.

The efficiency of the DP algorithm can be compared to brute force methods by looking at the
number of solutions calculated, compared to the total number of partitions of a set [36]. The net effect
of these optimisations is that the number of nodes at each stage is minimised as soon as possible,
resulting in significantly fewer calculations. As a result, there are only five (out of a maximum 87)
possible partitions of the set examined. For comparison, the top-down approach inherently examines
only neighbouring cells (Rule 2) but has no other optimisations. For this problem, it would have
identified 39/87 partitions (see Table 1). The optimised “bottom-up” formulation removes 32 of these
partitions due to concavity and an additional two due to external cells not required.

Table 1. Dynamic Programing (DP) formulation comparison (number of solutions calculated).

Cells Included Brute-Force “Top-Down” “Bottom-Up”

1,2,3 5 4 1
1,2,3,4 15 8 1
1,2,3,5 15 10 1

1,2,3,4,5 52 17 2

Total 87 39 5

Figure 14d shows the optimised recombination of the decomposed cells. Note that external cell 5
has been included in order to allow cells 2 and 3 to be merged and generate a convex sub-region,
but cell 4 has been rejected, resulting in two final sub-regions, G{1} and G{2,3,5}.

4.3. Polygon Convexity

The convexity of a polygon needs to be determined in order to test if each new cell merge during
the DP optimisation from the above section is suitable for a convex survey.

Convex polygons have a number of unique properties distinguishing them from concave polygons.
In a convex polygon, the sum of all interior angles of a polygon will be less than 180◦. In addition, if
each edge along the polygon is evaluated in sequence, the direction of rotation of the next edge will
always be in the same direction if the polygon is convex. This final property was used in [37] to create
an effective algorithm for finding polygon convexity called the gift wrapping algorithm.

If all the vertices are evaluated in a clockwise direction, they can be individually assessed for
convexity. This can be seen in Figure 15. If all vertices are convex, then the whole polygon is convex.
The direction of rotation of each is assessed by taking the cross product as shown below. If the result is
+ve the vertex is convex, −ve indicates a concave vertex, and 0 means that the vertices vi−1, vi, vi+1
form a straight line:
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vi−1vi × vivi+1 =


> 0, convex vertex,
= 0, collinear vertices (vi convex),
< 0, concave vertex.

(22)

Figure 15. The gift wrap algorithm successively assessing each vertex around a polygon for convexity.

5. Multi-Cell Routing and Flight Time Calculation

Thus far, all flight time calculations have been performed individually on each convex polygon,
enabling the problem to be split into independent sub problems. While this gives us a good
approximation for how long the flight will be, the transition between each merged cells has not
been taken into account. The full survey path to be flown, including transitions, now needs to be
defined. In addition, the full survey flight time in wind for a given decomposition is needed. This is
needed in order to give a realistic assessment between the different cost functions available to the
DP algorithm. This full flight path will include a launch point (start and end point of the survey),
the individual decomposed convex polygon survey paths, and feasible transitions paths between
them. Currently, the outputs from the FTIW, NT and MSA cost functions are seconds, number of turns,
and meters, respectively, therefore, a direct comparison between them is impossible.

The fastest route can be found from the minimum weight path of a weighted directed graph,
where the weight of each edge is the time taken to perform the manoeuvre the edge represents.
This will be either be the time to fly the transfer path between cells, or the time taken to perform
a convex survey.

The initial join point for a convex survey can be in one of the four corners (C) of convex polygon
(P), where j is the index of the cell and the order of the corner numbering is clockwise:

Cj(P) =

[
cj

1 cj
2

cj
3 cj

4

]
. (23)

Once a join point (cin) is chosen, this also determines the exit point (cout) as one of the other
corners. The corner designated as the exit point depends on if the number of sweeps is odd or even
(Equation (24)). On an even number of turns, the end corner will be on the same side as the start corner;
on an odd number of turns, the end is on the opposite side:{

if nturns is odd c1 → c4, c2 → c3, c3 → c2, c4 → c1,
if nturns is even c1 → c2, c2 → c1, c3 → c4, c4 → c3.

(24)

In order to find the fastest traversal path, time costs associated with each edge need to be calculated.
The fastest route between start node and the finishing node end needs to be found. These both represent
the launch location where the aircraft will start and finish its path from. The edge between the start and
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the first cell, E(start, cin), and the edge between the last cell and the end, E(cout, start), are weighted
according to the straight line flight time from one to the other in wind presented in Equation (25).
All the intermediary edge weights will be the time taken to transfer between cells as well as the survey
time for the cell in question for a particular cn. These are all shown in Equation (26):

time(start, cin) =


‖

xstart

ystart

−
xcin

ycin

‖
V cos(arcsin(β sin(arctan

xstart−xcin
ystart−ycin

)−ψw))+Vw cos(arctan
xstart−xcin
ystart−ycin

)−ψw

 , (25)

where [xstart, ystart] are the coordinates for cin and [xend, yend] are for cout.

dp,k =


time(cj

out, cj+1
in ) + tcin

conv, p > 1&p < ncells,
time(start, cin), p = 1,
time(cout, end), p = ncells,

(26)

where p is the index for the column of nodes.
Using the simple three cell decomposition seen in Figure 16, the directed graph generation can be

outlined. An initial cell connectivity graph is used to generate the initial cell traversal order, seen at
the top of Figure 17.

The aircraft is forced to start the survey at the closest cell from its take off location, and the aircraft
can only fly between adjacent cells. These simplifications greatly reduce the search space; while this
is not optimal due to the rules used, it would be close. As this is an NP-hard problem, for a more
complex ROI with more decomposed cells, finding an optimal path would take a prohibitively long
to calculate.

Decomposed

Cells from ROI

Unused Corners

Flight path

Cell 1
Cell 2

Cell 3

Start/Finish

Transfer path

3

2

3

3

4

4

4

Start Corner

End Corner

Figure 16. Example traversal of a final decomposition, where the fastest route in wind is Start→ c1
3 →

c1
1 → c2

2 → c2
4 → c3

2 → c3
4 → end.

The cell connectivity graph is expanded to include all the corner combinations seen at the bottom
of Figure 17. By assigning weights to each edge according to Equation (26), the shortest route can be
found from “start” to “end”. The shortest path can be found with one of the many standard algorithms.
In this case, Dijkstra’s algorithm is used.
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Figure 17. Above: the cell connectivity graph formed from cell adjacency only; Below: cell connectivity
graph is expanded to give the full traversal graph including all corner combinations.

6. Results and Discussion

In order to assess the improvements offered by the proposed algorithm, paths and flight times
will be generated and calculated for a number of example polygons; the first of these is based on
a real field in the UK found using Google Earth. In addition to the proposed algorithm (FTIW),
other techniques from previous literature (NT [25] and MSA [28]) will also be tested for comparative
purposes. Using a real field, it will be shown why accounting for the wind is important, and how the
optional cells can make the shape of the decomposed polygon easier and faster to traverse. In addition
to comparison using a real field, random polygons are generated in a Monte Carlo simulation in order
to calculate an average performance gain figure.

6.1. Examples

The following examples will be simulated using a model of a typical slow flying survey UAV,
similar to the senseFly eBee (Figure 18). The survey parameters are chosen based on the requirements
for the survey. In this simulation, an orthophoto is required, which only requires a low percentage
side/overlap of 40% in the visual spectrum. There was a requirement for a GSD of 0.021 m

pix ,
making the required height to fly approximately 100 m. With the required overlap/sidelap of 40%
(ws = 0.4, wo = 0.4), the distance between tracks is 88 m. The turn rate of the aircraft (ψ̇) and its
airspeed define the radius of the turn manoeuvres based on R = V/ψ̇. The wind is from the north
with a speed of 5 m/s. Note that while in general aviation this is not considered particularly strong,
this represents approximately half the airspeed of the survey aircraft. The full set of flight parameters
is given below:

ψw = 180◦ Vw = 5m/s V = 10m/s ψ̇ = 0.7rad/s Dx = 88m,
ws = 0.4 wo = 0.4 GSD = 0.021 m

pix h = 100m.
(27)

Figure 18. eBee example survey aircraft [38].

The first example polygon shown in Figure 19 is an area of 173 Hectares, with a perimeter of
5.9 km in length. The aircraft is launched just off the North West (NW) side of the ROI from a field
adjacent to a road for easy access. This location is set to (0, 0)m and its known latitude and longitude
is used to geo-reference the generated path, which is in local Euclidean co-ordinates. The start position
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location only affects the cell traversal but needs to be considered, as flying to and from a launch point
is a fundamental part of the flight that needs to be accounted for. With all parameters defined, a path is
generated using the proposed technique for the new cost function and optional cells, and two further
paths are generated using NT and MSA, with no optional cells. For each polygon, the algorithm is ran
at 40 different polygon rotation angles between 0◦ and 180◦. The overall flight times will be calculated
using the survey model defined in Section 5.

Figure 19. Large example farm field to survey, with a northerly wind of 5 m/s, also showing a launch
and landing point for the survey aircraft.

Figure 20 shows the raw output costs of the flights by angle of rotation, as determined by each of
the respective cost functions. As mentioned, the polygon rotation is chosen based on the minimum cost
from the cost function. Figure 20a compares FTIW to the MSA cost function. All three cost functions
have different outputs: MSA outputs metres, FTIW outputs seconds and NT outputs number of turns.
This means that they cannot yet be directly compared. To this end, the paths generated by minimising
MSA and NT cost functions will have their flight times calculated by the FTIW model. This means
a direct time comparison between them all can be performed. It is clear, however, that they both
respond differently, accounting for different factors. The optimal rotation from MSA is 58.5◦, whereas,
for FTIW, the rotation was 108◦. In Figure 20b, the NT cost function has multiple winning rotations
with the same number of turns showing that the lower resolution of output offered by this function is
a disadvantage. It can also be seen that the lowest cost FTIW angle represents one of the highest costs
for the NT cost function.

The final decompositions and paths are shown in Figure 21. It can be seen that the flight time for
NT was 3273 s, and MSA was 3106 s, whereas FTIW took just 2940 s, representing an improvement of
10% and 5%, respectively. Closer examination of the results in Figure 21 (BR) reveals that cells 1, 2,
3, 4, and optional cell 10 are combined to make the largest convex polygon possible with a long axis,
and thus the survey sweep direction mostly perpendicular to the wind. As a result, the FTIW solution
has four cells, instead of the two from MSA and NT. This would, at first glance, seem less efficient
due to the wasted time in transit between them; however, the algorithm has found that, due to the
high relative wind strength, flying perpendicular to the wind outweighs the extra time from having to
transfer between more cells.
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Figure 20. Cost function outputs across a range of polygon rotation angles, comparing cost functions
FTIW to both MSA and NT. (a) Flight time in wind vs. MSA; (b) flight time in wind vs. number of turns.
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Figure 21. (Top Left) Initial decomposition of the example survey field in from Figure 19 at the best
polygon rotation angle; (Top Right) decomposition and path generated from NT cost function. (Bottom
Left) MSA cost function; (Bottom Right) fastest survey path, FTIW cost function

To demonstrate the importance of accounting for wind, the wind strength was set to zero and the
same survey was re-generated. The decompositions and paths are shown in Figure 22. It can be seen
that while the proposed method has still found a faster solution than the others, the improvement is
greatly reduced: 1.8% for NT and 2.6% for MSA. They have all produced decompositions of two cells,
and FTIW made no particular attempt to align the cells in any particular direction (because there is no
favourable direction due to the lack of wind); however, minor improvements are still made due to the
inclusion of external cells.

0 500 1000 1500

-1000

-500

0

500

Inital decomp

1

2

34

5

6

7

8

0 500 1000 1500

-1000

-500

0

500

Number of turns. Time: 2545s

1

2

0 500 1000 1500

-1000

-500

0

500

MSA. Time: 2564s

1

2

0 500 1000 1500

-1000

-500

0

500

Flight time in wind. Time: 2498s

1

2

East (m) East (m)

East (m)East (m)

N
o

rt
h

 (
m

)

N
o

rt
h

 (
m

)
N

o
rt

h
 (

m
)

N
o

rt
h

 (
m

)

Figure 22. Final decompositions and flight paths generated from the example survey field in Figure 19
in zero wind, for FTIW, MSA and NT.

To further illustrate the effect of wind, the above simulation was re-run at an increased wind-speed
of 8 m/s, which represents 80% of the aircraft’s airspeed. The results can be seen in Figure 23.
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Because only the wind has changed, the solutions from NT and MSA are identical; however, in
this much stronger wind, the flight time has more than doubled. Now the wind is so strong that
the advantage of flying perpendicular to the wind has increased significantly. Therefore, the FTIW
solution has also used optional cell 8 to create two cells that are both perfectly perpendicular to the
wind. This gives a huge 39.4% decrease in flight time compared to NT where both cells have their
long axis facing into the wind. There was a much smaller 6.4% improvement over MSA because its
decomposition is already, incidentally, more aligned perpendicular to the wind.
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Figure 23. Final decompositions and flight paths generated from the example survey field in Figure 19
in a strong northerly 8 m/s wind, for FTIW, MSA and NT.

6.2. Monte Carlo Simulation

In the previous subsection, a real field was chosen to give a clear demonstration of the different
features of the algorithm. However, to give a more balanced assessment, in this subsection,
random polygons are generated and the CPP problem is solved for each. A few example polygons and
paths from some of the simulation runs are shown in Figure 24. Once again, the proposed technique is
compared to previous methods, and a clear improvement is shown. The base parameters of the Monte
Carlo simulation are six or seven vertex polygons with an average radius of 2 Km and a wind speed of
5 m/s. However, additional simulations have been performed with modified parameters (shown in
Table 2) to assess the effect of the proposed algorithm under a variety of conditions.

Table 2. Monte Carlo simulation results, 70 random polygons runs.

FTIW Improvement over NT FTIW Improvement over MSA

# Simulation Description Av Time(s) Av Percentage(%) Av Time(s) Av Percentage(%)

1 10 polygons 815 s 5.4% 840 s 5.37%
2 20 polygons 6 vertices 1367 s 8.1% 1174 s 7.6%
3 10 polygons Vw = 0 169 s 1.3% 191 s 1.7%
4 10 polygons Vw = 8 3417 s 26.67% 4309 s 30.01%
5 10 polygons Av Radius 1Km 655 s 8.9% 792 s 10.6%
6 10 polygons increased irregularity 718 s 9.4% 960 s 12.5%
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Figure 24. A sample of randomly generated polygons, their optimal decomposition and the associated
FTIW path used in the Monte Carlo simulations.

Table 2 shows the average improvement across multiple polygons of FTIW over NT and MSA.
From these Monte Carlo results, it is clear that this algorithm offers a quantifiable advantage over
previous methods. The overall average percentage improvement from the 50 polygons with 5 m/s
wind-speed is 7.95% for NT and 9.02% for MSA.

Two simulation runs have been used to further illustrate the importance of accounting for wind.
One run was performed at a wind-speed of zero (row 3) and the other was at 8 m/s (row 4), which is
a β of 0% and 80%, respectively. With no wind, the proposed algorithm performed slightly better at
1.3% and 1.7% improvement, whereas, at 8 m/s, it considerably outperformed the previous methods
at 26.7% and 30%.

The irregularity of the random polygon generation was increased for one run of 10 polygons
(row 6). By increasing the standard deviation of each vertice’s random distribution to the polygon
centre from 50% average radius to 80%, we can observe how effective the algorithm deals with more
irregular (“spiky”) polygons. As can be seen in Table 2, the average improvement is increased to 8.9%
and 10.6% for NT and MSA, respectively. This improvement is attributed to the inclusion of optional
external cells, which can be used to “clean-up” deep notches in the ROI.

Simulation runs 2 and 5 are to show that polygons with less vertices and smaller random polygons
still had comparable results. They do have comparable results where the simulation run of 10 polygons
with an average radius of 1km, did well with a 9.4% and 12.5% improvement over NT, and MSA,
respectively. A more simple 20 polygon run using six vertex polygons performed similarly well at
8.1% and 7.6%.

7. Conclusions

This paper proposes a novel CPP method, designed specifically for low-speed fixed-wing aircraft,
such as precision agriculture survey UAVs. The method is developed to optimise a path for covering
a polygonal ROI, and as part of this, a calculation for the time taken to transverse a convex polygon
in wind is developed. It is shown that wind has a huge effect on survey time and it has been proved
mathematically that, in uniform wind, flying perpendicular to the wind confers a flight time advantage
over surveying parallel to the wind.
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With known aircraft/survey parameters, a complex concave ROI polygon can be optimally
decomposed into smaller convex polygons. This is achieved using a “bottom up” dynamic
programming approach, which finds the time-optimal convex decomposition within its search space.
Taking advantage of the features of a fixed wing UAV, the novel addition of external cells that can be
optionally induced during the DP recombination phase gives the CPP the option of overflying corners,
which, in turn, may lead to decreased overall flight time. Finally, a full flight path is generated that
traverses all the decomposed cells.

To demonstrate clear improvement over previous CPP methods, a Monte Carlo simulation was
run where coverage paths were generated for a large number of randomised polygons. A significant
improvement was shown over previous methods for typical survey conditions of between 8% and 9%,
demonstrating consistent robust performance.

It was also shown that the advantages offered by this method varies greatly due to the type of
polygon, wind strength and direction. In particular, wind is shown to have such a large influence
that, in one example in Section 6.1, an improvement of 40% was shown in flight time in high wind.
This is a huge improvement, yet, at first glance, might seem unrealistic. However, these small aircraft
fly at low airspeeds which sometimes can be close to the wind-speed. In these high wind-speed
situations, this work has shown that the wind can have a significant effect on the CPP. It is therefore
essential that this technique is used, otherwise considerable time could be wasted flying directly into
wind. In particular, polygons with notches (or other small features that increase the complexity of the
polygon) and polygons with their long axis being close to perpendicular to the wind direction will see
the most benefits for using this method.

In this body of work, only simulation studies have been preformed. As the presented algorithm
finds the optimal solution, this results in it being computationally incentive, meaning that it not ideal
for use for mission planning in the field. However, work is being conducted to extend the algorithm to
a recursive greedy solver, which will give a near optimal solution but in an acceptable time. As this is
to be used in the field, extensive flight testing will be conducted during this work. There is a big desire
to conduct real world testing, in order to prove the survey model in wind is accurate. As we assume
that the wind is steady and uniform, the path following and airspeed tracking of the vehicle control is
perfect, and errors as a result of these may accumulate. While these assumptions have been discussed
in previous work by this author [29], they need to be tested in future work.
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