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Abstract: The characteristics of the dual-core photonic crystal fiber (PCF) sensor are studied using the
finite element method (FEM), and the structure is improved according to the numerical simulation
results. The results show that whether or not the four large air holes far away from the geometry
center of the PCF are filled with analyte has no influence on the wavelength sensitivity of the sensor
which means those holes can be replaced by small air holes. The wavelength sensitivity can be tuned
by adjusting the sizes of the other large air holes which are as for liquid holes. The dynamic detection
range of the refractive index (RI) is from 1.33 to 1.51. In particular, high linearity is obtained in the
range of 1.44 to 1.51. The sensitivity is as high as 6021 nm/RIU when the liquid holes are the smallest.
When liquid holes are tangential with the envelope of first layer air holes, the wavelength sensitivity
is 4028 nm/RIU, and the coefficient of determination (R2) is 0.99822 when the RI of the analyte varies
from 1.44 to 1.51 which shows that high sensitivity and good linearity are both obtained.
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1. Introduction

The surface plasma is excited on the surface of the metal–dielectric interface which is exceedingly
sensitive to changes in the refractive index (RI) of the analyte. A. Hassani and M. Skorobogatiy
proposed that the photonic crystal fiber (PCF) sensor plated gold film can detect minute changes in the
RI of the analyte [1]. The polished grapefruit fiber structure coating with silver film [2] or bimetallic [3]
can obtain a pretty high wavelength sensitivity. Sensors with D-shaped structures, such as air holes
arranged in hexagons [4,5] or rectangules [6], central holes filled with high RI liquid [7] and PCF plated
with indium tin oxide at near-infrared wavelength [8,9] have been studied in recent years. The polishing
fabrication method of the D-shaped optical fiber has also been reported [10]. Although these sensors
have the advantages of high sensitivity and convenient liquid filling, the performance of sensors when
the RI is greater than 1.42 is not good. In other structures, sensors with a silver–graphene layer could
prevent silver from being oxidized [11,12]. The silver film [13] and gold film [14] coated on the outer
layer of the PCF have high sensitivities. Three-holed PCF coated with an auxiliary dielectric layer
and gold film makes analyte filling easy [15]. However, all of these sensors are not applicable for the
detection of high RI.

Zhou et al. [16] studied the hybrid mechanisms of the PCF and pointed out that the fundamental
mode can couple with the surface plasmon polaritons (SPP) mode in a higher RI of the analyte, so that
the RI of analyte is detected in the range of 1.25 to 1.45. It was shown that the RI from 1.33 to 1.53
could be detected by the multi-core PCF sensor [17]. When the RI is low, the dispersion curves of the
fundamental mode intersect with the plasma mode, and the intersection point is a phase matching
point, while the real parts of the two modes have no intersection when the RI is higher due to the
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avoided crossing effect. However, the imaginary parts of the two modes intersect where energy
exchanges between them, and the intersection is called the avoided crossing point. An investigation
of the solid-core PCF [18] and the novel D-shaped PCF [19] showed that energy exchange occurs at
the avoided crossing point. It can be concluded that when the number of fiber cores is more than one
or akin to multi-core, the coupling mode, called loss matching, is different from phase matching in
higher RIs, which enlarges the RI detection range. In fact, dual-core PCFs have a large quantity of
applications, attracting a lot of researchers’ interest. Yu et al. [20] proposed a PCF mode converter. This
kind of mode converter was used to implement wideband mode-division multiplexing of few-mode
optical fibers. Wang et al. [21] designed a dual-core PCF with a hexagonal lattice used in the field
of biomolecule detection due to its high sensitivity. A polarization beam splitter based on dual-core
photonic crystal fiber was investigated as well [22]. Moreover, by adjusting the number of fiber
cores and the arrangement of air holes, PCFs cannot only be used as surface plasmon resonance
sensors [23,24], but also as splitters [25,26], filters [27,28] and power beam combiner [29]. The flexible
design of the PCF structure means that PCFs can satisfy some specific functions. It provides a possibility
for detecting high refractive index analyte.

In this paper, a dual-core PCF structure is proposed, and the influence of parameters is studied and
then the structure is improved. The numerical simulation results show it has no effect on wavelength
sensitivity whether the four large air holes far away from the PCF geometry center are filled with
analyte or not. As well, the sizes of those holes have no impact on the sensor. The sizes of the other
large air holes which are used for liquid holes has an effect on wavelength sensitivity. The smaller the
liquid holes are, the higher the sensitivity is. To make the sensor desirable for applications, adjusting
the diameter of liquid holes is essential to reduce the filling difficulty. A solution is that liquid holes are
tangent with the envelope of the first layer air holes. The wavelength sensitivity is 4028 nm/RIU and
R2 is 0.99822 when the RI of analyte varies from 1.44 to 1.51, so that the sensor has both high sensitivity
and good linearity.

2. Design and Analysis

The schematic of the dual-core PCF sensor is shown as Figure 1. The air holes are arranged in
hexagonal lattice with a space of Λ = 2 µm. The core C1 and C2 present symmetrical arrangement
around the geometric center of the PCF and the distance (Lc) from the center is 3 µm. The diameter of
the B holes (B1–B4 in Figure 1) is d1, the diameter of the A holes (A1–A6 in Figure 1) is d2, and the
diameter of other small air holes is d3 = 0.6 Λ = 1.2 µm. The B holes are coated selectively (see in
Figure 1), and the thickness (t) of gold film is 40 nm. The background material is SiO2, and its RI is
given by Sellmeier Equation [5]:

n2
SiO2

(λ) = 1 + A1λ2

λ2−B1
+ A2λ2

λ2−B2
+ A3λ2

λ2−B3
(1)
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Here, λ is the wavelength of the incident electromagnetic wave, and A1 = 0.696166300,
A2 = 0.407942600, A3 = 0.897479400, B1 = 4.67914826 × 10−3 µm2, B2 = 1.35120631 × 10−2 µm2,
B3 = 97.9340025 µm2, respectively. The dielectric constant of gold is given by the Drude model [14],
and the RI of analyte (n) varies from 1.33 to 1.51.

The energy loss is caused by the appearance of surface plasmon resonance (SPR) between the
gold film and the analyte. The absorption peaks change with the RI of an analyte. The analyte can
be measured by judging the position of the absorption peak. The two adjacent core modes interact
with each other, which is described as superimposition of electric fields, so they are called supermodes.
The in-phase supermodes for which electric field distribution is in same direction are selected as
the fundamental mode because their loss is less than that of other supermodes [17]. Figure 2 shows
the dispersion relationships between the fundamental mode and the SPP mode at n = 1.46 (left) and
n = 1.49 (right) when the A holes are filled with analyte and the B holes are empty, and the diameters
of them are d1 = d2 = 2.6 µm. When the RI of an analyte is 1.46, the dispersion relationships intersect at
point b (left graph, that is, the phase matching point), which results in incomplete coupling. In contrast,
when the RI of the analyte is 1.49, the imaginary part curves of them are very close, and the real part
difference is minimum at point e, which is called the avoided crossing point or the anti-crossing point.
It can be considered that they undergo energy exchange intensively at point e and the anti-crossing
effect takes place; this is known as complete coupling. It should be noted that the curves are depicted
in the same color in the right illustration of Figure 2 in order to facilitate analysis. Indeed, the real
part curves do not intersect as the dashed line shows in this picture. There are many resonance peaks;
that is, there is more than one phase matching point, which was analyzed in ref. [1]. In the case of
the complete coupling, there are also multiple peaks, as shown in Figure 2(right) where there are two
avoided crossing points, e and g, in the range of 860 nm to 1020 nm. In this paper, only point e was
selected as the avoided crossing point.
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Figure 2. (Left): Dispersion relationship between the fundamental mode and the surface plasmon
polaritons (SPP) mode with n = 1.46; (Right): Dispersion relationship between the fundamental mode
and the SPP mode with n = 1.49.

3. Results and Discussion

Variation in RI (n) led to the shift of the resonant peak. Loss is defined, according to ref. [5], as

αloss(dB/m) = 40π
Im[ne f f ]

ln(10)λ
, (2)

where λ is the wavelength of the incident electromagnetic wave and neff is the effective RI of the
fundamental mode.

When the A holes were filled with analyte and the B holes were empty and both had diameters of
2.6 µm, and the change in loss curves with n varied from 1.33 to 1.46 and from 1.47 to 1.51, as shown
as Figure 3(left),(right), which satisfies the phase matching condition and the loss matching condition,



Sensors 2018, 18, 2051 4 of 9

respectively. The absorption peak had a redshift with the increase in the RI of the analyte. That is,
because the effective RI of the excited surface plasma mode increased, this led to a redshift of the phase
matching point or the avoided crossing point. The sub-peak appeared near the loss peak when the RI
was greater than 1.41, which made the loss curve more identifiable. Additionally, the redshift of the
sub-peak can be used for auxiliary detection.
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Figure 3. (Left): Loss when the refractory index (RI) of analyte (n) changes from 1.33 to 1.46; (Right):
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As is shown in the first column of Figure 4, the energy distribution of the two cores with n = 1.40
was not consistent around the phase matching point (653 nm), which shows that the energy in one
core was greater than that in the other core. The coupling between the two adjacent fundamental
modes led to a change in the complex amplitude of the light field in each core, so one of the two
mutual coupling fundamental modes was disturbed by the other fundamental mode, especially when
energy transferred from the fundamental mode to the SPP mode. Consequently, the two power flow
distributions of the two cores were different, which is depicted as Figure 5. The disturbance was
weakened either far away from the phase matching point (such as 630 nm and 670 nm in Figure 4)
or at higher RIs (such as n = 1.45 and n = 1.50 in Figure 4), so that the energy distribution of the two
cores was almost the same. As a comparison, the energy was confined by one core and the other core
had little energy when A2 and A5 were not filled with analyte, as shown in the fourth column in
Figure 4. This means air holes weaken the mode coupling between the two fundamental core modes,
leading to the absence of supermodes. The loss in complete coupling (n ≥ 1.47) was much greater
than the loss in incomplete coupling. For example, the fundamental mode energy was converted into
the plasma mode with n = 1.50 at the avoided crossing point (λres = 969 nm) in the third column of
Figure 4, which resulted in a significant energy decrease in the core and thus, the loss increased.

The effects of filling the analyte and having different d1 values on the sensor are discussed.
As shown in Figure 6, the B holes were not filled with analyte and the d1 was 2.6 µm, which was
used as a reference to compare with other cases. For cases where the d1 was fixed at 2.6 µm, the
scatter plots of the RI wavelength for B holes were filled with analyte (green) and not filled with
analyte (reference, red) are coincident in the left of Figure 6. Similarly, under the condition where the
B holes were not filled with analyte, the scatter plots of the RI wavelength with d1 = 1.2 µm (blue)
and d1 = 2.6 µm (reference, red) were almost coincident as well. So, the impact of the B holes on the
resonant wavelength is negligible; that is, the holes far away from the geometry center of the PCF have
an insignificant influence on the wavelength sensitivity.

Here, the relative difference of the loss peak is defined as

∆% = |αloss1−αloss2|
αloss1

× 100% (3)

where, αloss1 is the loss peak of the reference when the B holes are not filled with analyte, and the d1 is
2.6 µm.
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The right diagram in Figure 6, shows the condition where the B holes were filled with analyte
and the d1 was 2.6 µm (green). The relative loss difference value was less than 5% in the case of the
incomplete coupling (n ≤ 1.46), and the loss with analyte was greater than without analyte in the
simulated B holes. Similarly, the relative difference in the loss peak was larger in the complete coupling
than in the incomplete coupling when the B holes did not contain analyte and the d1 was 1.2 µm (blue).
Therefore, the B holes have an effect on the loss peak only to a small extent in complete coupling,
and their effect on the resonant wavelength is negligible. From the viewpoint of fiber fabrication, it is
clear that the diameter of the B holes is 1.2 µm, in which case the B holes are the same as other small air
holes of cladding. The following analysis is based on the condition where the B holes did not contain
analyte and the d1 was 1.2 µm.

The A holes, as in liquid holes, have a great influence on the sensitivity. Using wavelength
interrogation, the wavelength sensitivity can be calculated in accordance with ref. [5]:

Sλ(nm/RIU) = ∂λres/∂n (4)

where, λres is the resonance wavelength.
The detectable index resolution of the sensor is defined according to ref. [5]:

R(RIU) = ∆λmin∆n/∆λres = ∆λmin/Sλ (5)

where, ∆λmin is the spectral minimum resolution.
The RI wavelength curves for when the diameter of the A holes (d2) was 2.6 µm and 1.2 µm,

respectively, are shown in Figure 7. The slope of the curve at d2 = 2.6 µm was smaller than that at
d2 = 1.2 µm—the larger the d2, the smaller the sensitivity. The illustrations describe the dispersion
relationships between the fundamental mode and the SPP mode at n = 1.47. The resonance peak
occurred in the avoided crossing point at d2 = 2.6 µm, while the peak appeared in the phase matching
point at d2 = 1.2 µm. In fact, the resonance peak at d2 = 1.2 µm appeared merely in the phase matching
point with the RI of analyte increasing from 1.33 to 1.51. That means that the strength of coupling
between the fundamental mode and the SPP mode of the sensor with small liquid holes was much
less than that with larger liquid holes. Supercontinuum broadband source (SBS) was used as the
light source because the designed sensor works at visible and near infrared wavelengths. As shown
in Figure 7, however, the resonance wavelength varied nonlinearly when the RI of analyte was less
than 1.44. It is time-consuming and inconvenient to recalculate the relationship between the resonant
wavelength and the refractive index of the analyte in a specific refractive index range. Generally,
the transfer function of the sensor with linear variation is more easily described than the nonlinear
variation. The RI-wavelength curve with high linearity was in the range of 1.44 to 1.51.

Several types of sensors that have been investigated in recent years are listed in Table 1.
The comparison shows that the designed sensor has the advantage of higher RI detection. A resonance
wavelength with the n varying from 1.44 to 1.51 is drawn in Figure 8. When the diameter of the
liquid holes (d2) was 1.2 µm, the A holes were the same as other small air holes. The sensitivity was
6021 nm/RIU and the R2 was 0.99841. When the d2 was 2.6 µm, the A holes were nearly tangential with
the other cladding air holes. The sensitivity was 3539 nm/RIU and the R2 was 0.99873. The linearity
of the two was good, and the sensitivity of the former was higher than that of the latter. However,
the smaller diameter made filling with analyte difficult. Taking into account the reduced filling
difficulty and improving the sensitivity of the sensor, the value of d2 was determined to be between
1.2 µm and 2.6 µm. As shown in the right of Figure 8, the d2 was 1.72 µm; that is, the A holes were
tangential with the envelope of the first layer cladding air hole. The diameters of d1 and d3 were
both 1.2 µm in this setting. The d2 is increased by 43.33% compared to the smallest liquid holes.
The wavelength sensitivity was as high as 4028 nm/RIU and the R2 was 0.99822, with n changing
from 1.44 to 1.51, which shows that the sensor has high sensitivity and good linearity. If the spectral



Sensors 2018, 18, 2051 7 of 9

minimum resolution (∆λmin) is 0.1 nm, the resolution of the sensor is 2.48 × 10−5 RIU. This structure
not only makes it easier to fill with analyte, but it also has high sensitivity.
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Table 1. Comparison of the proposed sensor with existing sensors.

Sensor Refractive
Index Range

Wavelength
Sensitivity (nm/RIU) R2 Structure of the Photonic

Crystal Fiber (PCF)

Ref. [3] 1.33–1.42 16,400 (maximum) (Nonlinearity) Exposed-core grapefruit PCF

Ref. [8] 1.33–1.37 5200 (Not given) D-shaped PCF

Ref. [12] 1.39–1.42
1.43–1.46

4350
9200

0.99698
0.99864 Dual-core PCF

Ref. [14] 1.34–1.37 4400 0.9584 Circular lattice PCF

Ref. [30] 1.36–1.41 14,660 (average) (Not given) Dual D-shaped PCF

This work
(d2 = 1.2 µm) 1.44–1.51 6021 0.99841 Dual-core PCF

This work
(d2 = 1.72 µm) 1.44–1.51 4028 0.99822 Dual-core PCF
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4. Conclusions

The influence of the parameters of the dual-core PCF was numerically simulated, and an optimized
structure was proposed. The dynamic detection range of the sensor was from 1.33 to 1.51, in which
the optimum detection range was shown to be from 1.44 to 1.51 because of the high sensitivity and
good linearity in this range. The holes far away from the geometry center of the PCF had little impact
on the performance of the sensor, and the diameter of the liquid holes affected the sensitivity of the
sensor—the smaller the diameter of the liquid holes, the higher the sensitivity, and the maximum
sensitivity was 6021 nm/RIU. It is convenient to fill analyte by adjusting the diameter of liquid holes
so that they are tangential to the envelope of the first layer cladding holes. In this case, the sensitivity
was 4028 nm/RIU and the R2 was 0.99822 when the n varied from 1.44 to 1.51, which means it has
both high sensitivity and good linearity.
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