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Abstract: Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical
system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors.
However, as a relative localization method, it suffers from the problem of error accumulation which
prevents it from long term independent running. Heading estimation error is one of the main location
error sources, and therefore, in order to improve the location tracking performance of the PDR
method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for
estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer,
and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading
measurements derived from accelerations and magnetic field data are used to correct the states
integrated from angular rates. In order to identify and control measurement outliers, a maximum
likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied
to resist the negative effects of state model disturbances. Extensive experiments under static and
dynamic conditions were conducted in indoor environments. The experimental results demonstrate
the proposed approach provides more accurate heading estimates and supports more robust and
dynamic adaptive location tracking, compared with methods based on conventional KF.

Keywords: heading estimation; robust adaptive Kalman filtering; pedestrian dead reckoning; MEMS
sensors; smart phone

1. Introduction

The expansion of location-based services (LBS) and applications has led to extensive interest
in ubiquitous localization which may rely on widely used smart phones. The rich sensors
embedded in smart phones support vary types of localization techniques, such as cellular
localization, WiFi localization, vision-based location tracking, micro-electro-mechanical system (MEMS)
sensors-based pedestrian dead reckoning (PDR), etc. However, a stand-alone technique cannot satisfy
all positioning demands of LBS. For example, Global Navigation Satellite Systems (GNSS) cannot
work in blocked regions, and WiFi localization systems (WLS) are limited by the coverage of WiFi
signals, etc. Among these techniques, PDR is of great importance that it can flexibly link up different
absolute positioning systems (such as GNSS, WLS, etc.) to achieve ubiquitous location provision
for LBS. However, as a kind of relative localization method, it suffers from the problem of location
error accumulation, and therefore cannot hold its performance continuously. Thus, it is essential to
improve the tracking performance of the PDR method. Although external techniques, such as indoor
graph matching [1–3], WiFi localization [3–7], visible light positioning [8] etc. have been considered to
assist PDR, it is crucial to enhance its own performance in several aspects, such as speed estimation,
heading determination and position calculation, the errors of which can propagate and can result in
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fast divergence of the localization performance. Therefore, this paper focuses on one aspect regarding
heading estimation based on MEMS sensors.

Commonly, heading estimation based on MEMS sensors relies on the fusion of acceleration data
from the accelerometer, magnetic field data from the magnetometer, and angular rates output by the
gyroscope. It is known that accelerations and magnetic fields can be used to estimate absolute headings,
whereas angular rates can be integrated iteratively to produce relative headings. Moreover, other
combinations of the three sensors can also be applied for heading estimation. Because of the
inconsistency of coordinate frames between a user and his/her device, different holding modes
of the device require different solutions to derive the user’s headings. For example, when a smart
phone is in the pocket, its attitude heading is dynamically changing, and thus it is hard to obtain
the user’s heading through this smart phone. Account for this, some indirect methods [1,9] were
proposed to determine headings by using the principle component analysis (PCA) algorithm for
obtaining the largest variations of the horizontal plane of accelerations. Other holding modes, such
as holding the smart phone in hand, holding against the ear always result constant misalignment of
coordinate frames between the smart phone and the user, and the user’s heading is relatively easy to
be determined by combining the smart phone’s attitude heading and a corresponding rotation matrix.
Regarding the steady holding modes, the device attitude heading should be estimated first by fusing
the aforementioned sensor data. The fusion is always by means of complementary filters (CFs) [10–12]
and Kalman filters (KFs) [13–17].

CF is relatively easy to implement and has a low computational cost. However, the heading
accuracy produced by CF is slightly lower than that by KF, and even worse in highly dynamic
environments. For example, Wu et al. [10] proposed a kind of iteration-free fast complementary
filter (FCF) for attitude estimation, and compared it with the linear Kalman filter (LKF) [13] using
smoothly collected data. The experimental results show that the computational time cost of FCF
decreases significantly, but the accuracy of FCF is a little lower than that of LKF. However, comparisons
on dynamic data were not presented. Valenti et al. [11] compared the accuracy of their proposed
adaptive CF, Madgwick’s CF, and extended Kalman filter (EKF) using the publicly-available Micro
Aerial Vehicles (MAV) datasets. The results also show that the accuracy of EKF is better than
that of Madgwick’s CF. In addition, the similar conclusions are drawn by Kottath et al. [12] too.
Therefore, regarding estimation accuracy, KFs are considered as the better choices other than
conventional CFs. Yuan et al. [14] proposed a quaternion-based unscented Kalman filter (UKF) for
heading estimation using a tiny multi-sensor system. The system was fixed on waist of pedestrian and
the quadrotor unmanned aerial vehicle (UAV) to test the heading estimation accuracy, and the results
show that the mean heading estimation errors are less than 10◦ and 5◦ respectively. Ettlinger et al. [17]
found that the systematic deviations in the observed data caused significant divergence between the
estimated and the reference trajectory, and thus proposed a Gauss-Helmert model-based Kalman filter
for reliability analysis in orientation determination with smartphone sensors. Deng et al. [4] proposed
a quaternion-based EKF for heading estimation using smartphone-embedded sensors. According to
their tests, location trace deviated from the ground truth significantly after a turn of 180 degrees
without the assistance of WiFi localization. Li et al. [8] proposed a hybrid positioning algorithm based
on EKF for the fusion of visible light information and the outputs of accelerometer and gyroscope.
Visible light positioning results are used as the measurements to correct the states estimated by the
PDR method. From their experiments, we find that the location trace produced by PDR diverges from
the true path severely, but the result of hybrid algorithm is much better. Wang et al. [2] proposed
to fuse PDR and floor map matching using an adaptive unscented Kalman filter (AUKF) algorithm.
Experiments in an office building indicate that the location trace of PDR diverges in a short time period,
but with the correction of the floor map, the location trace almost overlaps with the true path.

The state-of-the-art of the MEMS sensors-based indoor location tracking approaches reveals that
PDR based on conventional filters with constant noise levels are easily affected by dynamic conditions,
and other localization techniques or external data are effective to improve the filtering performance.
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Actually, besides the above presented solutions, location accuracy of conventional filters can also
be improved by using adaptive methods. For example, Ding et al. [18] proposed a process noise
scaling algorithm for autonomously tuning the process noise covariance to the optimal magnitude.
Hu et al. [19] investigated two adaptive algorithms which were based on fading memory and variance
component estimation respectively, and found that both algorithms perform better than conventional
KF, and the variance component estimation filter achieves the best positioning accuracy. Li et al. [20]
proposed an effective adaptive Kalman filter for attitude and heading estimation. When filtering, the
noise variance matrix R is tuned by a three-segment function that is constructed depending on the level
of acceleration. Zheng et al. [21] proposed a robust adaptive UKF with a two-step adaptive scheme.
First, an innovation-based statistic is used to identify model errors, and then if model errors exist, two
adaptive factors are applied to control the noise covariance matrices Q and R by balancing the last noise
covariance matrices and the estimated ones. In summary, there are three kinds of adaptive filtering
algorithms [18,22], such as the covariance scaling-based adaptive filter [19,21,23–28], the multi-model
adaptive estimation-based filter [29], and adaptive stochastic modelling-based filter [18,20,30,31].
Moreover, in order to control the influence of measurement outliers, Yang et al. [32] combined robust
estimation and adaptive filtering and proposed the theory of adaptively robust Kalman filtering for
kinematic navigation and positioning. Yang also summarized the models and the judging statistics
for constructing adaptive factors systematically, and explained the relations between their proposed
algorithm and other filters in detail. Although these adaptive filtering algorithms have been widely
applied in various fields, the application in PDR has been rarely investigated.

Considering pedestrians’ complex walking patterns, it is challenging to track or position them
with their smart devices (smart phone, smart watch, etc.). As a result, in order to improve the tracking
performances of PDR, a method based on robust adaptive Kalman filtering (RAKF) is proposed for
heading estimation. Outputs from gyroscope, accelerometer and magnetometer sensors are used.
To resist the negative impacts from measurement outliers and state model disturbances, a maximum
likelihood-type estimator (M-estimator)-based model is used in combination with an adaptive factor.
Generally, the contributions of our work can be summarized as follows:

• A heading estimation approach based on RAKF is proposed for PDR. Compared with the
conventional KF-based approach, the proposed one uses an M-estimator-based model to control
measurement outliers, and employs a state discrepancy statistic-based adaptive factor to resist
the negative impacts of state model disturbances.

• Static tests were conducted, and the results indicate the advantages of our proposed approach over
the conventional KF-based approach are faster converging speed, and more accurate estimation.
Dynamic tests were carried out, and results of PDR demonstrate that our proposed approach
provides more accurate and robust estimates, compared with the conventional KF-based approach.

• It is found that the proposed approach handles the issue of sudden turn in pedestrian location
tracking quite well, and alleviates the problem of error accumulation effectively.

In the rest of this paper, we first present the procedure for heading estimation by using smart
phone-embedded MEMS sensors in Section 2. After that, we explain the proposed RAKF algorithm in
detail in Section 3. In Section 4, we show the experiments and results. At last, we draw conclusions
and future work in Section 5.

2. Heading Estimation for PDR Based on Smart Phone-Embedded MEMS Sensors

Low cost MEMS sensors embedded in smart phones, such as accelerometers, magnetometers, and
gyroscopes provide raw data for pedestrian speed estimation and heading estimation. In this paper,
we assume that the heading of a pedestrian and that of his/her smart phone coincide. Thus, only the
heading of the smart phone needs to be determined. As Figure 1 presents, raw data from the three
sensors are used in two ways, the acceleration and magnetic field data are combined to calculate
absolute headings, and the angular rate is used to integrate relative headings. The two kinds of
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headings are then fused using a filtering algorithm to obtain optimal values which may be used
iteratively in the angular rate integration.
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2.1. Heading Representation and Determination

Attitude and heading for a rigid body are always handled together. To represent the attitude
heading, we define an orthogonal body frame (X-Y-Z) B in which Y and Z axes link up with the
forward and up directions respectively, and X axis points to the right. Commonly, the attitude is
determined by the rotation matrix with respect to the ENU (East (X)—North (Y)-Up (Z)) frame (also
named navigation frame N). Define vector Xn in frame N, and the corresponding vector Xb in frame B,
the mapping between the two vectors can be expressed as:

Xb = Cb
nXn (1)

where, Cb
n represents the rotation matrix from the frame N to the frame B. To be specific, suppose the

frame N first rotate around Z axis with an angle ψ, and then rotate around X axis about an angle θ, and
finally rotate around Y axis with an angle φ, the rotation matrix Cb

n will be calculated as:

Cb
n =

 cos ϕ 0 − sin ϕ

0 1 0
sin ϕ 0 cos ϕ


 1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (2)

and it can be further written as:

Cb
n =

 cos ϕ cos ψ− sin ψ sin θ sin ϕ cos ϕ sin ψ + cos ψ sin θ sin ϕ − cos θ sin ϕ

− sin ψ cos θ cos θ cos ψ sin θ

sin ϕ cos ψ + sin ψ sin θ cos ϕ sin ϕ sin ψ− cos ψ sin θ cos ϕ cos θ cos ϕ

 (3)

According to the definition of body frame, ψ, θ, and φ are called heading, pitch, and roll angles
respectively. It is noticed that Cb

n will be different with respect to other rotational orders [33].
Since Euler angles have the problems of singularity and lower computation efficiency [14],

quaternion is designed to replace it for attitude representation. A quaternion q is a 4-tuple:

q =
[

q0 e
]T

(4)

where q0 is the scalar part, and e =
[

q1 q2 q3

]T
denotes the vector part. In this paper, unit

quaternion that is with the constraint of unity norm:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (5)
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is used. Likewise, a unit quaternion can also be used to represent the attitude of a rigid body. Consider
the vectors defined above, the mapping can be expressed as [34,35]:[

0
Xb

]
= q⊗

[
0

Xn

]
⊗ q−1 (6)

where ⊗ indicates the quaternion multiplication, q−1 is the inverse of the quaternion q:

q−1 =
[

q0 −e
]T

(7)

According to the matrix form of quaternion multiplication [34], (6) can be expanded as:[
0

Xb

]
= M(q)TM(q)

[
0

Xn

]
(8)

where M(q) is the quaternion matrix function [34], and M(q) is its conjugate form. At last, we can get:[
0

Xb

]
=

[
1 0T

0 Cb
n(q)

][
0

Xn

]
(9)

A similar equation as (1) can be derived from (9):

Xb = Cb
n(q)X

n (10)

where Cb
n(q) is the rotation matrix formed by using quaternion:

Cb
n(q) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (11)

Inspection of (3) and (11) yields the calculation of the attitude heading:

θ = arcsin(2(q2q3 + q0q1)) (12)

ϕ = arctan

(
2(q1q3 − q0q2)

q2
0 − q2

1 − q2
2 + q2

3

)
(13)

ψ = arctan

(
2(q1q2 − q0q3)

q2
0 − q2

1 + q2
2 − q2

3

)
(14)

2.2. Heading Estimation Using Acceleration and Magnetic Field

Having defined how to represent headings, accelerations and magnetic fields can be used to
estimate meaningful headings for PDR.

2.2.1. Magnetometer Calibration

Magnetometers are essential for estimating absolute orientation, however, they often lack
calibration, so that the outputs are easily contaminated by hard iron, soft iron, and scale factor errors.
These errors can bias the magnetometer outputs, or be superimposed on the outputs. Methods for
removing the negative impacts caused by these errors are needed. In this paper, we assume that the
outputs of the magnetometer in a smart device are mainly corrupted by the hard iron and scale factor
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errors. Thus, a method that recovers the locus of error-free magnetic field measurements as Figure 2a
presents from an altered locus as Figure 2b presents is applied.Sensors 2018, 18, x FOR PEER REVIEW  6 of 23 
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In general, the procedure can be summarized as follows:

(1) Constructing an ellipsoid model

We can see from Figure 2b that the magnetic field measurements at a given geographical location
without calibration approximates an ellipsoid, thus an ellipsoid model that can adjust the bias and
non-uniform scale is constructed:

R2 =

(
mx − ∆mx0

1 + s fx

)2
+

(
my − ∆my0

1 + s fy

)2

+

(
mz − ∆mz0

1 + s fz

)2
(15)

where mx, my, and mz denote the raw magnetometer measurements of a device in its body frame,
sfx, sfy, and sfz denote the scale factors, ∆mx0, ∆my0, and ∆mz0 denote the hard iron-caused biases,
R denotes the ellipsoid radius.

(2) Estimating the parameters of the model

To fit the best ellipsoid and to estimate the six parameters accurately, enough measurements that
span the entire Euler angle space at a given location should be collected. With the collected data, a least
square (LS) estimation algorithm can be used to approximate the model. Detailed implementation of
the LS algorithm refers to [36].

(3) Correcting the magnetic field measurements

With the estimated two tuples of parameters, magnetometer outputs can be calibrated.
Raw measurements m (mx, my, mz) are first shifted according to a vector ∆m (∆mx0, ∆my0, ∆mz0).
Then, the measurements are scaled depending on a vector s (1 + sfx, 1 + sfy, 1 + sfz). Finally, we will
obtain calibrated measurements m̂ (m̂x, m̂y, m̂z).

m̂ = Cs f (m + ∆m) (16)

where Csf = s · I3×3 denotes a scale transformation matrix.
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2.2.2. Heading Calculation

Once the magnetometer is calibrated, absolute headings with better accuracy can be obtained.
Quaternion heading qam can be directly derived from acceleration vector and calibrated magnetic field
vector m̂ by solving the Wahba’s problem [37]. Valenti et al. [13] proposed to decompose qam into two
quaternions, qa and qm which are determined by accelerations and magnetic field, respectively:

qam = qa ⊗ qm (17)

qa =


[

λ1 − ay
2λ1

ax
2λ1

0
]T

, az ≥ 0[
− ay

2λ2
λ2 0 ax

2λ2

]T
, az < 0

(18)

where ax, ay, and az denote the accelerometer measurements of a device in its body frame, λ1 =
√

az+1
2 ,

and λ2 =
√

1−az
2 . Then the calibrated magnetic field vector is rotated using the quaternion qa:

l = Cb
n(qa) · m̂ (19)

where l is the rotated magnetic field vector. Then the quaternion qm is futher derived from l:

qm =


[ √

Γ+lx
√

Γ√
2Γ

0 0 ly√
2
√

Γ+lx
√

Γ

]T
, lx ≥ 0[

ly√
2
√

Γ−lx
√

Γ
0 0

√
Γ−lx

√
Γ√

2Γ

]T
, lx < 0

(20)

where lx and ly denote X and Y components of l, Γ = l2
x + l2

y .

2.3. Heading Estimation Using Angular Rate

The angular rates output by the gyroscope can also be used to estimate quaternion attitude
headings which represent the changed value relative to the initial quaternion, and the estimation is
based on a differential equation:

dq
dt

=
1
2

q⊗ sω (21)

where sω is constructed with the gyroscope output:

sω =
[

0 ωx ωy ωz

]T
(22)

where ωx, ωy, and ωz are the X, Y, and Z components of the gyroscope output in a device’s body
frame. In order to obtain the results at different time instants, the discrete form of (21) should be used:

qω,t = qω,t−1 +

(
1
2

qω,t−1 ⊗ sω,t

)
∆t (23)

Using the quaternion matrix function, (23) can be further expanded as:

qω,t =

[
I4×4 +

∆t
2

M(sω,t)

]
qω,t−1 (24)

where M(sω,t) is the quaternion matrix function of sω,t.
The above two methods for heading estimation can be combined to produce more robust and

accurate results, and a frame of KF is applied in this paper. In the following, the process of RAKF is
explained in detail.
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3. Robust Adaptive Kalman Filtering for Heading Estimation

3.1. State and Measuring Models for Heading Estimation

According to the above equations for calculating quaternion headings, the state and measuring
models are designed as follows:

Let Xk represent the state at time k, and Fk = I4×4 +
∆t
2 M(sω,k), the state model can be formed as:

Xk = FkXk−1 + wk (25)

where wk denotes the model noise.
Let Zk denote the measurement at time k:

Zk = qam,k (26)

where qam,k is calculated using (17). To avoid the discontinuities of headings caused by (18) and (20),
Zk has to be changed by checking the difference between current predicted state Xk and itself:{

Zk = Zk, dk > 0

Zk = −Zk, dk ≤ 0
(27)

where dk = Zk · Xk is the dot product of two quaternions. A linear function is enough to construct the
measuring model:

Zk = HXk + vk (28)

where H is an identity matrix I4×4, and vk denotes the model noise.
Since a unit quaternion is used in our designed algorithm, the initial state value X0 = qω,0 and

all the measurements Z1:k = {Zi, i = 1, · · · , k} should be normalized before they are inputted into the
process of filtering. Given the models for heading estimation are designed above, a RAKF algorithm is
used for obtaining optimal results. The algorithm consists of two procedures, predicting and updating
which are presented in the subsequent sections.

3.2. Predicting

• Computing the predicted state X̂k|k−1

According to the state model in (25), the predicted state can be calculated as:

X̂k|k−1 = FkX̂k−1 (29)

• Computing the predicted state error variance matrix P̂k|k−1:

P̂k|k−1 = FkP̂k−1FT
k + Qk (30)

where Qk is the state model noise covariance matrix.

3.3. Updating

• Computing the gain matrix Kk

In the RAKF, the computation of Kk is different from conventional implementation in the KF.
To control the outliers in the measurements, an M-estimator-based robust estimation of the equivalent
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weight matrix Pk of the measurements is used. Among several formatting methods, we choose Huber’s
approach [32]. Then, the diagonal pkii

and non-diagonal pkij
elements of Pk are determined as follows:

pkii
=


1

σii
,

∣∣∣r′ki

∣∣∣ ≤ c

c∣∣∣r′ki

∣∣∣ · 1
σii

,
∣∣∣r′ki

∣∣∣ > c
(31)

pkij
=


1

σij
,

∣∣∣r′ki

∣∣∣ ≤ c and
∣∣∣r′kj

∣∣∣ ≤ c

c

max
{∣∣∣r′ki

∣∣∣,∣∣∣∣r′kj

∣∣∣∣} ·
1

σi,j
,
∣∣∣r′ki

∣∣∣ > c or
∣∣∣r′kj

∣∣∣ > c (32)

where σii and σij are diagonal and non-diagonal elements of the measurement noise covariance matrix
Rk. c is a constant, and it is usually within the range of [1.3, 2.0]. r′ki

denotes the standard residual, and
it is calculated by: ∣∣∣r′ki

∣∣∣ = ∣∣∣∣∣ rki

σrki

∣∣∣∣∣ (33)

where rki
is the residual of the measurement zki

, and σrki
is the mean deviation of rki

:

rki
=
(

Zk − Ẑk|k−1

)
i

(34)

where Ẑk|k−1 is the predicted measurement which is calculated depending on the measuring model
in (28):

Ẑk|k−1 = HX̂k|k−1 (35)

In order to control the influence of dynamic model error, an adaptive factor is applied for correcting
the predicted state error variance matrix P̂k|k−1. Before calculating the adaptive factor, a kind of state
discrepancy statistic for judging the state model errors [26,32] is chosen as:

∆X̃k =
‖X̃k − X̂k|k−1‖√

tr
(

P̂k|k−1

) (36)

where tr(·) stands for the trace of a matrix. X̃k is a least-square estimator of the state:

X̃k =
(

φT
k Pkφk

)−1
φT

k PkZk (37)

where Pk = R−1
k denotes the weight matrix. To avoid measurement outliers, equivalent weight matrix

Pk can be applied in (37).
With the chosen statistic ∆X̃k, a two-segment function is applied for calculating the adaptive factor:

∂k =

{
1, ∆X̃k ≤ c0

c0
∆X̃k

, ∆X̃k > c0
(38)

where c0 is a constant which can be tuned depending on practical implementation.
Having weaken the negative impacts from measurement outliers and state model errors, a proper

gain matrix can be obtained:

Kk =
1
∂k

P̂k|k−1HT
k

(
1
∂k

HkP̂k|k−1HT
k + P−1

k

)−1
(39)
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• Computing the corrected state X̂k:

X̂k = X̂k|k−1 + Kkrk (40)

The state needs to be normalized further:

X̂k = X̂k/‖X̂k‖ (41)

• Updating the state error variance matrix P̂k:

P̂k = (I−KkHk)P̂k|k−1 (42)

Using the equations from (29) to (42), headings can be estimated iteratively in the frame of RAKF.

4. Experimental Evaluation

4.1. Experimental Setup

To evaluate the proposed heading estimation approach, we conducted extensive tests in two
situations, static and dynamic. In the static tests, a Xiaomi 5 smart phone was put still on a table in an
office, collect data covering more than ten minutes. All the heading results calculated from accelerations
and magnetic field were averaged to obtain the reference heading value. Additionally, dynamic tests
were performed in the corridors on the fifth and the seventh floors in the research building for
the School of Geography and Planning at Sun Yat-sen University. The floor plans are presented in
Figure 3a,b, respectively. We employed five persons to participate in collecting data. The participants
had different heights, different weights, and different walking postures. Table 1 lists the detailed
information of each participant. They were all asked to hold the Xiaomi 5 smart phone on their
chest to collect data along labeled traces which are marked by black lines in Figure 3a,b respectively.
For the tests in the first site on the fifth floor, three participants were involved in collecting data where
they walked back and forth twice, and finally returned back to the start point after three sharp turns.
The length of the location traces that they walked is as long as 150.4 m each. Whereas for the tests
in the second site on the seventh floor, all of the five participants walked from the start point to the
end point once. The length of each traces is about 68 m. A Xiaoyi 4kplus sports camera was used to
record their walking, and relative accurate positions were derived from the videos to construct the
reference traces.

Table 1. Detailed information of all participants (K is the step length parameter used in Section 4.2.2).

Participant Sex Height (m) Weight (Kg) K

1 Male 1.66 59 0.36
2 Male 1.75 75 0.43
3 Male 1.71 60 0.39
4 Female 1.61 52 0.4
5 Male 1.64 65 0.37

Conventional KF is used as the baseline for comparisons, and the noise covariance matrix of both
the measurements and the states are set differently in the static and dynamic tests. The matrices are
empirically determined depending on the standard deviation of each measurement outputted by the
smartphone. For static tests, Q = 10−10 * I4×4, R = 10−6 * I4×4, and for dynamic tests, Q = 10−8 * I4×4,
R = 10−6 * I4×4. Moreover, the sampling frequency of data is 50 Hz.



Sensors 2018, 18, 1970 11 of 23
Sensors 2018, 18, x FOR PEER REVIEW  11 of 23 

 

 
(a) 

 
(b) 

Figure 3. Floor plans of the sites for dynamic tests. 

Conventional KF is used as the baseline for comparisons, and the noise covariance matrix of both 

the measurements and the states are set differently in the static and dynamic tests. The matrices are 

empirically determined depending on the standard deviation of each measurement outputted by the 

smartphone. For static tests, Q = 10−10 * I4×4, R = 10−6 * I4×4, and for dynamic tests, Q = 10−8 * I4×4, R = 10−6 

* I4×4. Moreover, the sampling frequency of data is 50 Hz. 

  

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Y
 (

m
)

X (m)

Start point

End point

Figure 3. Floor plans of the sites for dynamic tests, (a) the first site, (b) the second site.



Sensors 2018, 18, 1970 12 of 23

4.2. Results and Analysis

4.2.1. Performances on Heading Estimation in the Static Tests

Robust estimation can control the outputs of KF by using a parameter for determining which
part of the measurements may cause negative influences. In this paper, the weights of the “negative
measurements” are reduced to alleviate their impacts. However, if initial values for KF have not given
properly, robust estimation can result slower convergence. Figure 4 presents heading errors of KF and
its variants (Robust KF, RKF) with different values of the robust parameter. We find that RKFs produce
significant heading errors at the beginning of filtering, but converge to relatively smooth results after a
time period. Morever, the smaller the parameter is, the smoother the results are during the subsequent
time period. Thus, the value in subsequent experiments is set to 1.5 which means the measurements
with absolute errors over 1.5σ (mean squared error) will be handled.
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Figure 4. Heading errors with respect to different values of the robust parameter c.

The state discrepancy statistic-based adaptive method determines the adaptive factor depending
on the difference between the predicted state and the result estimated using the acceleration and
magnetic field data. The adaptive factor can directly change the accuracy and precision of the filtering
results. Figure 5 presents mean values and standard deviations of absolute heading errors with
respect to different values of adaptive parameters. The chosen of the adaptive parameter should
balance the two aspects. Figure 6 presents results produced by KF and RAKFs with two different
adaptive parameters. We can see that the results produced by the RAKF with an adaptive parameter
of 1.5 converge faster but fluctuate with a larger amplitude, whereas the outputs of the RAKF with
an adaptive parameter of 15 are smooth but converge slower. We adopt the average value of all the
heading estimations from accelerometer and magnetometer as the true value to obtain the statistical
results of estimation errors of KF and RAKF. Table 2 presents the results, and we can see that RAKFs
estimate more accurate and steady headings than KF, the mean errors decrease about 8.2% and 17.6%
respectively, and the standard deviations decrease about 38.5% and 15.8% respectively. Additionally,
the results indicate special characteristics of RAKFs with different adaptive parameters.
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Figure 5. Standard deviations and mean values of absolute heading errors with respect to different
values of the adaptive parameter c0.
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Figure 6. Comparisons of the performances on heading estimation of different algorithms in the
static test.

Table 2. Statistical results of estimation errors of EKF and RAEKF.

Algorithms Mean (Rad) STDEV. (Rad)

KF 0.002232 0.003297
RAKF (c = 1.5, c0 = 1.5) 0.002049 0.002028
RAKF (c = 1.5, c0 = 15) 0.00184 0.002776

4.2.2. Performances on Heading Estimation in the Dynamic Tests

To further verify the superiority of the proposed RAKF in heading estimation, dynamic tests were
conducted at two test sites. Since reference headings in dynamic tests are hard to obtain, estimation
errors cannot be presented straightforwardly. Fortunately, location tracking performance of PDR can
reflect heading estimation performance to some extent. Therefore, in order to examine heading errors,
headings estimated by KF and RAKF are applied respectively in PDR location tracking which is based
on conventional EKF.

An EKF-based PDR always consists of three parts, heading estimation, speed estimation, and
location tracking. Except heading estimation, the other two parts are explained simply in the following.
Detailed implementation refers to [38]. Speed estimation contains two steps, stride detection and step
length estimation. For stride detection, peaks of measured total acceleration are counted. For step
length estimation, a one-parameter nonlinear model [7,38] is employed:

StepLength ≈ 4
√

Amax − Amin × K (43)
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where Amax (or Amin) is the maximum (or minimum) vertical acceleration in a single step and K is
a constant. An assumption is that the leg is a lever of fixed length while the foot is on the ground.
Location tracking is based on the primary theory of dead reckoning [7,38], and it is implemented in
the frame of EKF, as presented in [38].

Depending on different walking patterns of participants, K in (43) is set separately. The value
of K for each participant is presented in Table 1. Other settings for the filtering, such as model noise
variances, robust parameter and adaptive parameter are with the same values in which the robust and
the adaptive parameters are set as 1.5 and 3, respectively.

• Results of the tests in the first site

The heading estimation results of KF and RAKF are presented in Figure 7. We can see that, the
results of RAKF are smoother than those of KF. Noticeably, the most important improvement that is
marked by black circles in Figure 7a,b of RAKF for heading estimation is the ability of controlling
outliers, as well as the adaptation to sudden heading changes, compared with KF. However, similar
improvements cannot be found in Figure 7c which means sudden turns did not cause significant
heading errors during participant 3’s walking. The results also indicate that different walking
characteristics of the three participants bring about great challenges for heading estimation based on
RAKF with constant robust and adaptive parameters.
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Figure 7. Comparisons of the performances on heading estimation of KF and RAKF with respect to
three participants, (a) participant 1, (b) participant 2, and (c) participant 3.

More intuitive improvements can be observed in location tracking, performances of which are
presented in Figure 8. For all three participants, the RAKF results approximate the reference trace better,
compared with the results of KF. Location errors in tracking are further shown in Figure 9. All three
figures indicate that KF and RAKF both provide low location errors at the beginning of tracking, but
KF performs as worse as the walking distance becomes longer. The performances demonstrate that
PDR suffers from location error accumulation, but RAKF is able to handle the problem to some extent.
Finally, Table 3 gives the statistical results of location errors. Compared with KF, the outputs of RAKF
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are with higher accuracy and precision. The mean errors of RAKF’ outputs decrease 8.8%, 39.7%, 15.2%
respectively, and the standard deviations of location errors decrease 10%, 53.2%,17.5%, respectively,
compared with that of KF.
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Figure 9. Distributions of location errors in location tracking of KF and RAKF with respect to three
participants, (a) participant 1, (b) participant 2, and (c) participant 3.

Table 3. Statistical results of location errors.

Participants Error Metrics KF RAKF

Participant 1 Mean error (m) 1.48 1.35
STD. error (m) 0.90 0.81

Participant 2 Mean error (m) 1.41 0.85
STD. error (m) 0.94 0.44

Participant 3 Mean error (m) 2.10 1.78
STD. error (m) 1.20 0.99

• Results of the tests in the second site

Similar heading estimation performances were obtained at the second site. The heading estimation
results of KF and RAKF are presented in Figure 10. We still can see that the results of RAKF are
smoother than those of KF. The adaptation of RAKF to sudden turns which are marked by black circles
in Figure 10a–e is proven again. More intuitive performances can be observed in location tracking,
results presented in Figure 11. For all five participants, the RAKF results approximate the reference
trace better, compared with the results of KF. The changing of location errors in tracking are further
drawn in Figure 12. The performances demonstrate that PDR suffers from location error accumulation,
but RAKF is able to handle the problem to some extent. Finally, Figure 13 gives the mean and STD.
errors of location tracking for five participants. Compared with KF, the outputs of RAKF are with
higher accuracy and precision. The mean errors of RAKF’ outputs decrease 14%, 18%, 22%, 26%, and
29%, respectively, and the standard deviations of location errors decrease 9%, 15%, 23%, 7%, and 7.8%,
respectively, compared with that of KF.
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Figure 10. Comparisons of the performances on heading estimation of KF and RAKF regarding five
participants, (a) participant 1, (b) participant 2, (c) participant 3, (d) participant 4, and (e) participant 5.
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Figure 12. Distributions of location errors in location tracking of KF and RAKF regarding five
participants, (a) participant 1, (b) participant 2, (c) participant 3, (d) participant 4, and (e) participant 5.
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Figure 13. Mean values of location errors in location tracking of KF and RAKF regarding five
participants (the error bar stands for the STD. = of location errors).

We can find from the location tracking results of both test sites that the accuracy levels are different
with the same setting of noise covariance matrices. Precisely, the noise covariance matrices used in
Kalman filtering should be set specially for each pedestrian. However, this is impractical for wide
implementation. The RAKF can alleviate the negative influence of imprecise setting of noise covariance
matrices to some extent, but the best location accuracy performance is hard to obtain with constant
robust and adaptive parameters. Taking location tracking of participant 3 in the first test site as
an example, although the location accuracy provided by the proposed RAKF with the parameters
c = 1.5, and c0 = 3 is higher than that of KF, RAKF with other setting of parameters can achieve even
better performances. Figure 14 presents comparions on location tracking trajectory and location error
distribution using different algorithms. We can find that RAKF with the parameters c = 1.5, and
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c0 = 8 performs much better than it with the parameters c = 1.5, and c0 = 3. Therefore, in our opinion,
an automatic solution for determining the most suitable adaptive and further robust parameters
are needed.
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Figure 14. Location tracking performances in terms of (a) trajectory, (b) location error distribution of
different algorithms regarding the participant 3.

Generally, the above results demonstrate that KF can provide optimal heading estimations with
proper models and the corresponding noise properties. However, for PDR, the statistical properties of
pedestrians’ movements are changing dynamically and constant noise levels can result in divergent
performances both in heading estimation and location tracking. Moreover, measurement outliers
also corrupt the performance of PDR. The proposed RAKF can adapt to dynamic conditions, such as
sudden turns during pedestrian’s walking, and it is robust in that constant parameters are effective for
different persons. Moreover, the results also indicate that heading errors are some of the main error
sources for location estimation using the PDR approach. It is necessary to obtain accurate headings,
whether the PDR method is assisted by external techniques or not.

Finally, we analyzed the computational time of the proposed approach. The KF and RAKF
algorithms are implemented using C#, and the corresponding software runs on an 2.7 Hz Intel Core
i5 processor. The average runtimes of one iteration of the filtering algorithms are listed in Table 4.
The results demonstrate that our proposed RAKF is slightly slower than the KF. Nonetheless, the
proposed RAKF improves the accuracy of heading estimation effectively.
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Table 4. Computational time of the heading estimation algorithms.

Algorithm Average Time (ms)

KF 0.036610526
RAKF 0.040133333

5. Conclusions and Future Work

In this paper, the outputs of smart phone-embedded MEMS sensors, such as accelerometers,
magnetometers, and gyroscopes are fused using RAKF for pedestrian heading estimation. To alleviate
the negative influence of measurement outliers, an M-estimator-based model is applied for identifying
and controlling them. Moreover, a state discrepancy statistic-based adaptive factor is used to reduce
the effect of state model disturbances. Experiments under static and dynamic conditions are conducted
to verify the superiority of the application of RAKF over KF. In the static tests, RAKF provides faster
convergence speed and better accuracy, compared with KF. In the dynamic tests, the headings produced
by RAKF and KF are input into a PDR method, respectively. Location tracking performances reveal
that the headings estimated by RAKF lead to more accurate location estimations, especially in the
situation of sudden turns during pedestrians’ walking. The results also tell us that it is necessary
to estimate headings accurately, although there are other data or techniques, such as indoor graphs,
WiFi positioning for enhancing the performance of PDR.

For PDR, each pedestrian may have special walking characteristics, which can result in a dedicated
noise covariance matrix. Thus, the determination of adaptive parameters seems a cumbersome task
which needs an automatic process. In the future, we will focus on studying an adaptive solution with
the ability to automatically determine parameters. Moreover, tests about different carrying modes of
the smart phone will be carried out, and the associating modifications to the filtering will be made.
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