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Abstract: Indoor positioning is in high demand in a variety of applications, and indoor environment is
a challenging scene for visual positioning. This paper proposes an accurate visual positioning method
for smartphones. The proposed method includes three procedures. First, an indoor high-precision
3D photorealistic map is produced using a mobile mapping system, and the intrinsic and extrinsic
parameters of the images are obtained from the mapping result. A point cloud is calculated using
feature matching and multi-view forward intersection. Second, top-K similar images are queried using
hamming embedding with SIFT feature description. Feature matching and pose voting are used to
select correctly matched image, and the relationship between image points and 3D points is obtained.
Finally, outlier points are removed using P3P with the coarse focal length. Perspective-four-point with
unknown focal length and random sample consensus are used to calculate the intrinsic and extrinsic
parameters of the query image and then to obtain the positioning of the smartphone. Compared with
established baseline methods, the proposed method is more accurate and reliable. The experiment
results show that 70 percent of the images achieve location error smaller than 0.9 m in a 10 m× 15.8 m
room, and the prospect of improvement is discussed.

Keywords: indoor visual positioning; photogrammetric vision; place recognition; image feature matching;
smartphone positioning

1. Introduction

With the development of smartphones and web Geographic Information System (GIS),
location-based services (LBS) are changing people’s daily lives. For people in an indoor
environment, indoor positioning is required. There are many technical approaches of smartphone
indoor positioning [1], including inertial navigation system (INS)-based [2], WiFi-based [3],
and Bluetooth-based [4] methods, but these methods have low accuracy [1], for example INS drifts
along the time. To obtain high accuracy, such as less than 1 m, is expensive respect to the image based
localization algorithms [5].

Mobile mapping technology has resulted in different indoor mobile mapping systems, which can
produce effectively indoor high-precision three dimensional (3D) photorealistic maps, consisting of a
3D point cloud and images with known pose parameters. A 3D photorealistic map is one of the indoor
spatial data infrastructures for indoor space digitalization and provides various LBSs. Cameras are
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also widely available in smartphones, mobile robots or wearable devices. Using an existing indoor
3D photorealistic map and camera sensor, a visual indoor positioning solution is zero-cost, and of
comparatively high precision.

In photogrammetric vision, the most popular positioning methods, i.e., structure from motion
(SfM) [6,7] and simultaneous location and mapping (SLAM) [8,9] methods, are relative
localization methods, and provide a high accuracy image location. This study proposes an
indoor visual positioning solution which matches smartphone camera image with high-precision
3D photorealistic map. The proposed visual positioning solution is an absolute localization on
a global scale, given the used photorealistic map is aligned with a global coordinate reference.
The advantages of proposed absolute localization include: (1) sharing the infrastructure of an
indoor map between different positioning systems; (2) absolute positioning on a global scale is
required by many LBSs [10], such as iParking [11]. Indoor/outdoor seamless positioning is achieved by
integrating multiple positioning techniques, for example, global navigation satellite system positioning
and SLAM [12]. High accuracy is needed for some applications, such as indoor automatic moving
robots. Visual-based methods are an effective method with prior GIS information. Matching light
detection and ranging (LiDAR) point clouds with 2D digital line graphs are used to obtain the indoor
positioning of mobile unmanned ground vehicles [13].

Image-based positioning has been the focus of research in the outdoors. These methods usually
contain two steps, namely, place recognition [14] and perspective-n-point(PnP) [15], which calculates
the extrinsic parameters. Place recognition is an important procedure. Many studies have focused on
place recognition, and some benchmark datasets exist, for example, the INRIA Holidays dataset [16],
Google Street View [17], and the San Francisco Landmark Dataset [18]. These methods can be classified
into two categories, i.e., machine learning based and visual words based methods. Machine learning is
widely used in place recognition, such as support vector machine and deep learning [19,20]. With the
development of convolutional neural networks, end to end methods have been used to obtain the
positioning of images, for example, PoseNet [21] and PlaNet [22]. However the accuracy of end to end
based methods are lower than that of geometry based methods [23]. Supervised based methods also
require many training datasets to train the parameters.

Visual words-based methods including bag of visual words (BOW) [24], vector of locally
aggregated descriptors (VALD) [25,26], and Fisher vector (FV) [27] are widely used in place
recognition, especially BOW [28]. To improve the recognition efficiency, binary VALD is used for place
recognition [26]. Hamming embedding is used to increase the recognition accuracy, and the angle
and scale of feature points are also used to assess weak geometric consistency [16]. The automatic
adjustment of parameters in the hamming embedding can improve its accuracy [29]. To handle
the repetition structure of a building, geometry voting based is used to decrease the geometric
burstiness [30]. Matching images with the feature point cloud instead of database images improves
the efficiency of the localization procedure [31].

Most of these methods are used in outdoor environments. Due to the lack of texture, indoor
scenes are more difficult than outdoor environments. To obtain global positioning, a reference database
is needed [32]. Coded reference labels on walls are used to locate indoor images. These methods
obtain a high accuracy from decimeters to meters [33]. The coded labels are needed to be measured by
total station, and not convenient to be used. SFM method sometime fails when there is not enough
feature [23], so SLAM with geometry information is used to collect large scale indoor dataset [34].
With the development of LiDAR and camera sensors, obtaining a high-precision 3D photorealistic map
has become easier [34]. Backpacks with LiDAR and cameras are used to obtain large scale reference
images using LiDAR based SLAM, only 55 percent of the images have a location error less than 1 m [35].
Kinect is also used to obtain the indoor visual database of the image positioning using SLAM with
depth information. Then use the same data with the database, i.e., Kinect data, as query images,
obtain an average location error in 0.9 m [36]. RGB and distance (RGBD) images are generated from
LiDAR and image data, and these RGBD images are used as a database, then a 3D model based place
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recognition algorithm [37] is used to recognize the best image, and extrinsic parameters are calculated
using direct linear transformation with the calibrated intrinsic parameters. The result shows a large
root mean square error(RMSE) in dataset 3 in Y direction from 10 query images, i.e., 2.13 m, due to
lack of features [38].

In this paper, using large scale indoor images with known pose parameters as a database,
an automatic and robust visual positioning method is proposed. Place recognition and
perspective-n-point (PnP) are used to calculate the pose parameters of images from smartphones.
The method uses the Navvis M3 trolley [39] data as a geographic reference. The images are used as
a database. Due to the lack of texture in indoor environments, appropriate image selecting in place
recognition is difficult, and a posture voting to select images method is proposed. Because the focal
length of the camera in a smartphone may change when capturing images [40], perspective-four-point
with unknown focal length (P4Pf) [41] and random sample consensus (RANSAC) [42] are used to
calculate the intrinsic and extrinsic parameters of the query image. Due to the coarse focal length
can be obtained from the exchangeable image file format (EXIF) information, perspective-three-point
(P3P) [43] is used to remove the outlier points. A large number of images are used to prove the
effectiveness of the proposed method. The remainder of the paper is structured as follows: Section 2
formulates the proposed visual positioning method. Section 3 describes the experimental analysis.
Section 4 is the discussion. Section 5 is the conclusion.

2. Methodology

The proposed method uses the images from the vehicle survey data captured by a Navvis M3
trolley as the database images. The query images are from smartphones. By registering with the
database images, the position of the current image from the smartphone is obtained.

2.1. High-Precision 3D Photorealistic Map

Using SfM to calculate the intrinsic and extrinsic parameters of images is commonly used in richly
textured environments [44]. In an indoor environment, failure occurs due to the lack of texture and
repetition structures [23]. LiDAR is a new sensor to range objects in a real-world scale, and 2D LiDAR
SLAM is widely used in indoor environments [45]. Navvis M3 trolley [39] is a map producer based on
the TUMindoor [34]. There are three Hokuyo laser range finders and six Panasonic DMC-GX7 cameras
with 16-Megapixels. Through 2D LiDAR SLAM, the platform calculates the pose parameters of the
full trajectory. The relative parameters of cameras are calibrated, through similarity transformation,
and the extrinsic parameters of the image are obtained. The intrinsic parameters of the cameras are
also calibrated. The dataset constituted by the images with known intrinsic and extrinsic parameters is
called a high-precision 3D photorealistic map. After collecting the high-precision 3D photorealistic map,
images are used as database images for smartphone visual positioning. After the high-precision 3D
photorealistic map is produced by the trolley, there are two parts in the method, i.e., database image
processing and smartphone image positioning.

2.2. Database Image Processing

The goal of database image processing is to build the feature database (DB) for place recognition
and calculate the 3D points for the PnP method. The workflow is shown in the Figure 1.

2.2.1. Build Feature Database

Due to the lack of texture, the indoor environment is not well suited for image matching,
and selecting reliable method is important. In feature matching, instead of matching all the images
in the database, image retrieval can improve the computer efficiency and only match the similar
images. A feature database is needed in the image retrieval. Feature point detector and SIFT
description are used for feature extraction. RootSIFT which is easy to implement, is better than
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SIFT in image retrieval [46], so the SIFT description is converted into RootSIFT. In image retrieval,
hamming embedding outperforms BOW [29], so hamming embedding is used in the procedure.Sensors 2018, 18, x 4 of 21 

 

 
Figure 1. Workflow of database Image processing. 

Before building an inverted file, a visual word vocabulary is needed [16]. In order to improve 
the computer efficiency of clustering, hierarchical k-means is used to train the visual words [47]. After 
training, the hamming embedding method is used to build the inverted file [29]. 

2.2.2. Image Feature Matching 

Image feature matching is a time-cost procedure when the number of image is large. A coarse to 
fine matching method is utilized to improve the computing efficiency [47], instead of matching all 
the images in the database, only top similar images are matched, i.e., top 100. First, similar images is 
identified using the hamming embedding method [29].  

  
(a) (b) 

Figure 2. Comparison between the F matrix and E matrix in geometry check. (a) RANSAC and 
fundamental matrix as geometry check, 123 points; (b) Calculate essential matrix from extrinsic 
parameters as geometry check, 219 points. 

Figure 1. Workflow of database Image processing.

Before building an inverted file, a visual word vocabulary is needed [16]. In order to improve
the computer efficiency of clustering, hierarchical k-means is used to train the visual words [47].
After training, the hamming embedding method is used to build the inverted file [29].

2.2.2. Image Feature Matching

Image feature matching is a time-cost procedure when the number of image is large. A coarse
to fine matching method is utilized to improve the computing efficiency [47], instead of matching all
the images in the database, only top similar images are matched, i.e., top 100. First, similar images is
identified using the hamming embedding method [29].

For every image, after the high similarity images are queried, the line of sight of the images
are used to remove useless matches. Second, feature description matching is used to match image
pairs. There is noise in the feature match pair. Thus, RANSAC and fundamental matrix geometry
check were used to remove the outliers. In the experiment, the poses of the database images can
be calculated, the absolute pose is used to get the essential matrix, and a geometry check removes
the outliers. Essential matrix (EM) based is faster and can obtain more correct points than RANSAC
and fundamental matrix (FM) based. In the experiment, the CPU is an Intel Corei7-6700HQ with
16 GB memory. The computational time of FM method is 0.031 s with 1000 times in RANSAC, and the
computational time of EM method is less than 1 ms. The result is shown in Figure 2, the method
calculates the essential matrix from extrinsic parameters, as the geometry check obtains more points,
the point on the flagpole is matched, the green rectangle.
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Figure 2. Comparison between the F matrix and E matrix in geometry check. (a) RANSAC and
fundamental matrix as geometry check, 123 points; (b) Calculate essential matrix from extrinsic
parameters as geometry check, 219 points.

2.2.3. Feature Points to 3D Point Cloud

The poses of the images from the database can be calculated using 2D LiDAR SLAM results and
the calibration parameters. These images are used as database images. Then, the images are used to
obtain the point cloud. Using feature matching and forward intersection is a common way to obtain 3D
points. After feature matching, the union-find approach is used to link the feature points from image to
image [48]. Some points may have more than two observations from the images. Multi-view forward
intersection is adopted, because some observations are outliers, so RANSAC and forward intersection
are used. As shown in Figure 3, the red points are the feature point cloud, the blue points are the
camera exposure location and the line is the trolley trajectory. After the geometry check, there are many
outliers in the point cloud.
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2.3. Smartphone Visual Positioning

The focal length of the smartphone cameras may change during autofocus when capturing
images [40]. Because camera calibration is not familiar and difficult to unprofessional users, the camera
is not calibrated before capturing images, and this can improve the usability of the proposed method.
The smartphone image positioning procedure is shown in Figure 4. The data in the deep blue rectangle
is from preprocessing database images.



Sensors 2018, 18, 1974 6 of 21

To get the positioning of the query image, enough 3D points should be matched to calculate the
extrinsic parameters. P4Pf is used in the method, and pose is estimated when more than 12 points
are matched in the experiment. The database images and query images are from different sensors.
The exposure environment changes, and the scale of the images varies. It is quite difficult to match the
query images and the database images.
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The BOW-based place recognition method was used to obtain the top similar images,
which sometimes contains a similar scene, and there are few match points. The database includes
some image containing the same scene, and more image are queried to obtain a stable result. A pose
voting method is used to select the images.

2.3.1. Place Recognition and Feature Matching

Place recognition is an important procedure in visual positioning. Hamming embedding [29] is
used in the experiment. The most popular feature point detectors used in place recognition are Hessian
affine and difference of Gaussians (DoG) feature detectors.

In two pair feature matching, a DoG detector was shown to be better [49]. But in indoor place
recognition, few works have produced this comparison. In this paper, 930 images collected by the
trolley, and 130 images captured by smartphones were used. The database images have a large overlap,
so the query image often has many correct corresponding images. The mean average precision (mAP)
was used to evaluate the place recognition accuracy. In computing the average precision, the positive
images are the images that have at least 50 percent overlap with the query image. The negative images
do not have 50 percent overlap. The number of correct images makes a difference on the stability of
the results in the experiment.

As shown in Figure 5, the experiment shows that the DoG detector outperformed Hessian affine
detector. The mAP of the top five query results using the DoG detector reached 0.923, while the mAP
was 0.692 using the Hessian affine detector in the experiment. The DoG detector was used in the next
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experiment. In the place recognition procedure, the DoG features are extracted in the query image.
Visual word matching and score sorting obtain the query result.Sensors 2018, 18, x 7 of 21 
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After the query procedure, feature matching using minimum distance and geometry check using
fundamental matrix and RANSAC are used to select the best match image in the top-K images. In the
database images, the same place is visible in several images.

In the experiment, the most matched image is not always the best image to computer the pose
of the query image. Figure 6 shows that, the image in the left figure has more feature matches,
but the distribution is not very good. The correct feature points occur approximately in a regional
area. The image in the right figure has a good distribution match result. To improve the stability of
the method, a voting based method is proposed in smartphone image place recognition.
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2.3.2. Voting-Based Image Selection

SIFT-based feature matching using minimum distance is adopted to match the top-K images
in the query result. After feature matching, RANSAC and a fundamental matrix based geometry
check are applied to remove the outlier matches. The different resources and points of view of
the images make the feature matching difficult, so the correct matches are only a small ratio in the
queried matches. When the query image contains many non-textured areas, there are few correct match
points. Selecting more than one image make the result stable. The Euler angles are decomposed from
the rotation matrix of the query image, i.e., φ, ω and κ. In the voting result, the most supported value
is correct. An angle based vote method is adopted to select the correct image.

RANSAC and a fundamental matrix based geometry check are used to obtain the most voted
fundamental matrix. The intrinsic parameters of the database images are known, and from the
exchangeable image file (EXIF) from the smartphone image file, the coarse focal length is obtained,
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and the distortion parameters of the query image are set to zero. A coarse K matrix of the query image
is composed, as shown in Equation (1). F is the fundamental matrix, and E is the essential matrix:

E = K′1·F·K0 (1)

After calculating the essential matrix, the decomposed matrix obtains the relative rotation and
translation as shown in Equation (2), RLR is the relative rotation matrix, and [t]x is the symmetric matrix
of the translation vector:

E = [t]x·RLR (2)

The database images had extrinsic parameters, so the absolute rotation matrix was calculated.
Through the relative rotation, the coarse rotation matrix is obtained, as shown in Equation (3), RL is
the rotation matrix of the image from database, and RR is the rotation matrix of the query image:

RR = RL·RLR (3)

After obtaining the rotation matrix, the Euler angles can be calculated, as shown in Equation (4),
Rij is the element of i row and j column:

φ = atan2(−R13, R33)

ω = asin(−R13)

κ = atan2(−R21, R22)

(4)

The angles are in a 3D parameter space, and the space is partitioned into 3D cubes, for example
the size of a cube is 15 × 15 × 15 degrees, so that 24 × 24 × 24 cubes are obtained. After all the
images are calculated, the correct images will aggregate in a cube, the most supported Euler angles are
obtained, also the corresponding matched images are the selected images.

A vote result of an image is shown in Figure 7. The size of the point represents the number
of matches after the geometry check, the points aggregate at the correct pose, as the red arrow in
Figure 7. After voting, several images are selected, and bad matches are removed. Even though the
number is large, as shown in Figure 8, the image is removed after voting.
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2.3.3. Image Positioning

Usually, several images are selected in the voting procedure. The features of the query image
usually correspond to several images. Using the relationship between the feature points and 3D
points, the 3D points of the feature points on the query image are obtained. After multi-view forward
intersection, the relation between the 3D points and the feature points of the database images is built.
Through the matching feature points, the corresponding 3D points of the feature points from the query
image are obtained. Then, perspective-n-point (PnP) based method is used to calculate the extrinsic
parameters of the query image.

To remove some outliers, RANSAC [42], and P3P [43] with the coarse focal length from the
EXIF file in smartphone images are used to remove the outliers in the 2D–3D points. The cameras
autofocus during exposure. The intrinsic parameters also change after calibration. The smartphone
camera is not calibrated before capturing the images, and the focal length is calculated in the PnP
procedure. Perspective-four-point with unknown focal length (P4Pf) [41] is adopted. Because there
exist error matches, RANSAC is combined with the estimator. Perspective-five-point calculates the
radial distortion parameters (P5Pfr) [50] is studied in the experiment and ensure the stability of the
P5Pfr result, only the first distortion parameter (k1) is calculated.

In Table 1, the f is the focal length, k1 is the distortion parameter, and ∆d is the total error
from the ground-truth point. From the EXIF information, the coarse focal length is 3278 in pixel.
Table 1 shows that using P5Pfr the result is different from this value and differs greatly from image
to image. The correct radial distortion parameter is small. In image 3, there are many outliers in
the 2D-3D points, so the result of P5Pfr is worse, and P4Pf obtains a stable result. Therefore, in the
experiment, P4Pf is used to calculate the camera pose.

Table 1. Comparison between P4Pf and P5Pfr methods.

No. Image 1 Image 2 Image 3

Method P4Pf P5Pfr Truth P4Pf P5Pfr Truth P4Pf P5Pfr Truth

cx (m) −8.035 −7.961 −8.282 −6.922 −6.805 −7.173 −5.671 −6.159 −5.869
cy (m) 2.756 2.857 2.684 1.558 1.798 1.518 0.254 −2.071 0.508
cz (m) 1.609 1.610 1.672 1.604 1.641 1.672 1.561 1.405 1.666

f (pixel) 3373.53 3437.09 —- 3397.72 3563.95 —- 3339.37 2324.98 —-
k1 —- −0.013673 —- —- 0.019428 —- —- −0.985972 —-
∆d 0.2649 0.3699 —- 0.2631 0.4634 —- 0.3387 2.6083 —-
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3. Experimental Analysis

3.1. Test Data

In the experiment, the database images are from the Navvis M3 trolley [39]. There are three
laser range finders, and six cameras mounted on the trolley. The database images are obtained from
Panasonic cameras with fisheye lenses. The positioning information is obtained using 2D SLAM based
on the horizontal LiDAR sensor. The intrinsic and relative extrinsic parameters of the cameras are
obtained from calibration. The pose parameters of the database images are calculated from spatial
transformation between the camera coordinated system and the LiDAR coordinated system.

To evaluate the precision of the positioning, the non-prism total station is used to measure the
camera positioning on the smartphone in the experiment. In the experiment, it is difficult to measure
the camera on the smartphone because the surface of the camera is glass material. A particular mark
is made on the smartphone, for example, a crosshair, as shown in Figure 9b. The person walks around
in the room, and then the person hold the smartphone still to capture an image, and use the total station
to measure the crosshair on the phone. After measuring the offset, then the camera position is acquired.
Some common points on the wall are measured to calculate the spatial transformation parameters
between the database images coordinated system and the smartphone images coordinated system,
as shown in Figure 9c. The ground truth coordinates measured by the total station are converted to the
database image coordinate system using spatial transformation.
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Figure 9. (a) The total station; (b) The mark on the smartphone; (c) The control point measured using
the total station.

In the experiment, two smart phones are used to capture the query images, a Samsung Galaxy
Nexus and an Apple iPhone 6s. The pixel size of the Samsung Galaxy Nexus is 1.4 µm, and the image
size is 1944 × 2592. The pixel size of the Apple iPhone 6s is 1.22 µm and the image size is 3024 × 4032.
According to the pixel size information and the EXIF information in the JPG file, the coarse focal length
is calculated.

3.2. Accuracy Evaluation

To prove the effectiveness of the proposed method, the baseline is the original method using the
image with the most matches to calculate the extrinsic parameters of the smartphone camera as in [35].
To evaluate the proposed method, two different places are used in the experiment. In Tables 2 and 3,
RMSE is the root mean square error, and LE90 is the linear error with 90% confidence. ∆X, ∆Y, ∆Z are
the three error components, and ∆d is the total error from the ground-truth points.
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Table 2. Accuracy assessment of the first dataset.

Phone (Image Number) Samsung (78) iPhone (51)

Method (Valid Number) Proposed (72) Baseline (71) Proposed (43) Baseline (43)

RMSE

∆X (m) 0.78 0.77 0.57 0.69
∆Y (m) 0.70 0.77 0.97 2.24
∆Z (m) 0.21 0.61 0.54 1.28
∆d (m) 1.07 1.25 1.25 2.67

LE90

∆X (m) 0.85 1.03 1.02 1.21
∆Y (m) 1.02 1.02 0.87 1.17
∆Z (m) 0.40 0.40 0.40 0.41
∆d (m) 1.61 1.80 1.40 1.90

Table 3. Accuracy evaluation of the second dataset.

Phone (Image Number) Samsung (55) iPhone (55)

Method (Valid Number) Proposed (41) Baseline (41) Proposed (48) Baseline (47)

RMSE

∆X (m) 1.07 1.19 0.74 1.29
∆Y (m) 1.13 1.27 0.87 1.12
∆Z (m) 0.73 0.64 0.58 0.46
∆d (m) 1.72 1.87 1.29 1.71

LE90

∆X (m) 1.44 1.50 1.41 1.74
∆Y (m) 1.63 1.78 1.48 1.61
∆Z (m) 1.08 1.01 0.75 0.87
∆d (m) 2.13 2.47 2.07 2.41

One dataset is collected from a hall in the laboratory. The panorama image is shown in Figure 10a.
The database images are shown as red rings in Figure 10b. The trolley trajectory is the M3 scanning
path, and the red rings are the exposure positions. In Figure 10c, the red dots are the smartphone
positions where the person stands still to capture an image. In the experiment, the query images
are from four stations. The database contains 930 images, and the whole scanned space is about
408 m2 in ground surface. The experiment room size is 10 m × 15.8 m in ground surface. The room
contains little furniture, and the images are captured from different viewpoints and positions. In the
experiment, many query images are similar, as shown in Figure 10c, the smartphone points have a
high density in the room.

In the experiment, if the number of feature points is less than six, the query image is invalid.
The total number of images from the Samsung is 78. Referring to Table 2, there are 72 images in
the proposed method, and 71 in the baseline method. There are 43 valid images in total 51 images
in the iPhone dataset. When selecting several images to obtain the 2D–3D points, more points are
obtained. On the RMSE metric, the proposed method result is more accurate. When calculating the
extrinsic parameters, the outlier points have a great difference on the result. Selecting more images
can improve the inlier ratio in the experiment. More stable positioning result is reached, as shown in
Table 2, the positioning error of 90 percent of the images is less than that of the baseline method.

Indoor environment is very challenging for visual matching. The position error in not uniform
distributed, as shown in Figure 11. The X axis in the figure is the location error in the range, for example,
0–0.3, 0.3–0.6, 0.6–0.9 and so on. The Y axis is the image number.
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As shown in Figure 11a, location error of most images is small. The location error of 70 percent
of the images in the proposed method is smaller than 0.9 m, and the baseline is 62 percent. The max
error is 4.9 m. In Figure 11b, the error distribution is divergent. There exist gross errors, for example
6.3 m and 15.1 m. The location error of 70 percent of the images in the proposed method is smaller
than 0.9 m, and the baseline is 66 percent. The divergent errors bring large value in RMSE.

Another dataset is collected in a multipurpose room. The query images are from three stations,
the panorama image is shown in Figure 12a, and there are many repetition structures in the room.
The feature points are fewer than dataset 1 and non-uniform distributed. The database images are
shown in Figure 12b. In Figure 12c, the red dots are the smartphone positions where the person
stands still to capture an image. There are 642 images in the database, and the whole scanned space
is about 223 m2 in ground surface. The experiment room size is 7.8 m × 15.8 m in ground surface,
and 55 images are taken in the challenge environment for each smartphone. Because the wall and
floor have no texture, only one wall with posters contains some feature points, and the images are all
captured from the wall.
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Reference to Table 3, there are 41 valid of total 55 images in the Samsung dataset. In iPhone
dataset, there are 78 images in the proposed method, and 47 in the baseline method. This scene
is a more challenging environment. The position error is more divergent. On the RMSE metric,
the proposed method result is more accurate. In the experiment, the feature points gather on the
posters and the match points are unevenly distributed. Selecting more images can improve the
position stability, as shown in Table 3, the error of L90 is less than baseline method. In the experiment,
the resolution changes between the database images, and the iPhone images have a high resolution,
and the image scale is more close to that of the database images. There are few feature points in the
scene, and there are more feature points detected in the iPhone image, so the iPhone images obtain
better accuracy.
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As shown in Figure 13a, the location error of 43 percent of the images in the proposed method is
smaller than 0.9m, and the baseline is 29 percent. The max error is 5.6 m. In Figure 13b, the location
error of 50 percent of the images in the proposed method is smaller than 0.9m, and the baseline is
36 percent. In this scene, the distribution of feature points is non-uniform. This bring large error in
PnP estimator. The divergent errors bring large value in RMSE.

4. Discussion

Indoor environments are challenging for visual positioning because there are weak texture regions
or textureless regions. In the weak texture scenes, there is no result, for example 15 in 159 images could
not be matched in Table 2.

In the method that relies on the 3D photorealistic map, the accuracy of the image database has a
great influence on the positioning result on the smartphones. In the experiment, the 2D pose results
are from 2D LiDAR SLAM. The pose parameters of the image are calculated using the SLAM result
and calibration information. The error is accumulated with the trolley moving. The accumulation
error is large in the scanning trajectory, resulting in the inconsistency of the extrinsic parameters along
different positions because of error propagation. In the multiview intersection, the intersection error
of the control points on the image is big. The error has a great difference on the forward intersection
result. In the experiment, the 3D coordinates in image database space of the control points on the
wall, as shown in Figure 9c, are using the forward intersection. The reprojection error is big when
the exposure station is far away from each other. The min error is 1.0 pixel, and the max error is
43.3 pixel, as shown in Table 4. The exposure locations of cameras are discontinuous, for example,
1.5 m one time. In the experiment, the distance is 0.8 m in average. The first row is the exposure
station index, the second row is the reprojection error in pixel, and the third row is the multi-view
forward intersection result in meter. The number headings 14-0 and 14-1 are the two images at the
same station. The standard deviation of the errors is 15.96. If the exposure station is adjacent, the error
is coincident, for example from 13 to 17, reprojection errors are all small, on the other hand, form 61 to
68, reprojection errors are all large. It is a long way for the trolley to move from station 17 to station
61, and the error accumulation is big, which brings error to the pose parameters of database images.
As shown in Table 4, the fourth row is the reprojection errors if separating the measurements into
two parts, i.e., from 13 to 17 are group 1 and from 61 to 68 are group 2. The last row is the forward
intersection result of each group. The difference of the results is 0.14 m.

Table 4. Reprojection error after forward intersection with the exposure station.

Station No. 13 14-0 14-1 15 16 17 61 62 63 64 65 66 67 68

Error (pixel) 2.7 12.7 3.4 2.8 1.0 3.6 41.2 43.3 35.8 33.3 29.4 28.6 31.6 28.0
XYZ (m) −12.230 1.814 3.590

Error (pixel) 2.7 12.7 3.4 2.8 1.0 3.6 19.2 2.9 1.6 2.0 3.0 4.7 9.5 9.9
XYZ (m) −12.230 1.814 3.590 −12.210 1.812 3.455
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After obtaining the coordinates of the control points in image database space, the spatial
transformation can be calculated. The optimization in the spatial transformation adjustment does
not converge [51], because the error is gross. As shown in Table 5, the average error is about 0.037 m,
and the max error is 0.071 m.

Table 5. Point error in spatial transformation in bad condition.

Point No. 1 2 3 4 5 6 Average

Error (m) 0.027 0.016 0.062 0.071 0.030 0.017 0.037

In the feature matching, because there are repetition features, and the number of overlap images
is small, mostly 2 or 3 in the experiment, so there are many noise points in the feature point cloud.
As shown in Figure 14, there are some wrong points in the point cloud, mainly the low density points
in the blue rectangle. This will bring errors to positioning result [52].Sensors 2018, 18, x 15 of 21 
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In the PnP pose estimator, only focal length is calculated. The principal point and distortion
parameters are not solved in P4Pf. An experiment with fixed focal length is adopted to analyze the
error. Before capturing the images, the camera is calibrated.

As shown in Table 6, in general, calibration of camera can improve the accuracy. The position
error of 8 images is smaller than 0.6 m after calibration. The PnP methods are both sensitive to noise,
for example image 3, 8, 9. On the other hand, the distribution of feature points has effect on the result.

Table 6. The influence of camera calibration.

Image NO.
Calibration (P3P + RANSAC) Proposed (P4Pf + RANSAC)

∆d (m) ∆d (m) Focal Length (Pixel)

1 0.51 1.07 4023.70
2 0.21 3.01 2400.18
3 1.72 1.07 3015.51
4 0.30 4.78 2562.98
5 0.39 1.11 4020.93
6 0.39 1.32 2831.20
7 0.67 1.24 2973.64
8 3.23 1.22 4224.38
9 1.47 2.09 2308.51

10 0.37 0.93 4094.44
11 0.23 0.65 3890.77
12 0.68 1.23 2591.89
13 0.21 1.41 3679.71
14 0.61 0.62 3211.18
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After calibration, the focal length is obtained, i.e., fx is 3365.81 and fy is 3379.74 in pixel. As listed in
Table 6, the gross errors occur when the focal length is far away from the calibration result, for example
image 2, 4 and 9. The difference is larger than 800. This is a useful threshold in RANSAC procedure.
Using the constraint that the difference between the coarse length in EXIF information and the focal
length of P4Pf is larger than a threshold, i.e., 800, in the experiment can improve the position accuracy.

Even though camera calibration improves the location accuracy, this brings a great problem to
unprofessional users. Camera calibration is not easy for unprofessional users. In the experiment,
after exiting from the build-in photo APP, the APP will be autofocus when opened in next time.
The focal length will change and the calibration is needed again.

In the experiment, the distribution of feature points has an effect on the PnP result. Non-uniform
distributed feature points give unstable pose estimates and sometime cause gross error [44]. In dataset
1, the walls contain some features, and the distribution is better than dataset 2, as shown in Figure 15.
As shown in the blue rectangle in Figure 15b, the number of feature points is 23, but they gather in a
small region. This brings gross error in PnP estimator.
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There are 11 images in the test. The gaze direction is the black arrow shown in Figure 16. The result
is listed in Table 7. ∆d is the distance error from ground-truth point. There is no relationship between
the accuracy and the distance to the objects, and the feature match errors and the distribution of feature
points influence the location accuracy.

Table 7. Analysis of images along a line.

Distance to Wall (m)
Measure Ground-Truth

∆d
X Y Z X Y Z

2.20 13.090 −19.493 1.810 13.164 −19.181 1.618 0.374
2.74 13.297 −20.033 1.409 13.185 −19.721 1.620 0.393
3.14 13.098 −19.380 1.699 13.237 −20.113 1.613 0.751
3.51 13.107 −20.226 1.745 13.208 −20.494 1.612 0.316
4.05 13.091 −20.471 1.600 13.237 −21.033 1.613 0.580
4.61 13.221 −20.644 1.642 13.273 −21.597 1.602 0.955
5.27 13.579 −22.447 1.608 13.299 −22.263 1.630 0.336
5.76 13.307 −21.308 1.377 13.358 −22.756 1.632 1.471
6.35 13.413 −21.990 1.172 13.404 −23.342 1.631 1.429
7.05 13.457 −24.244 1.758 13.453 −24.045 1.637 0.233
7.64 12.888 −23.074 2.280 13.517 −24.638 1.704 1.782

Changes in the scene also affect the method, as shown in Figure 17, and sometimes,
the furniture may move frequently in the scene. Some images could not be matched because of
the changes, which results in gross errors.
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Figure 17. Change of the environment, in the red rectangle. (a) Image captured on 4 December 2016.
(b) Image captured on 16 October 2017.

The proposed method is a prototype system for smartphone indoor visual positioning.
The processing of database images can be done offline, so only the computational time of processing the
smartphone image is discussed following. The images are processed in the original size. The procedure
is computed on the computer without parallel optimization, except the feature extraction and matching
is using SiftGPU [53]. The method is implemented with Microsoft Visual C++ under the Microsoft
Windows 10 operating system. A personal computer with Intel Corei7-6700HQ, 2.59 GHz CPU,
NIVIDA Quadro M1000M, 4 GB GPU, 16 GB memory is used. The image size and the number of
feature points make a difference on the computational time. In the experiment, five images are used
and average time is listed in Table 8.
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Table 8. Computational time of each procedure.

Procedure Samsung Image iPhone Image

Feature extraction <1 ms <1 ms
Similar image query 29.539 s 44.305 s

Feature matching 39.487 s 65.525 s
Pose calculation 0.710 s 0.940 s

Total 69.736 s 110.770 s

As shown in Table 8, the total time is 1–2 min, and the feature matching takes the most time.
In the experiment, only top 50 similar images are matched. Using hamming embedding to find similar
images also costs a lot of time. In the experiment, the number of database images is 642, and if the
number is larger, more time is needed. To reduce the computational time, a coarse position can be
useful when only the adjacent images are compared in query. Using downsampled images can also
improve computational efficiency in engineering.

5. Conclusions

In this paper, an automatic and robust visual smartphone indoor positioning method is
proposed, using images with known intrinsic and extrinsic parameters to locate smartphones.
Using feature matching and multiview forward intersection to obtain a point cloud, and place
recognition and pose voting to select similar images, the point cloud and the image points are used
to calculate the intrinsic and extrinsic parameters of the query image. The experiment shows that
70 percent of the images achieve location error smaller than 0.9 m in a 10 m × 15.8 m room, and the
proposed method is more stable. Even in a challenging scene, 43 percent of the Samsung images and
50 percent of the iPhone images achieve location error smaller than 0.9 m in a 7.8 m × 15.5 m room.
In the paper, the location error is also analyzed.

The proposed method also has limitations. The world points are obtained from feature matching,
and the relationship between the image points and the world points is obtained from feature matching.
Thus, in weak texture areas, there will be no result or inaccurate positioning [54]. The distribution
of feature points has a great effect on the PnP result. In future work, feature lines will be used to
improve the positioning accuracy. However, the pose accuracy of the database images determines the
positioning accuracy of the query images. The optimization of the pose parameters of images is also
important in the positioning procedure.
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