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Abstract: With the development of science and technology, modern communication scenarios have put
forward higher requirements for passive location technology. However, current location systems still
use manual scheduling methods and cannot meet the current mission-intensive and widely-distributed
scenarios, resulting in inefficient task completion. To address this issue, this paper proposes a method
called multi-objective, multi-constraint and improved genetic algorithm-based scheduling (MMIGAS),
contributing a centralized combinatorial optimization model with multiple objectives and multiple
constraints and conceiving an improved genetic algorithm. First, we establish a basic mathematical
framework based on the structure of a passive location system. Furthermore, to balance performance
with respect to multiple measures and avoid low efficiency, we propose a multi-objective optimal
function including location accuracy, completion rate and resource utilization. Moreover, to enhance its
practicability, we formulate multiple constraints for frequency, resource capability and task cooperation.
For model solving, we propose an improved genetic algorithm with better convergence speed and
global optimization ability, by introducing constraint-proof initialization, a penalty function and a
modified genetic operator. Simulations indicate the good astringency, steady time complexity and
satisfactory location accuracy of MMIGAS. Moreover, compared with manual scheduling, MMIGAS can
improve the efficiency while maintaining high location precision.

Keywords: passive location; NP-hard; scheduling; genetic algorithm; angle-of-arrival

1. Introduction

Passive location plays a significant role in modern communication scenarios for its satisfactory
concealment based on the passive reception pattern. In addition, with the characteristics of long
distance measurement and high robustness [1], passive location techniques are of significance in
both civil and military areas. The major passive location technique is angle-of-arrival (AOA) [2],
which obtains the target location by combining the measured angles of each station and whose
performance is highly affected by scheduling plans [3,4]. Resource scheduling is implemented
to establish an optimized task-to-resource dispatch with the purpose of maximizing the total
performance (such as location accuracy and task completion rate) and avoiding the conflicts effectively.
However, despite its importance, little attention is paid to the scheduling mechanism. In recent years,
studies in passive location have mainly focused on location algorithms [5,6], accuracy analysis [7],
filters and tracking [8,9]. There is little information available in the literature about passive location
resource scheduling. The scheduling method mostly used today, which we call traditional manual
scheduling, is unable to handle the increasing number of tasks and overloaded resources, thus leading
to the following serious problems.
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• Low efficiency. Because manually allocated broadcast resources cannot achieve parallel processing
very well, when task conflicts occur, some signals may be lost, reducing efficiency.

• Unstable location accuracy. Because location accuracy is highly relevant to the stations-to-tasks
schedule plans, it is possible to encounter low location accuracy due to mistakes caused by
human subjectivity.

To address these problems and achieve high efficiency and location accuracy, new intelligent
automated scheduling methods urgently need to be studied. Xiu et al. [10] analyzed constellations in
bearing-only location systems and proposed an optimal geometric relationship to improve location
precision and minimize circular probable error, providing an important reference for station scheduling.
Prasan et al. [11] proposed the pre-scheduling-based k-coverage group scheduling and self-organized
k-coverage scheduling algorithms to address problems in existing sleep-scheduling algorithms.

Hu et al. [12] established a centralized framework for sensor scheduling in wireless sensor
networks and modeled the problem using integer linear programming. In [13], the proposed
algorithms, which deal directly with minimizing the mean squared error, are based on the convex
relaxation approach to address the binary optimization scheduling problems that are formulated in
sensor network scenarios. Xu et al. [3] analyzed the Cramer-Rao lower bound of AOA and discussed
the measurement of location accuracy based on the information matrix. Wei et al. [9] proposed a
modified binary particle swarm optimization (BPSO) algorithm motivated by the information matrix
in the wireless sensor network nodes scheduling problem for tracking. Sun et al. [14] were inspired
by Xu et al. and Wei et al. and proposed a BPSO algorithm motivated by geometric dilution of
precision deduced from the information matrix for station scheduling. However, Sun et al. did not
solve the problem thoroughly because they neglected to consider complex constraints and efficiency.
Furthermore, previous studies seldom discuss scheduling strategies for scenes with multiple concurrent
tasks. Therefore, to solve passive location station scheduling more specifically, the scheduling method
must satisfy these conditions. (1) The optimal objective must involve not only accuracy but also other
important factors, especially efficiency. (2) Complex constraints are formulated. (3) The method can
support multiple concurrent task scenarios.

Inspired by the factors mentioned above, we propose a new method called multi-object,
multi-constraint and improved genetic algorithm-based Scheduling (MMIGAS), enhancing the
efficiency and practicability for passive location resource scheduling. Our first contribution is
to construct a mathematical primary centralized optimization model of passive location resource
scheduling according to a practical system framework. Second, we introduce position dilution
of precision (PDOP) to measure the location accuracy and define other objective values, such as
completion rate, resource utilization and task priority. These values are combined into a multi-objective
function to ensure that our schedule can balance performance with respect to multiple aspects,
specially efficiency. Third, based on several important assumptions, we formulate complex constraints
in three categories: frequency, station capability and task cooperation requirement, thus improving
practicability. Moreover, since the model is an NP-hard problem, we conceive an improved genetic
algorithm (IGA) by introducing constraint-proof initialization (CI), penalty function (PF) and modified
genetic operator (MGO), which can achieve a better convergence rate and global optimization ability.
Simulations show that MMIGAS has a satisfactory astringency and stability of time complexity.
Additionally, the method is appropriate for multiple concurrent targets. Compared with manual
scheduling, MMIGAS can clearly improve the efficiency while maintaining high location accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the primary framework
of the location system, clarifies some critical assumptions and establishes a basic mathematical
optimization model. In Section 3, we demonstrate our design for multiple objectives and multiple
constraints. In Section 4, we illustrate the three steps of the IGA: CI, PF and MGO. Section 5 presents
the experimental results and analyses the performance of proposed method. Section 6 concludes
the paper.
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2. Problem Formulation

The passive location channel is heavily crowded due to the narrowband and dense signals.
The time-varying fading and silence zones also cause many problems, making the passive location
problem a difficult task and topic of interest [15–20]. To increase the location accuracy and flexibility,
a location system generally uses a cooperative location approach [21], which consists of the steps of
task arrival, command downloading, data uploading and position output, as shown in Figure 1.
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Figure 1. Procedure for passive location in a practical system.

Moreover, the system has a centralized architecture consisting of the command center and
direction-finding stations, as shown in Figure 2. Therefore, the essence of station scheduling
is a centralized tasks-to-resources allocation, which guides us to establish a combination
optimization model.

Sensors 2018, 18, x 3 of 24 

 

2. Problem Formulation 

The passive location channel is heavily crowded due to the narrowband and dense signals. The 

time-varying fading and silence zones also cause many problems, making the passive location 

problem a difficult task and topic of interest [15–20]. To increase the location accuracy and flexibility, 

a location system generally uses a cooperative location approach [21], which consists of the steps of 

task arrival, command downloading, data uploading and position output, as shown in Figure 1. 

Stations

Tasks Arrival

Command

center

...

Assigning stations 

for tasks

Calculates the 

positions
Command

center

 

Figure 1. Procedure for passive location in a practical system. 

Moreover, the system has a centralized architecture consisting of the command center and 

direction-finding stations, as shown in Figure 2. Therefore, the essence of station scheduling is a 

centralized tasks-to-resources allocation, which guides us to establish a combination optimization 

model. 

Command

center

Station1

Station2

Station3

Station4

Station5

1.Tasks arrival

2. Scheduling

Project

3. Data of

direction-finding

4. Result of

location

 

Figure 2. Architecture of a passive location system. 

  

Figure 2. Architecture of a passive location system.

2.1. Assumptions and Scenario Declaration

Because the passive location scenario is extremely complicated due to complex channels [22],
we make some critical assumptions to simplify this problem.
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• We ignore the silence zone. This assumption is made to reduce the space constraint and make the
model more concise. According to related studies, potential silence zones can be fully avoided if
appropriate locations for building stations are chosen [10].

• Signals from all directions have the same gain in the receiving antennas. This assumption is made
to ensure the strength of the signal directly reflects the distance between the station and the target,
which simplifies the discussion about geographical relationships. This can be achieved by using
an omnidirectional antenna.

• Targets are static or moving slowly enough that their locations do not noticeably change over a
short time. This assumption avoids a heavy time delay or even invalidation of the scheduling due
to drastic changes in geographical relationships.

• Prior knowledge about targets is available. This assumption ensures that the approximate
potential area of the target is known, which is an essential condition of using the proposed
scheduling method.

• In addition, the scenario discussed in this paper is specified by the following declarations.
• We only discuss the scheduling activity in one slot. We define one slot as the duration of a

scheduling and location process. It is the minimum interval needed to implement one complete
activity in the passive location system. Therefore, any length of time can be considered to be a
sum of several slots.

• We only discuss narrow-band stations because wide-band stations can be considered the sum of
several different narrow-band stations.

2.2. Notation

Stations and signals are considered to be resources and tasks, respectively. And to demonstrate
their allocation relationship, we structure a scheduling matrix as follows.

1. Task: We denote tasks as T = {t1, t2, . . . , ti, . . . tNm}, where Nm is the total number of tasks.
We use four attributions to describe a task: frequency, location, collaboration and priority,
∀ti ∈ T, ti =

{
Ẑi, λ̂i, B̂i, Ĥi

}
, where i denotes the task sequence number.

• Ẑi =
[

f̂min(i), f̂max(i)
]

gives the frequency range of the task signal,

where f̂min(i) ∈ R, f̂max(i) ∈ R and f̂min(i) ≤ f̂max(i).
• λ̂i = (x̂i, ŷi) denotes the two-dimensional coordinates of task i, where x̂i ∈ R, ŷi ∈ R.
• B̂i gives the cooperative station number requirement for task location, where B̂i ∈ Z+.
• Ĥi ∈ {1, . . . , 6}. We define the priority of tasks as an integer ranging from 1 to 6. The task

is more important if its Ĥi is higher.

2. Resources: We denote Ns direction-finding stations as K =
{

k1, k2, . . . , k j, . . . , kNs

}
. We use

three attributions to describe one station (resource): frequency, location and capability,
∀k j ∈ K, k j =

{
Zj, λj, Cj

}
. Here, j denotes the station sequence number.

• Zj = [ fmin(j), fmax(j)] is the frequency range at which the station implements
direction-finding, where fmin(j) ∈ R, fmax(j) ∈ R and fmin(j) ≤ fmax(j).

• λj =
(

xj, yj
)

denotes the two-dimensional coordinates of station j, xj ∈ R, yj ∈ R.

• Cj is the maximum number of tasks the station can process synchronously, implying its
working capacity, where Cj ∈ Z+.

3. Scheduling matrix: We design a binary solution matrix with Ns columns and Nm rows as
A =

[
aij
]

Nm×Ns
, where aij indicates the relation between station j and task i. Here aij = 1 means

that station j is assigned to process task i, while aij = 0 means j is not assigned to process i.



Sensors 2018, 18, 2093 5 of 24

2.3. Optimization Model

Based on the analysis mentioned above, we formulate the passive location resource scheduling
problem as a combination optimization problem. Denote F as the objective function, hi as the equality
constraints and gi as the inequality constraints. Then, the mathematical model is:

max{F{A}}
s.t. hi{A} = 0, i = 1, 2, 3 . . .

gi{A} ≥ 0, j = 1, 2, 3 . . .
(1)

3. Multi-Objective and Multi-Constraint Properties

3.1. Objective Function

To balance different aspects of the performance and obtain a comprehensive solution, we design a
multi-objective function using a linear weighting as follows:

F = ∑
q

ϕqωq (2)

Here ϕq is the objective and ωq is the weight. The definition and calculation of objectives and
weights is illustrated in the following part of this section.

3.1.1. Location Accuracy

Because the fundamental requirement of passive location resource scheduling is to obtain a
scheduling plan with a satisfactory location accuracy, the objective function must involve the location
accuracy. We introduce PDOP as the measure of location accuracy. PDOP quantifies the geographical
relationships between receivers and targets, which can directly impact the performance of the location
activity. Smaller PDOP means better performance and on the contrary, larger PDOP means worse
performance. Based on [14,23], PDOP is calculated as follows:

pi =

{
M1
∑

j−1

1
rj

2
1(

σφ(j)
)2

} 1
2

det(Li)
1
2

(3)

det(Li) = ∑
{u,v} ∈ M2

1(
σφ(u)

)2(
σφ(v)

)2
sin2(φu − φv)

ru2rv2 (4)

Here, pi is the PDOP value of task i, Li is the Fisher information matrix, rj is the distance from
station j to the target, φj is the direction angle, σφ(j) is the measurement error of φj, M1 denotes the
number of stations that participate in the task and M2 denotes the set of every match of two stations
in M1. For example, when M1 = {1, 2, 3}, then M2 = {{1, 2}, {2, 3}, {1, 3}}. To make the objective
factor positive with respect to location accuracy, we formulate ϕp as the reciprocal of the sum of
PDOP as:

ϕp =
1

∑
i

pi
(5)

Additionally, we set ωp = 1 and the objective function is:

F = ϕp + ∑
q

ϕqωq (6)
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3.1.2. Completion Rate

To avoid the task missing problem and low efficiency, we define an objective factor named
completion rate ϕ1 which is equal to the ratio of completed tasks n to the total number of tasks Nm.

ϕ1 =
n

Nm
(7)

Weight ωq is calculated as the product of scaling factor ηq and concern level cq.

ωq = ηqcq (8)

Here, ηq transforms objective factor ωq to the same order of magnitude of ϕp, which avoid
poor performance of F caused by the wrong size of ϕp. It helps F to reflect various factors evenly.
Objective factor ηi is calculated as follows:

ηi = 10log10 b
ϕp
ϕi
c (9)

Here bxcmeans the maximum integer value less than x and cq indicates a user’s concern about
the objective factor, which is shown as Equation (10).s.t.

cq ∈ [0, 1]
∑
q

cq = 1 (10)

3.1.3. Resource Utilization

To prevent resource waste, we introduce the resource utilization in Equation (11), which is the
ratio of occupied resources m to the total number of resources Ns.

ϕ2 =
m
Ns

(11)

Analogously, weight ω2 is calculated by (8)–(10).

3.1.4. Task Priority

Inspired by priority scheduling [24], we design objective factor ϕ3 based on task priority,
which makes the model prefer the task with the highest priority, shown in Equation (12).

ϕ3 = ∑
i

Ĥi (12)

Here, ϕ3 equals the sum of priorities of completed tasks. As above, weight ω3 is analogously
calculated by (8)–(10).

In conclusion, the formulation of multi-objective function F is as follows:

F = ϕp +
3

∑
q−1

ϕqωq = ϕp +
3

∑
q−1

ϕqηqcq (13)

3.2. Constraints

Due to the complexity of wireless communication channels [25], the resource scheduling problem,
involving many constraints on time, space, frequency and other factors, need to be analyzed and
formulated to ensure our mathematical model is reasonable. Based on our assumptions, we ignore the
constraints in the time and space domains and simplify the complex conditions into three categories:
frequency, station capability and task cooperation requirements.
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3.2.1. Frequency

The direction-finding activity cannot be implemented when the frequency of the task is beyond
the station’s range. We formulate such a constraint as follows:

∀ti ∈ T, ∀k j ∈ K,

 aij

(
f̂min(i)− fmin(j)

)
≥ 0

aij

(
fmax(j)− f̂max(i)

)
≥ 0

(14)

3.2.2. Station Capability

For narrow-band stations, receivers are highly restricted, leading to the limitation of the number
of tasks that can be implemented by one station synchronously.

∀j ∈ [1, Ns],
NS

∑
i−1

aij ≤ Cj (15)

3.2.3. Task Cooperation Requirement

Because different tasks may have different cooperation requirements, a sufficient number of
stations should be allocated to the task.

∀i ∈ [1, Nt],
Ns

∑
j−1

aij ≥ B̂i (16)

4. IGA

Due to the strong relevant effects among tasks and resources, the proposed model becomes an
NP-hard problem [26], for which a genetic algorithm (GA) is suitable for searching for a solution
because of its adaptive global optimization ability. Originally, a GA was conceived based on the
simulation of heredity and evolution in the natural environment [27].

In the algorithm initialization, various initial feasible solutions are randomly generated as the
original genetic group. During the iterations, genetic operators construct the offspring based on the
parental genetic group, where the genes with highest environmental fitness can survive and multiply,
thus conveying the dominated characteristics into the final generation. Eventually, the algorithm
obtains an optimal solution. Compared with other algorithms, GA has low complexity and high
practicability [28], thus being appropriate for the passive location resource scheduling problem.
However, the normal GA has the disadvantages of a low convergence rate and local optimization
dilemma. To make it more suitable for our application scenario, we make several improvements
by implementing CI, PF and MGO, helping the algorithm to obtain a satisfying solution quickly.
The objective function is utilized as the fitness function, while the decision matrix is used for gene
construction. The process of the algorithm is shown in Figure 3 and details in Algorithm 1.
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Algorithm 1. IGA.

1. Parameters setting and constraint-proof initialization.
2. Terminate? Yes→Step 6, No→Step3.
3. Calculate the fitness with the PF and select next generation.
4. Use MGO to get next generation.
5. Constrain satisfaction? Yes→step 2, No→Step 4.
6. Get the solution.

4.1. CI

Traditional GA is very sensitive to the initial values [29]. When the initial values do not meet
the constraints, the algorithm is unable to calculate the fitness and thus the evolution direction is
unclear, which substantially reduces the convergence rate and even leads to the non-convergence.
Therefore, in order to provide a specific evolution direction at the beginning and improve the astringency,
we implement the CI by building a taboo-table which marks out the element unable to satisfy the
frequency constrain and coding the scheduling matrix stepwise. The process is shown in Figure 4.

Step 1©: Generate the original matrix according to the number of tasks and stations. Build up a
taboo-table by using Equations (14)–(16). And take away the taboo-table from the original matrix to
obtain the frequency-satisfying matrix.

Step 2©: Select one column of the matrix as a vector, which indicates the task scheduling table
of one station. Value it randomly within the capability of the resource and then use it as a task
allocation vector.

Step 3©: Repeat Step 2© for every column in the frequency-satisfying matrix to obtain the task
allocation vectors of all stations.

Step 4©: Combine the task allocation vectors as a decision matrix.
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4.2. PF

To enhance the algorithm performance, the original genetic group must satisfy all constraints in
our model. CI guarantees the original genetic group will meet the constraints on frequency and resource
capability. For the task cooperation constraint, we introduce the PF method based on Section 2.2 and
Equation (1).

Denote Ω as the penalty factor. Set Ω > 1, Ω ∈ Z+. Define Xi =
Ns
∑

j−1
aij as the number of stations

scheduled for task i. The PF is denoted as P:

P =
Nm

∑
i−1

Ω(Bi−Xi) (17)

Therefore, the fitness function becomes:

Fitness = F− P (18)

According to (17) and (18), if one solution does not meet the task cooperation requirement, its P
will increase exponentially, rapidly reducing its fitness and causing it to be eliminated during the
iteration. Therefore, solutions eventually that survive must satisfy the task cooperation constraint.

4.3. MGO

The preceding section introduces the generation of the initial solution and the penalty function.
Then, we will introduce the modified genetic operation of the solution which contains roulette wheel,
elitism selection, crossover and mutation.

4.3.1. Roulette Wheel and Elitism Selection

We introduce a combined roulette-wheel and elitism selection strategy, which can keep the
randomness of offspring and prevent the loss of the best individual in the group. First, the individuals
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with the highest fitness are directly saved to the next generation. Second, parents are selected according
to probability pg, of individual l, which is calculated as follows:

pg(l) =
Fitness(l)

Np

∑
j−1

Fitness(j)

(19)

where Np is the population of genetic group in this algorithm and Fitness(l) is the fitness of individual l.

4.3.2. Crossover

1. Crossover between chromosomes

There is a probability pcc that chromosome crossover will happen for each individual. In the
case, two chromosomes will be randomly selected and exchange their gene in the same location.
Parameters pcc is set according to human experience, normally ranging from 0.3 to 0.7. Figure 5 shows
the crossover process.
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Figure 5. Individual crossover.

2. Crossover between individuals

In the same way, we need to consider the concurrent processing of multiple tasks. So, there is
a probability pci for individual crossover among the entire group, which is the operation that one
individual exchanges part of its genes with another. The location at which the gene exchange happens
is selected randomly. Probability pci is set by experience as well, normally ranging from 0.3 to 0.7.
Figure 6 shows the process of two concurrent tasks.
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3. Mutation

In every individual, there is a probability pm of mutation, which is when one or more genes
inside this individual change themselves randomly. Parameter pm usually ranges from 0.01 to 0.1.
An example of mutation is shown in Figure 7.Sensors 2018, 18, x 11 of 24 
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5. Experiment Results and Discussion

5.1. Simulation Setting

We simulate a passive location scenario based on AOA. The exact location, frequency and
capability of stations are all known. Moreover, the approximate area, communication frequency,
priority and cooperation requirement of tasks are known as well. Note that we only discuss the
one-slot and narrow-band condition. Scenario and algorithm parameters are shown in Tables 1–3.
First, we mainly consider the location accuracy and completion rate, so in this experiment objective
function weights are set as c1 = 1 and c2 = c3 = 0. In addition, chromosome crossover probability,
individual crossover probability and mutation probability are set according to Section 4.3. The direction
angle error associated with the positioning accuracy is generated according to N(0, 1) Gaussian
distribution and the penalty factor is Ω = 5. Moreover, the population number of chromosomes is 10
and the max iteration of genetic algorithm is 2000.

Table 1. Parameter settings for the algorithm.

Chromosome
Crossover

Probability

Individual
Crossover

Probability

Mutation
Probability Population Iteration Penalty

Factor

Objective
Function
Weights

Probability
Distribution

0.8 0.8 0.1 10 1000 Ω = 5 c1 = 1
c2 = c3 = 0

Gaussian
N(0, 1)

Table 2. Parameter settings for the station scenario.

Location Area
(km × km)

Beginning
Frequency (HZ) Band (HZ) Capacity Probability

Distribution

50 × 50 1000~5000 2000~3000 1~2 Uniform Distribution

Table 3. Parameter settings for the task scenario.

Location Area
(km × km)

Beginning
Frequency (HZ) Band (HZ) Cooperation

Requirement
Probability

Distribution

50 × 50 1000~5000 2000~3000 2~3 Uniform Distribution

The stations and task signals were randomly distributed in a 50 km × 50 km area. The frequency
range of stations and tasks were decided by their beginning frequencies and bands. The capabilities
are randomly varied between 1 and 2, while the cooperation requirements are randomly varied
between 2 and 3. And the locations of stations and task signals are randomly generated according to
uniform distribution.
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5.2. Experiment Results

We built up a scenario with 15 stations and six tasks. The solution given by the proposed algorithm
is shown in Figure 8 and Table 4. The result indicates that the method can work out an appropriate
solution and handle the NP-hard problem effectively.
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Figure 8. Passive location resource scheduling diagram with 15 stations and six tasks: (a) distribution
of resources and tasks; (b) the scheduling plan: dotted green line represents task assignment.

Table 4. Scheduling results of 15 stations and six tasks.

Task 1 2 3 4 5 6

Station 1, 3, 14 2, 3, 9 5, 6, 10 8, 12, 13 2, 4, 11 6, 7, 9

Notes: the numbers of task and station are shown in Figure 8.

Furthermore, we ran a Monte-Carlo experiment by repeating this simulation 300 times to examine
the astringency. To better show the effect of the algorithm, the 300 experiments were divided into five
groups (No. 1~No. 5), where each group including 60 experiment results and each curve representing
the average value of each group. In each experiment, the location of the targets and the location of
the stations are randomly generated. The convergence curves are shown in Figure 9, illustrating that
the convergence values are very close to one another. This method can enlarge the search space and
help the algorithm jump out of local minima. Moreover, all the curves reached their convergence in
less than 100 iterations, showing the rapid convergence which means that the algorithm can finish
calculation in a short time. Such a characteristic is very important for the passive location problem.
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5.3. Results and Discussion

The experimental results show that the proposed algorithm can solve the multi-objective and
multi-constraint scheduling problems. To further verify the performance of the IGA and analyze the
experimental results, we analyze the performance and indicators, including the performance of the
IGA and some experiment indicators, such as time complexity and location accuracy.

5.3.1. Performance of the IGA

CI has an advantage with respect to astringency because it can provide a specific evolution
direction at the beginning of the iterations. Random initialization means the random generation of
initial solutions which directly participate in the next operation of the genetic algorithm without
checking constraints. In this experiment, in order to compare the difference between CI initialization
and random initialization, the parameters are set the same as Table 1 except for the initialization step.
And the experiment results are shown in Figure 10.
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As shown in Figure 10, the random initialization method fails to find the direction of astringency
because it is difficult for random initialization to find an initial value satisfying the constraints and it
is also difficult to achieve a continuous reduction of the optimization goals. The CI can accumulate
enough solutions to satisfy the constraints in the initialization so that the algorithm can quickly find the
appropriate updating direction in the feasible solution space, thus maintaining a considerable descent
speed for the optimization target. The results prove that CI can effectively improve the convergence
rate of the algorithm.

In order to better prove the advantage of IGA algorithm, we conduct a contrast experiment
between IGA, particle swarm optimization (PSO) and ant colony optimization (ACO). A simulation
with 6 tasks and 25 stations was set up and the parameter settings of PSO and ACO are shown in
Table 5. In the scenario, the station frequency of all sites could match the communication frequency of
the task, the maximum working capacity of the site was one and the cooperative number was two.
The three algorithms were recorded over 1000 iterations to optimize the change of targets. As shown
in Figure 11, IGA has a stronger global search ability than ACO and PSO and it can resist the problem
of falling into locally optimal points to a certain extent.
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Table 5. Parameter settings for PSO and ACO.

Algorithm Maximum Iterations Population Search Parameters Other Parameters

PSO 1000 10 γ1 = 2, γ2 = 2 Vmax = 10
ACO 1000 10 α = 2, β = 3 η = 0.3, cons = 10

Notes: In PSO, γ1 and γ2 represent the global optimal factor and local optimal factor of particle velocity update in
iteration and Vmax denotes the maximum velocity of a particle. In ACO, α and β respectively represent pheromone
factor and elicitation factor, η denotes pheromone volatilization factor and cons denotes the total amount of
pheromone released by an ant at one iteration.
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5.3.2. Time Complexity

Our requirements for time complexity are relatively high, because location tasks require very
strict real-time performance, which means low time delay for processing tasks.

1. Effect of population.

To investigate the influence of population on time complexity, we built a scenario with 15 stations
and six tasks and vary the population from 2 to 40. We examined the time spent for calculation and
the fitness of the final solution. From the results of the experiment shown in Figure 12, we can draw
the following conclusions. (a) The time of calculation increase approximately linearly according to
the population. (b) The fitness can be obviously enhanced by a bigger population at the beginning
but when the population is larger than 10, the fitness is no longer sensitive. From this, we can make
a final deduction: the population should not increase or decrease without limit and it should be
appropriately chosen to balance low time complexity with good global search capability according to
real application scenarios.

2. Effect of coding length.

To study the effect of coding length, also regarded as the number of stations, on time complexity,
we conducted an experiment to observe the time spent on calculation in different scenarios with
different coding lengths. However, the results were not significant because the delay caused by
retrogression can enormously impact the final output and obscure the impact of the coding length.
Hence, to avoid the retrogression and emphasize the influence of coding length, we fixed the values of
the population, maximum number of iteration, frequency, task cooperation requirement and station
capabilities. In addition, we varied the coding length from 10 to 19. The relationship between time
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complexity and coding length becomes more observable, as shown in Figure 13 (two experiments with
five and six tasks were conducted).
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Clearly, the time of calculation has an approximately linear relationship with the coding length.
Moreover, because the coding length may change because of station network adjustments such as
added or removed nodes, this experiment demonstrates that the algorithm can maintain a stable time
complexity even in rapidly transforming scenarios such as war and this will not lead to a saltation.
In conclusion, the algorithm has good time complexity stability in practice.
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5.3.3. Location Accuracy

This section discusses the variation tendency of location accuracy during the iterations, which is
very important in location tasks. We calculate the PDOP by Equations (3) and (4) and the measurement
error ∆ is calculated as follows:

∆ =
Nt

∑
i−1

√
(x̂i − xi)

2 + (ŷi − yi)
2 (20)

Here, x̂i and ŷi are the measured coordinates of the targets while xi and yi are the real
values, respectively.

The behaviors of ∆ and PDOP during the iterations are shown in Figure 14. Generally, as the
fitness increases during the iterations, the PDOP value and real measurement error of the solution
decrease, indicating that the location accuracy increases. As shown in Figure 14, as the number of
iterations increases, the algorithm can improve the location accuracy under the condition of satisfying
multiple constraints and completing multiple tasks.
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5.4. Comparison with the Manual Method

We compare the proposed method and traditional manual scheduling. Here, to simulate the
manual method, all stations select the same randomly allocated task for one slot; that is, the task
itself is randomly allocated but all stations perform the same one. We used two metrics to examine
their performance, PDOP and task completion rate, to indicate the location accuracy and efficiency,
respectively. The results, shown in Figures 15 and 16, illustrate two preliminary conclusions. First,
MMIGAS has the same location accuracy as the manual scheduling in a scenario with sufficient
resources. When the station number is small, the PDOP of manual scheduling is lower than that of
MMIGAS because the manual scheduling only finishes one task every slot. However, the gap between
them gets smaller and finally goes to zero as the number of stations increases. The proposed method
and manual scheduling reach the same accuracy when the number of stations is equal to or more
than 60. Second, MMIGAS has a higher completion rate than manual scheduling, which indicates
better efficiency. This result also shows that the competition rate grows when the number of stations
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increases. Eventually, we draw our final conclusion: when the number of stations is high enough,
MMIGAS can effectively enhance the efficiency with just a little or even no loss of location accuracy.Sensors 2018, 18, x 17 of 24 
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Figure 16. Position dilution of precision (PDOP) in different scenario.

For further discussion, we define two values: Q1 and Q2, which are respectively calculated using
(21) and (22).

Q1 =
p1 − p2

max(p)
(21)

Here, p1 and p2 are the PDOP values of MMIGAS and manual scheduling respectively.
The physical meaning of Q1 is the relative loss of accuracy.

Q2 = R1 − R2 (22)
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Here R1 and R2 are the completion rates of MMIGAS and manual scheduling respectively.
The physical meaning of Q2 is the improvement in completion rate.

For five tasks, the curve of Q1 and Q2 are shown in Figure 17. Clearly, as the number of stations
increase, Q1 decreases nearly to zero and Q2 increases nearly to one, showing that the loss of location
accuracy is cut down while the efficiency is significantly improved. Hence, the following can be
concluded: when the number of stations is high enough, this method can substantially enhance
efficiency at a little cost of location accuracy.
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Figure 17. Q1 and Q2 in different scenario (with 5 tasks).

5.5. Multi-Objective Function Weights

According to Equation (13), c1, c2 and c3 respectively represent the weights of completion rate,
resource utilization and task priority. In Section 5.1, we mainly considered the location accuracy and
task completion rate, which mainly aims at accomplishing as many tasks as possible while ensuring
accuracy, so the weights are set as c1 = 1, c2 = c3 = 0. Then, we will set different values for c1,
c2 and c3 to verify the effectiveness of the proposed algorithm for multi-objective situations.

5.5.1. Analysis of Multi-Objective Weights

First, we set the parameters as: c1 = c2 = 0.1, c3 = 0.8. This setting is primarily about task
priority and the simulation scenario is to prioritize important tasks when the stations are insufficient.
We built up a scenario with eight stations and six tasks. The parameters settings for the algorithm are
shown in Table 6, the station scenario parameters are set as shown in Table 2 and the task scenario
parameters are set as shown in Table 3. The experiment results are shown in Table 7 and Figure 18.

Table 6. Parameter settings for the algorithm.

Chromosome
Crossover

Probability

Individual
Crossover

Probability

Mutation
Probability Population Iteration Penalty

Factor

Objective
Function
Weights

Probability
Distribution

0.8 0.8 0.1 10 1000 Ω = 5 c1 = c2 = 0.1
c3 = 0.8

Gaussian
N(0, 1)
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Table 7. Scheduling results of eight stations and six tasks.

Task 1 2 3 4 5 6

Priority 6 5 4 3 2 1
Station 1, 5, 6 7, 8 4, 8 2, 6 2, 6 ——
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Figure 18. Experiment results of eight stations and six tasks.

As can be known from Table 7 and Figure 18, when the number of sites is insufficient, No.6 task is
abandoned due to the lowest priority and No.1 task has the most stations and best location accuracy
due to the highest priority.

To analyze the performance of the IGA and verify the experiment conclusions, we adopt the
performance and indicators in Section 5.3. And the analysis of experiment results is shown in
Figure 19. In Figure 19a, IGA algorithm can still ensure the fitness curve converges to the optimal
value. From Figure 19b, we can find out that the PDOP curve is oscillatory due to the influence of
priority. And Figure 19c shows that the completion rate did not reach 100% due to insufficient sites and
considering the priority, the completion rate curve also oscillated in the early stage. It can be concluded
from Figure 19d that because stations are not sufficient, the resource utilization is always at 100%.

Through the experiment analysis, it can be concluded that when the stations are insufficient,
MMIGAS can give the optimal solution to different requirements.
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Figure 19. The experiment results in the scenario with 8 stations and 6 tasks (c1 = c2 = 0.1, c3 = 0.8):
(a) fitness curve; (b) PDOP curve; (c) completion rate curve; (d) resource utilization curve.

5.5.2. Reliability in Different Scenarios

Then, we will combine location accuracy, completion rate, resource utilization and task priority
to test the proposed algorithm in different scenarios. Therefore, the task priority is set as Table 7,
the parameters are set as c1 = c2 = c3 = 1

3 and the parameters settings for the algorithm are shown
in Table 8. The station and task scenario parameters are also set in Tables 2 and 3. The experiment
results in accordance with the above experimental settings are as follows.

From Figure 20, it can be found out that as the number of stations increases, the location accuracy
gradually increases. But the station redundancy will occur later. The results show that excessive
stations will not bring a noticeable increase in location accuracy when the station number is enough.

In Figure 21, as the number of stations increases, the task completion rate gradually increases until
100%. Similarly, as the number of tasks increases, so does the number of stations needed to complete
all tasks.

Figure 22 shows that the utilization rate is 100% in the early stage due to the lack of sites. However,
with the increase in the number of stations, station redundancy appears and the resource utilization
has gradually declined in all scenarios.

Table 8. Parameter settings for the algorithm.

Chromosome
Crossover

Probability

Individual
Crossover

Probability

Mutation
Probability Population Iteration Penalty

Factor
Objective

Function Weights
Probability

Distribution

0.8 0.8 0.1 10 1000 Ω = 5 c1 = c2 = c3 = 1
3

Gaussian
N(0, 1)
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From the above experiment results, we can draw the following two conclusions. First, the algorithm
proposed in this paper can well solve the multi-objective and multi-constraint resource scheduling
problem of passive location. Secondly, the proposed algorithm has high reliability in different scenarios.

6. Conclusions

In this paper, we studied the scheduling problem for passive location resources and proposed
a new solution method named MMIGAS. A multi-objective function was conceived to balance
various aspects of the performance such as location accuracy, efficiency and resource utilization.
And multi-constraint (i.e., frequency, cooperation requirement and capability) was formulated for the
practicability of the approach. CI, PF and MGO were implemented to improve the GA, by enhancing the
convergence rate and global optimal ability. We evaluated the performance of MMIGAS by computer
simulations. In various scenarios, this method can reach its convergence bound within 100 iterations,
showing a remarkable astringency. Moreover, its steady time complexity was illustrated because the
calculation time was shown to have an approximately linear relationship with population and coding
length. Furthermore, we compared traditional manual scheduling and MMIGAS. The results showed
that the efficiency is clearly improved by MMIGAS and the location accuracy is still maintained at
a high level in a scenario of more than 50 resources at the same time. At last, we also conducted a
multi-objective parameter adjustment experiment to verify that the algorithm is suitable for different
target requirements and reliable in different scenarios. In conclusion, the proposed algorithm can solve
the problem of scheduling of station resources in passive location while maintaining high efficiency
and stable location accuracy.
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