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Abstract: An assessment of measurement uncertainty is a task, which has to be the final step of
every chemical assay. Apart from a commonly applied typical assessment method, Monte Carlo
(MC) simulations may be used. The simulations are frequently performed by a computer program,
which has to be written, and therefore some programming skills are required. It is also possible
to use a commonly known spreadsheet and perform such simulations without writing any code.
Commercial programs dedicated for the purpose are also available. In order to show the advantages
and disadvantages of the ways of uncertainty evaluation, i.e., the typical method, the MC method
implemented in a program and in a spreadsheet, and commercial programs, a case of pH measurement
after two-point calibration is considered in this article. The ways differ in the required mathematical
transformations, degrees of software usage, the time spent for the uncertainty calculations, and cost
of software. Since analysts may have different mathematical and coding skills and practice, it is
impossible to point out the best way of uncertainty assessment—all of them are just as good and give
comparable assessments.
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1. Introduction

Exact knowledge of pH value is very important in many fields of engineering [1]. The value may
be assayed using few methods, but the potentiometric method is still very popular. In this method, a
glass ion-selective electrode (ISE), which converts the pH value in to an electrical signal, is used and
the signal can be easily transformed by any modern control system.

Each result of the measurement should consist of both the quantity value and an indication of
the quality of the measurement performed. The indication is necessary during the comparison of
measurements among themselves or with references. Nowadays, the measurement uncertainty should
be considered as the indication. It was formerly the measurement error, but since the exact values of
errors are never known, it is not considered as the best representative of measurement quality [2].

Evaluation of uncertainties should be done according to the guide to the expression of uncertainty
in measurement (GUM) [2] or the Quantifying Uncertainty in Analytical Measurement (QUAM)
Guide [3], which chemists frequently reach for. The most important information is gathered in the
following section of the GUM: ‘The principles of uncertainty calculations’. Unfortunately, the process
can be time-consuming in some cases. Sometimes, very long mathematical expressions occur and
the determination of uncertainties in a typical way is hindered. However, a computational method
of uncertainty evaluation, called the Monte Carlo (MC) method, which facilitates the process exists.
A computer program is usually written to apply the MC method, but not everyone is able to write
a software. A technique of evaluating the uncertainties without programming and using one of
the popular spreadsheets also exists. In the article, the approaches to uncertainty calculations are
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summarized, applied to the pH case, compared, and their strengths and weaknesses are highlighted.
The goal of the work is to show ways of uncertainty calculations rather than an enumeration of all
uncertainty sources during pH measurements.

2. Potentiometric Principles

To perform a potentiometric measurement, an ion-selective electrode and a reference electrode
are immersed in an investigated solution. In the case of pH, both electrodes are often enclosed in
one housing that makes the so-called pH combination electrode. The potential difference (voltage) E
between the electrodes is measured using a high-impedance voltmeter. The simplest mathematical
model of the measurement is the Nernst equation [4]:

E = E◦ + S log (aB) , (1)

where E◦ is the standard potential, S is the Nernstian slope, and aB is the activity of primary ions B.
This model, often used in practice, does not take into account an effect of the so-called liquid junction
potential at the interface between the reference electrode and the solution. In this work, in order to
simplify considerations, the effect is omitted.

In the case of pH measurement, where the pH value is defined as

pH = − log (aH) , (2)

the relationship between the voltage and pH is as follows:

E = E◦ − S · pH. (3)

Despite the fact that the parameters E◦ and S have their theoretical values [4,5], in practice, they
drift as a result of continuous processes which take place inside the electrode, such as hydration of
glass. Therefore, each ISE requires frequent calibration. To do it, in the simplest case, two buffer
solutions of known pH are used. Potentials of the ISE, E1 and E2, are read sequentially after immersing
the electrode in the first and in the second buffer whose pH values are pH1 and pH2, respectively.
The electrode should be washed or rinsed in distilled water before immersions. After the experiment,
the parameters may be calculated. Further potential measurements, with the electrode immersed in an
unknown solution X, allow using Equation (3) to determine the unknown pH value as [6,7]

pHX = pH1 − (EX − E1)/Ŝ, (4)

where
Ŝ =

E1 − E2

pH2 − pH1
. (5)

Other calibration methods, such as multi-point calibration, can also be applied. Then, the parameters
of the model may be calculated using least squares or least median of squares methods [7–9].
Contemporary instruments dedicated for pH measurement, called pH-meters or ion-meters, provide
very-high input impedance measurement of electrode potentials and calibration procedures. The user
has to assess the measurement uncertainty, however, by herself.

3. The Principles of Uncertainty Calculations

To determine uncertainties of measurements, it is necessary to specify the terminology associated
with the problem. The most important information is included in an international standard—the
GUM [2] and in the International Vocabulary of Metrology (VIM) [10]. The standards are based on the
uncertainty approach. Nevertheless, the classical terminology based on the classical approach, such
as a systematic and random error, is still used. Therefore, the correct distinction between the Type A
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and Type B evaluations of measurement uncertainty and the way in which the result of measurement
should be reported are very important.

Term error of measurement used in the classical approach is contemporarily interpreted as a
difference between an individual measured value xi and the reference (or true) value of the measurand
and is usually denoted by the symbol ∆xi. The error is not an object of interest of the uncertainty
calculation since a priori calculation is not possible—it is an idealized concept and the error cannot be
known exactly. It is only a single representation of a random variable. The value of a known error can
be applied as a correction to the measured value [3].

The uncertainty of measurement is a “non-negative parameter characterizing the dispersion of the
quantity values being attributed to a measurand, based on the information used” [10]. All input
estimates (e.g., input quantities of the measurement model, and its parameters) are sources of
uncertainties that contribute to the uncertainty of the measured value. Therefore, the uncertainties of
the sources should be evaluated according to either the Type A or the Type B method.

The Type A evaluation of standard uncertainty is the method using the statistical analysis
of a series of observations and is performed after experiments. The uncertainty is estimated as
the experimental standard deviation of the mean that follows from an averaging procedure or an
appropriate regression analysis. This “can be applied when several independent observations have
been made for one of the input quantities under the same conditions of measurement”. In such
a situation, a scatter (or spread) in the obtained values is observable [11]. If the scatter of the
experimentally determined values is small, then the precision is high. A quantitative measure of
the scatter is the standard deviation of a set of measurements. Therefore, if the precision is high, then
the standard deviation is small. It is important to recognize that the statistical measure of the quantity
of an assay cannot be obtained unless a series of tests is carried out [12].

According to the GUM, different probability distribution in the uncertainty evaluation can be
applied. In analytical chemistry, the Laplace–Gauss (also known as Gaussian or normal) distribution
is usually adequate [13]. It is characterized by the following parameters: σ—the standard deviation
or σ2—the variance and µ–a mean that would result from an infinite number of measurements.
The parameters can be calculated from:

µ = lim
N→∞

1
N

N

∑
i=1

xi, σ2 = lim
N→∞

1
N

N

∑
i=1

(xi − µ)2, (6)

where N is the total number of elements in the population, which should be infinite. The Gaussian
distribution describes the common and general mathematical model of the distribution of analysis
results. However, it can only be applied in the range of µ± 3σ [14].

It is, however, impossible to make an infinite number of assays. Thus, it is also impossible to
know the values of µ and σ. In such a situation, only estimates of the parameters can be calculated,
preceded by a series of experiments. The chosen measured samples have to be the representative of
the population [13].

A very effective assessment of the parameter µ (i.e., characterized by a minimal scatter of estimates
around the parameter) is the arithmetic mean x̄:

x̄ =
1
N

N

∑
i=1

xi, (7)

often simply called the mean or the average [12]. However, the mean is sensitive to any asymmetry of
a distribution or to gross errors in the case of a limited number of measurements. Then, the median is
a better estimate [14,15].
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There exist some estimates of σ. Frequently, it is assessed according to [11,14,16]:

s(x) =

√√√√ 1
N − 1

N

∑
i=1

(xi − x̄)2, (8)

where N > 1, s(x) is the experimental standard deviation and s2(x) is the experimental variance of
values xi.

When a finite number of elements is available, the mean x̄ is only an estimate of µ. If the individual
values of xi have a Gaussian distribution that are independent and their variances are equal to each
other, then the variance of the mean is n-times smaller. This implies that the experimental standard
deviation of the mean s(x̄) in a series of N determinations is related to the experimental standard
deviation for a single value in the series s(x) by [11,14]:

s(x̄) =
s(x)√

N
. (9)

This approach is not always sufficient during the calculation of a measurement result. In the
general case, the probability distribution of a single measurement and of the mean is not the same.
The values of a single measurement may be described by different distributions. According to the
Central Limit Theorem and the Law of Large Numbers, the shape of the distribution of a mean depends
on the number of measurements in the series, At the limit, for N → ∞, the distribution of the mean
approaches the normal distribution [17].

The Type A evaluated standard uncertainty uA associated with the estimate x̄ is the experimental
standard deviation of the mean [11]:

uA (x) = s (x̄) . (10)

In the analytical practice, too many parallel assays are usually not performed as they are too
tedious. Therefore, the long-lasting analytical procedure does not allow analysts to perform more than
2–3 assays of the same probe [14].

The Type B evaluation of standard uncertainty is a method performed using means that are
different from the statistical analysis of a series of observations, which is based on some other scientific
knowledge, and may be assessed a priori [11]. It utilizes the available information on the possible
variability of a quantity. The information may come from previous measurements, calibrations, general
knowledge, manufacturer’s specifications, or handbooks and the uncertainty component can be
calculated before experiments [11,18].

The next very important aspect is the propagation of uncertainties. In the classical approach,
a measurand can be described by a single true value, but instruments and measurements do not
provide this value due to the additive errors: systematic and random. These errors have to be
treated differently in an error propagation and it is assumed that they may always be distinguished.
In the uncertainty approach, there is only one uncertainty of measurement, ensuing from various
components. It characterizes the extent to which the unknown value of the measurand is known after
the measurement, taking into account the given information from the measurand [10].

If a mathematical model of a measurement, y = f (x1, x2, . . . , xM), can be expressed as a sum or as
a product, the propagation of uncertainty is relatively simple to calculate. Such a didactic example is
presented by Olson and Sattar [19]. If the model is more complicated, advanced calculations should
be applied.

For uncorrelated input quantities and when the function f is not strongly nonlinear, the square of
the combined standard uncertainty, uc, associated with the output estimate y is given by [2,11]:
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u2
c(y) =

M

∑
j=1

u2
j (y). (11)

The quantity uj(y) is the contribution of the standard uncertainty associated with the output
estimate y, resulting from the standard uncertainty associated with the input estimate xj calculated from

uj(y) = cju(xj), (12)

where cj is the sensitivity coefficient associated with the input estimate xj:

cj =
∂ f
∂xj

. (13)

Some simplification in evaluation of combined uncertainty is proposed in the work of
Kušnerová et al. [20].

For the correlated input quantities, calculation of the combined standard uncertainty is much
more complicated. It is necessary to take into account the correlation coefficients between all the
correlated input quantities. An excellent tutorial is included in Appendix D of EA-4/02 [11]. Problems
with correlations in potentiometric measurements are considered in other works [7,21].

The expanded uncertainty is an additional measure of uncertainty, denoted by U, obtained from
multiplying the combined standard uncertainty by a coverage factor k. It allows one to express the
result of the measurement as y ± U. The y is the mean that gives the best estimates of the value
attributed to the measurand. Most of the values that could reasonably be attributed to the measurand
are included in the interval defined by (y−U) to (y+U) [2]. It has been widely accepted that the value
of the coverage factor k should correspond to the coverage probability (also known as the confidence
level) of approximately 95 %. Then, k is approximately equal to 2 [11].

In general, uncertainty of the output quantity can be read from a probability density function
(PDF) of the quantity. In Supplement 1 of GUM, the following implementations of the propagation are
quoted [22]:

1. The analytical method. It requires very good skills in mathematical transformations of PDF and
is therefore very time-consuming.

2. The first-order Taylor approximation method. It is based on replacing the model by a first-order
Taylor series. It is the typical method for uncertainty evaluating and is very often applied.

3. The nth order Taylor approximation method. It is based on replacing the model by a higher-order
Taylor series. The method is more exact, especially for nonlinear models, but requires
more advanced mathematics. The possibility of making mistakes during the mathematical
transformations is high.

4. The numerical method. It implements the propagation of PDF, is very effective, but requires
better programming skills.

This paper refers only to Methods #2 and #4.

4. Materials and Methods

A hypothetical pH measurement of tap water was considered in this paper. A typical combined
pH electrode was calibrated with pH1 = 4 and pH2 = 9 buffers. After calibration, the electrode
was immersed in a sample X. Each potential reading was conducted five times. The indications are
gathered in Table 1.
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Table 1. Potential indications of pH-meter during calibration and measurement.

No E1 ∆E1 (∆E1)
2 E2 ∆E2 (∆E2)2 EX ∆EX (∆EX)

2

i mV 10−1 mV (10−1 mV)2 mV 10−1 mV (10−1 mV)2 mV 10−1 mV (10−1 mV)2

1 182.4 0 0 −103.8 0 0 9.0 −3 9
2 182.6 2 4 −103.9 1 1 9.2 −1 1
3 182.2 −2 4 −104.0 2 4 9.3 0 0
4 182.1 −3 9 −103.7 −1 1 9.6 3 9
5 182.7 3 9 −103.6 −2 4 9.4 1 1

mean 182.4 −103.8 9.3
SSD 26 10 20

Deviations are calculated as: ∆E1(i) = E1(i)− E1; ∆E2(i) = E2(i)− E2; ∆EX(i) = E2(i)− EX , where E1, E2,
and EX are the mean values of E1, E2, and EX , respectively, and are calculated according to Equation (7). The
sums of squared deviations (SSD) are calculated as ∑i [∆En(i)]2 for n = 1, 2, . . . , X.

The dispersion seen may result from, e.g., disturbances influencing the electrical circuit.
Additionally, the tolerances of pH buffers were known as ±0.05 pH, as from the Avantor Performance
Materials Poland S.A. (Gliwice, Poland). The tolerances of the pH-meter displaying voltage was
±0.3 mV, comparable with the ORION Model 930 Ionalyzer (Orion Research, Cambridge, MA, USA).
The tolerance of pH delimits the interval in which the real value of pH is and the tolerance of potential
provides information about how the indication would differ from the one obtained by a hypothetical
perfect meter.

5. Results and Discussion

The measurement result is elaborated in this section. In order to do it, the pH value is calculating
first, based on calibration data, and its measurement uncertainty is evaluated afterwards using
different ways.

5.1. Calculation of Unknown pH Value

The electrode slope is obtained from Equation (5), in which mean values of potentials seen in
Table 1 are used. The value

Ŝ =
182.4 mV− (−103.8 mV)

9− 4
= 57.24 mV.

It is also possible to obtain the standard potential by the appropriate transformation of Equation (3) to

Ê◦ = E1 + Ŝ · pH1 = 182.4 mV + 57.24 mV · 4 = 411.36 mV.

The unknown pH value is calculated using the following Equation (4) recommended by the
International Union of Pure and Applied Chemistry:

pHX = 4− 9.3 mV− 182.4 mV
57.24 mV

= 7.024 109. (14)

5.2. Uncertainty Evaluation

The process of the uncertainty determination is not very simple in general. The GUM recommends
some approaches including the typical Taylor approximation and Monte Carlo (MC) method. The MC
requires a computer program to simulate probability distributions; therefore, some program has to be
written. It is also possible to perform the simulation using a popular spreadsheet. Commercial software
is also available that provides a very comfortable way of uncertainty determination. The uncertainty
evaluation using the Taylor approximations, computer programs, spreadsheets and commercial
software are characterised below.
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5.2.1. Method with the Taylor Approximation

This is the most popular method and other popular documents, such as QUAM Guide [3],
EA-4/02 document [11], and A2LA Guide [23], refer to it. For this reason, the method is named
typically in this paper. The process of uncertainty calculation is complicated; therefore, it is good to
split it into some stages that are enumerated below.

Stage 1. Determination of sources

In the considered example, there are five input quantities: E1, E2, EX , pH1, and pH2. The quantities
are uncorrelated among themselves. It is very convenient to collect their standard uncertainties.

The considered experiment contains five indications of potentials to each solution. It allows
for the calculation of Type A evaluated uncertainties. Applying Equations (8)–(10) with n = 5, the
following is obtained:

uA(E1) =
1√
5

√
1
4 ∑

i
[∆E1(i)]2 (15)

and using the data from Table 1, the uncertainty is

uA(E1) =

√
1
5
· 1

4
· 26 · (10−1 mV)2, (16)

uA(E1) = 1.14 · 10−1 mV = 0.114 mV. (17)

In this place, it is worth noting that the uncertainty may be written with a higher precision, but,
from a practical point of view, such intermediate uncertainties are better to be written with three or
four significant figures. Higher precision does usually not transform to better uncertainty assessment
because the combined uncertainty has to be rounded off.

In the same way, Type A evaluated uncertainties of E1 and EX are obtained:

uA(E2) =

√
1
5
· 1

4
· 10 · (10−1 mV)2 = 0.0707 mV, (18)

uA(EX) =

√
1
5
· 1

4
· 20 · (10−1 mV)2 = 0.100 mV. (19)

Potentials are measured with a tolerance of ±0.3 mV. No additional information is given, thus the
distribution is unknown. For such a case, GUM recommends calculating the Type B component as the
tolerance divided by

√
3. It gives

uB(E) = 0.3 mV/
√

3 = 0.173 mV. (20)

Now, two uncertainty sources are given: (1) arising from the repetitive measurements and (2)
from the nonideality of the meter used. No complicated mathematical model exists–both sources
influence the result in the same way, so the two contributions should be joined together geometrically.
The obtained combined uncertainty of E1 is calculated from

uc(E1) =
√

uA2(E1) + u2
B(E) (21)

as
uc(E1) =

√
(0.114 mV)2 + (0.173 mV)2 = 0.207 mV. (22)
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In the same way,

uc(E2) =
√
(0.0707 mV)2 + (0.173 mV)2 = 0.187 mV (23)

and
uc(EX) =

√
(0.100 mV)2 + (0.173 mV)2 = 0.200 mV (24)

are calculated.
Regarding the pH buffers, no validation of their values were performed and no statistical analysis

is done, so only the Type B evaluation may be conducted. Applying tolerances, the uncertainties for
the two buffers are the same and are calculated as

uB(pH) = 0.05/
√

3 = 0.0289. (25)

Stage 2. Determination of measurement model

Here, the model of measurement is described by Equations (4) and (5). Unfortunately, evaluation
of uncertainty using the equations is complicated due to existing correlations—both equations consist
E1. An approach with the evaluation of uncertainties in two steps, first of parameters Ŝ and Ê◦ and
further of the seek pHX, is also complicated as it is proven elsewhere [7]. For this reason, the most
convenient model for uncertainty evaluations looks like:

pHX = pH1 −
EX − E1

E1 − E2
(pH2 − pH1). (26)

Stage 3. Derivation of sensitivity coefficients formulae

It is necessary to derive the sensitivity coefficients according to Equation (13), symbolically, by
making the derivation of Equation (26) with respect to all sources. The task does not have to be simple,
in general. It is possible to apply specialized software, like Mathcad (MathSoft, Cambridge, MA, USA)
or MATLAB (Mathworks, Sherborn, MA, USA). Numerical calculations are also allowed [11], but the
values of the coefficients change with the change of sources and it is necessary to recalculate them for
each example.

Here, the sensitivity coefficient formula for the potential indications of the pH-meter when the
electrode is immersed in the first buffer is:

cE1 =
∂pHX

∂E1
=

(E2 − EX)(pH1 − pH2)

(E1 − E2)2 (27)

and in the second buffer:

cE2 =
∂pHX

∂E2
=

(EX − E1)(pH1 − pH2)

(E1 − E2)2 . (28)

The sensitivity coefficient for indications obtained during the measurement of the sample is

cEX =
∂pHX
∂EX

=
pH1 − pH2

E1 − E2
. (29)

The coefficients for pH values of buffer solutions are

cpH1
=

∂pHX
∂pH1

=
EX − E2

E1 − E2
(30)

and

cpH2
=

∂pHX
∂pH2

=
E1 − EX
E1 − E2

. (31)
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Stage 4. Building the budget

Now, it is time to begin building the uncertainty budget. Because the input quantities are not
correlated, the combined standard uncertainty can be calculated according to Equations (11) and (12).
Using one of the popular spreadsheets is very efficient. It is recommended to organize the budget as in
Table 2 [11].

Table 2. Uncertainty budget for the pH measurement.

Name Quantity Estimate Standard Sensitivity Uncertainty Squares of
Uncertainty Coefficient Contribution Uncert. Contr.

Symbol Xi xi u(xi) ci ui(y) = u(xi) · ci u2
i (y)

Column No. (1) (2) (3) (4) (5) = (3)·(4) (6) = (5)2

E1 182.4 0.207 0.00690 0.00143 0.0000020
Sources E2 −103.8 0.187 0.0107 0.00198 0.0000039

EX 9.3 0.200 −0.0175 −0.00349 0.0000122
pH1 4 0.0289 0.395 0.01142 0.0001304
pH2 9 0.0289 0.605 0.01748 0.0003055

Result pHX 7.02411 0.02131 0.0004541

The first rows contain headers. The rows ‘Sources’ contain the main calculations. In the first two
columns, the quantity symbols and their estimates are presented. Column (3) of Table 2 contains the
standard uncertainties, which are determined in Stage 1. The next column, (4), contains the values
of the sensitivity coefficients obtained in Stage 3. Using a spreadsheet, cells of the column should
contain appropriately rewritten formulae, Equations (27)–(31), according to the spreadsheet standards.
The formulae are much more readable when so-called named cells are applied. Column (5), uncertainty
contribution, is derived from multiplications of Column (3) by Column (4). Column (6) is the square
of Column (5). Finally, in the ‘Result’ row, all the squares are summed. The combined standard
uncertainty of the measured pH is the root of the previously calculated sum.

Stage 5. Reporting the result

The calculated standard uncertainty of the pH is 0.021 31. The expanded uncertainty is 0.042 62
and follows from the multiplication of the value by a coverage factor, which is two. Because the
reported uncertainty should have no more than two significant figures, the obtained value should be
rounded [11]. Finally, the estimate of measurement value should have the same number of digits after
the decimal point as the uncertainty. Therefore, the obtained result of measurement is

pH = 7.024± 0.043. (32)

The grading of the quality of the pH measurement depends on the application and is dependent
on its measurement span. Whereas expanded uncertainty of ±0.043 pH units is very good for sewage
where the typical pH ranges from 6 to 9, it is poor for arterial blood with the typical range of 7.35 up
to 7.45.

The typical method for evaluating the uncertainty with a budget written in tabular form is very
transparent. Indicating the source, which gives the greatest contribution is very simple, here it is
pH2. This makes it possible to improve the measurement by decreasing the uncertainty in the future,
in this case, by purchasing a better standard buffer with a lower tolerance. No expensive tools are
required, since spreadsheets are available as freeware and most computer users are familiar with them.
However, the method requires the derivations to be solved. It is possible to make some mistakes during
the process, therefore it should be done carefully. Creating the spreadsheet formulae for sensitivity
coefficients may be troublesome, particularly if the equations are long and complicated.
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5.2.2. Numerical Method Implemented in a Program

This method consists of the Monte Carlo simulations, in which the propagation of distribution is
performed by random sampling from the probability distribution. It is an approach that has become
more and more popular with the development of computers. An application of the method to error
propagation was described in a bygone article by Douglas [24]. The author performed simulations in
BASIC and used only a set of 44 data as a compromise between the computer time required and the
precision. Now, a set of thousands of data can be calculated in an imperceptible time as it is proven in
new publications [25–28]. The method is especially useful if the linearization of the model provides an
inadequate representation, and may sometimes be easier to apply due to difficulties in calculating the
sensitivity coefficients [22].

The idea of the MC method is very simple. Input quantities are described by mean values and
PDFs. By applying simulations, it is possible to generate a set of data where random numbers are
added to the means. The random numbers have assumed distributions with standard deviations equal
to the standard uncertainties. Next, a set of output values is calculated using the measurement model.
At the end, the output distribution is analyzed and its standard deviation is calculated, which is equal
to the standard uncertainty of the output quality. Figure 1 illustrates the example.

Figure 1. Concept of the Monte Carlo method.

Uncertainty evaluation consists of stages similar to these conducted by the typical method, except
that Stages 3 and 4 are replaced by the mentioned simulations. To assess the combined uncertainty of
the output quantity, it is necessary to apply some computer program. Such program may look like
that written in C++ and presented in Appendix A. After initialization and model definition, a loop is
performed, in which random variables are generated and added to the parameters of the model. Then,
the pH value is calculated, compared with the true value and the error is squared and cumulated.
When the loop is finished, the uncertainty is calculated as the square root of cumulated squared errors
divided by the number of loops performed. Such approach engages a small amount of memory and
works quite fast.

Such simulations may also be performed writing code with very compact matrix notations.
The code presented in Appendix B is written in the MathWorks R© MATLAB language, which is very
often used by scientists in developing the MC method [25]. The script works well also in the freeware
implementation—GNU Octave. It consists of initialization of variables with measurement values and
uncertainties, the definition of the model function, the definition of vectors with disturbed quantities,
calculation of the vector with disturbed measured pH, and finally the calculation and presentation of
standard deviation. A similar code presented in Appendix C is written in the R language. The language
is very popular among statisticians and is distributed as freeware. The script is very similar that written
in Matlab. It is also possible to write code using matrix notation in a general-purpose programming
language, such as Python. The example is included in Appendix D. Application of the Numpy library
makes the code very similar to the Matlab and R ones.

The outputs of the programs may look like that presented in Figure 2.
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NoOfTrials = 10000000
E1 = 182.40
uE1 = 0.20700
E2 = -103.80
uE2 = 0.18700
Ex = 9.3000
uEx = 0.20000
pH1 = 4
upH1 = 0.028900
pH2 = 9
upH2 = 0.028900
Elapsed time is 0.172904 seconds.
The standard uncertainty of pHx is 0.0213319.
The pHx is 7.02411 +- 0.0426639 with 95 % confidence level.

Figure 2. Outputs of the Monte Carlo simulations obtained by the script run in GNU Octave.

The simulation times performed using the enumerated languages differs a bit—cf. Table 3.

Table 3. Comparison of simulation times.

Language Time (s)

C++ 6.16
Octave 1.68

R 4.72
Python 3.90

The differences are caused rather by the complexity of the algorithm of the random number
generator applied in the scripts than the optimisation of the code.

The MC simulations are performed very fast. Uncertainties obtained by simulations are different
from simulation to simulation. This is an inherent feature of the method. However, if the number of
trials is in the order of 106, the results differ among themselves by about 0.1%. If the number of trials is
higher, the uncertainty is predicted better, but the program takes longer to calculate. The probable
error varies inversely with the square root of the number of trials [29].

The use of the MC method makes it possible to analyze the shape and asymmetry of the
output PDF resulting from the propagation through a function, which can be nonlinear. The typical
propagation method uses linearization, and therefore the effect is invisible [25].

During the evaluation of measurement uncertainty by applying the MC simulations implemented
in a program, it is not required to solve derivatives. Instead, programming skills are needed.
The obtained uncertainty is not exact, but it is very close. In some complicated and nonlinear cases,
the MC result can be considered as more reliable than the result obtained from the typical propagation
method [25]. A computer program that executes calculations, like GNU Octave, has to be installed or
its online implementation may be applied.

5.2.3. Numerical Method Implemented in a Spreadsheet

According to observations of the authors, the ability to work with spreadsheets is a much higher
skill than the programming skills. For this reason, an implementation of the numerical method to a
spreadsheet omitting the programming is worth attending.

In the literature, the applications of spreadsheets for the MC calculations are known. Excel
(Microsoft, Redmond, WA, USA) has been used, among others, for predicting the reliability parameters
by Gedam and Beaudet [30], and for the evaluation of uncertainties in grating the pitch measurement
by Decker et al. [31]. However, they have applied macros that require some programming skills.
In another work, the MC simulations have been performed using Excel to estimate uncertainties in the
ecosystem budget calculations, but the results of each trial have been manually copied into a separate
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spreadsheet [32]. There also exist some commercial spreadsheet-based applications, like Crystal Ball
(Oracle, Redwood Shores, CA, USA), which support MC simulations.

It is possible to evaluate the uncertainties using one of the popular spreadsheets in a very
convenient way. It uses the MC method, but no program is written. Therefore, it does not require
any programming skills. Such approach is known from a conference presentation [33] and from other
papers [34]. To obtain the uncertainty, one should perform the Stages 1 and 2 in the same way as in the
typical method. Thereafter, the MC simulations should be implemented in the way described below in
three steps. Finally, the measurement results should be reported as in Stage 5.

Step 1. Entering the input data

First of all, the input data should be entered into the spreadsheet.
It is very convenient to organize it as in Figure 3: the first column consists of quantity symbols,

the second consists of estimates, and the third is of their standard uncertainties. Additionally, using
named cells, the formulae are more human readable. Here, the $B$3 cell containing the value of E1 is
named as val_E1 and the $C$3 cell containing its uncertainty is named as un_E1. The remaining cells
are named in the same way.

Figure 3. A table in a spreadsheet containing the input data and their uncertainties.

Step 2. Generation of uncertain input data

To generate random variables with standard normal distribution, the =NORM.S.INV(RAND())
formula should be used in the spreadsheet. The GUM allows for treating all uncertainty contribution,
as if the distributions were Gaussian [35]. Creating a spreadsheet causes an inconvenience occurs—a
change of commands with time between spreadsheets. Older Excel versions, Gnumeric and Google
Sheets use commands without dots, such as NORMSINV(), which are treated as deprecated in newer
versions of Excel. For the above reason, the user has to decide whether the code should be universal or
up-to-date.

Additionally, most of the available spreadsheets are nationalized. This means that the names
of the functions are translated to the default language used in the operating system. Therefore,
the same function in Polish looks like =ROZKŁAD.NORMALNY.S.ODW(LOS()) by deprecated syntax or
=ROZKŁ.NORMALNY.S.ODWR(LOS()) using modern syntax. It is possible to find the function name
translations on the Internet [36].

In the presented example, a table with five columns with five corresponding input quantities and
a few thousand rows of random numbers should be generated, and it is recommended in a separate
sheet. The number of rows corresponds to the number of trials. To do that, it is necessary to write the
appropriate formulae in the first row describing the uncertain input quantities, e.g., the A2 cell may
contain formula corresponding to E1 + ξ · u(E1), where ξ is a normalized Gaussian random variable
in the form with the theretofore defined named cells: =val_E1+NORM.S.INV(RAND())*un_E1—see
Figure 4.
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Figure 4. A table in Gnumeric containing the uncertain input data.

Now, it is recommended to name columns, e.g., the columns A:A as _E1 (referencing to
named columns does not work well in LibreOffice). It allows for writing the formulae describing
Equations (4) and (5) in the human-readable form as: =(_E1-_E2)/(_pH2-_pH1) for the slope and
=_pH1-(_Ex-_E1)/_S for the measured pH, respectively. After preparation of the first row containing
appropriate formulae, here, the row 2:2 should be copied many times, ideally thousands of times. It
can be done by the drag-down technique, which may be ineffective here. It is better is to select the first
data row and, while holding down the SHIFT key, press PAGE DOWN key many times. It is also possible
to apply the CTRL+G keyboard shortcut, but it works in a different way, depending on the spreadsheet
used. After selecting the appropriate region, the CTRL+D shortcut duplicates the formulae.

Step 3. Uncertainty calculation

The last step consists of calculations of the statistical parameters. The most important is
the standard uncertainty. The best way is to use a separate sheet and calculate it there using
=STDEV.S(_pHx) formula. Other parameters may also be calculated, as it is illustrated in Figure 5.

Figure 5. Output data calculated in Gnumeric.

The standard uncertainty calculated using MC simulation is close to that obtained using the
typical method shown in Table 2.

The presented way of implementing the MC method works both on Microsoft Excel and
on freeware spreadsheets such as Gnumeric, Google Sheets and partially on LibreOffice Calc.
Knowledge of spreadsheets is probably much greater than the knowledge of computer programming.
No compilation is required, as the result appears immediately after the data has been entered. The time
required for the preparation of the uncertainty calculation tool is the shortest for most users. If there
are too many trials, the results can appear after some time, depending on the computer capability.

5.2.4. Uncertainty Evaluation Using Dedicated Software

There are a lot of dedicated software for evaluation of measurement uncertainties. Such list is
available on Wikipedia [37].

GUM Workbench (Professional Version 2.4, Metrodata, Braunschweig, Germany) is a commercial
software program [38]—the single user licence is 3213 EUR. A demo version that does not allow
for data saving is available for free. The application has a friendly and intuitive user interface (UI).
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It allows for introducing a measurement model (Figure 6a), and their parameters with values, units,
uncertainties and distributions (Figure 6b). The sensitivity coefficients are calculated symbolically
(Figure 6c). The budget is built and dominant sources are pointed out (Figure 6d). The measurement
result is reported according to the standard. Additionally, Monte Carlo simulations may be performed
to show the resulting PDF shape (Figure 6e).

(a) Model definition.

(b) Description of parameters.

(c) Partial derivatives.

(d) Uncertainty budget.

(e) Density function.

(f) Model.

(g) Parameters.

(h) Observations.

(i) Uncertainty budget.

(j) Report.

(k) MC analyse.

Figure 6. Screens of Metrodata GUM Workbench Professional Version 2.4 (left) and Qualisyst GUM
Enterprise 4.10 (right).

Similar functions offer GUM Enterprise (version 4.10, Qualisyst, Gabrovo, Bulgaria) [39].
Single-user licence is 1250 EUR. Simplified, non-commercial, academic, trial and demo versions
are also available. We cannot find formulae of partial derivatives; instead, there are a lot of statistical
parameters. Screens taken from the software are presented in Figure 6f–k.
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Commercial programs guarantee high reliability of correctness of the obtained calculation results.
They are easy to use and provide a lot of additional statistical parameters. Their main disadvantage is
the price, which can be a problem for some users.

6. Conclusions

The uncertainty evaluation process is time-consuming. The typical method recommended by
GUM requires finding the derivatives of the measurement model, which may have a complicated
form. The Monte Carlo method applies simulations and avoids the disadvantage—the propagation of
probability distribution is analyzed numerically. The simulations are usually realized in a computer
program, which requires some programming skills. It is also possible to perform the simulations
in a commonly applied spreadsheet. Thus, no program is required, but some formulae describing
the measurement model and simulations have to be entered. In this way, the task of uncertainty
calculations is done very fast. The MC simulations can facilitate uncertainty evaluation, especially
when the model describing the phenomenon has a complicated form. Commercial applications
dedicated for uncertainty calculations are also available but are not cheap. The obtained assessments
of the uncertainty are very similar to each other. All of the approaches have their pros and cons, and
therefore should be chosen depending on the user skills and practice.
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Appendix A. C++ Code

1 # include <iostream >
2 # include < t r 1 /random>
3 # include <ctime >
4
5 # define t i c double t i c _ t = c lock ( ) ;
6 # define toc std : : cout << "Elapsed time is " << ( c lock ( ) − t i c _ t ) \
7 /CLOCKS_PER_SEC << " s." << std : : endl ;
8
9 // Input data:

10 i n t NoOfTrials = 1 . 0 e7 ;
11 f l o a t E1 = 1 8 2 . 4 ;
12 f l o a t uE1= 0 . 2 0 7 ;
13 f l o a t E2 = −103.8;
14 f l o a t uE2= 0 . 1 8 7 ;
15 f l o a t Ex = 9 . 3 ;
16 f l o a t uEx= 0 . 2 0 0 ;
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17 f l o a t pH1 = 4 ;
18 f l o a t upH1= 0 . 0 2 8 9 ;
19 f l o a t pH2 = 9 ;
20 f l o a t upH2= 0 . 0 2 8 9 ;
21
22 // Define the output as a function. Use element-wise operations so that the function

accepts array-valued input as well as scalar-valued input.
23 f l o a t pHx_model ( f l o a t E1 , f l o a t E2 , f l o a t Ex , f l o a t pH1, f l o a t pH2) {
24 return ( pH1−(Ex−E1 ) /(E1−E2 ) ∗ (pH2−pH1) ) ;
25 }
26
27 i n t main ( ) // The main function
28 {
29 // Define a random number generator
30 typedef std : : t r 1 : : ranlux64_base_01 Engine ;
31 typedef std : : t r 1 : : normal_dis t r ibut ion <double> Normal ;
32 Engine eng ;
33 Normal d i s t ( 0 , 1 ) ;
34
35 // Start timing.
36 t i c
37
38 // Calculate pHx for observed values of variables.
39 double pHx = pHx_model ( E1 , E2 , Ex , pH1, pH2) ;
40 std : : cout << "pHx = " << pHx << std : : endl ;
41
42 double E1_MC, E2_MC, Ex_MC, pH1_MC, pH2_MC, pHx_MC;
43 double SSE =0; // sum of squared errors
44 for ( i n t i =0 ; i <NoOfTrials ; i ++) {
45 // Calculate distributions for measured variables with observed values as means

and the specified standard deviations.
46 E1_MC = E1 + d i s t ( eng ) ∗uE1 ;
47 E2_MC = E2 + d i s t ( eng ) ∗uE2 ;
48 Ex_MC = Ex + d i s t ( eng ) ∗uEx ;
49 pH1_MC= pH1+ d i s t ( eng ) ∗upH1 ;
50 pH2_MC= pH2+ d i s t ( eng ) ∗upH2 ;
51
52 // Calculate the pH for distributions of variables.
53 pHx_MC = pHx_model (E1_MC, E2_MC, Ex_MC, pH1_MC, pH2_MC) ;
54
55 // Calculate and cumulate the sum of squared errors.
56 SSE += (pHx_MC − pHx) ∗ (pHx_MC − pHx) ;
57 }
58 // Calculate the standard uncertainty of the result.
59 double upHx = s q r t ( SSE / NoOfTrials ) ;
60
61 // Stop timing.
62 toc
63
64 // Write the pH and its estimated uncertainty to the display.
65 std : : cout << "The standard uncertainty of pHx is " << upHx << std : : endl ;
66 std : : cout << "The pHx is " << pHx << " +- " << 2∗upHx << " with 95 %\
67 confidence level." << std : : endl ;
68
69 return 0 ;
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70 }

Appendix B. Matlab/GNU Octave Code

1 % Input data:
2 NoOfTrials = 1 . 0 e7
3 E1 = 182 .4
4 uE1 = 0 .207
5 E2 = −103.8
6 uE2 = 0 .187
7 Ex = 9 . 3
8 uEx = 0 .200
9 pH1 = 4

10 upH1 =0.0289
11 pH2 = 9
12 upH2 = 0 .0289
13
14 % Start timing.
15 t i c
16
17 % Define the output as an anonymous function. Use element-wise operations so that the

function accepts array-valued input as well as scalar-valued input.
18 pHx_model = @( E1 , E2 , Ex , pH1, pH2) pH1−(Ex−E1 ) . / ( E1−E2 ) . ∗ ( pH2−pH1) ;
19
20 % Calculate pHx for observed values of variables.
21 pHx = pHx_model ( E1 , E2 , Ex , pH1, pH2) ;
22
23 % Calculate distributions for measured variables with observed values as means and the

specified standard deviations.
24 E1_MC = E1 + randn ( NoOfTrials , 1 ) ∗uE1 ;
25 E2_MC = E2 + randn ( NoOfTrials , 1 ) ∗uE2 ;
26 Ex_MC = Ex + randn ( NoOfTrials , 1 ) ∗uEx ;
27 pH1_MC = pH1+ randn ( NoOfTrials , 1 ) ∗upH1 ;
28 pH2_MC = pH2+ randn ( NoOfTrials , 1 ) ∗upH2 ;
29
30 % Calculate the pH for distributions of variables.
31 pHx_MC = pHx_model (E1_MC, E2_MC, Ex_MC, pH1_MC, pH2_MC) ;
32
33 % Calculate the standard uncertainty of the result.
34 upHx = std (pHx_MC) ;
35
36 % Stop timing.
37 toc
38
39 % Write the pH and its estimated uncertainty to the display.
40 f p r i n t f ( ’The standard uncertainty of pHx is %g. \n’ , upHx)
41 f p r i n t f ( ’The pHx is %g +- %g with 95 %% confidence level.\n’ , pHx, 2∗upHx)

Appendix C. R Code

1 l i b r a r y ( "tictoc" )
2
3 # Input data:
4 NoOfTrials <− 1 . 0 e7
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5 E1 <− 182 .4
6 uE1 <− 0 .207
7 E2 <− −103.8
8 uE2 <− 0 .187
9 Ex <− 9 . 3

10 uEx <− 0 .200
11 pH1 <− 4
12 upH1 <− 0 .0289
13 pH2 <− 9
14 upH2 <− 0 .0289
15
16 # Start timing.
17 t i c ( )
18 # Define the output as a function. Use element-wise operations so that the function

accepts array-valued input as well as scalar-valued input.
19 pHxModel <− function ( E1 , E2 , Ex , pH1, pH2)
20 {
21 pH1−(Ex−E1 ) / ( E1−E2 ) ∗ (pH2−pH1)
22 }
23
24 # Calculate pHx for observed values of variables.
25 pHx <− pHxModel ( E1 , E2 , Ex , pH1, pH2)
26
27 # Calculate distributions for measured variables with observed values as means and the

specified standard deviations.
28 E1MC <− rnorm ( NoOfTrials , mean = E1 , sd = uE1 )
29 E2MC <− rnorm ( NoOfTrials , mean = E2 , sd = uE2 )
30 ExMC <− rnorm ( NoOfTrials , mean = Ex , sd = uEx )
31 pH1MC<− rnorm ( NoOfTrials , mean = pH1, sd = upH1)
32 pH2MC<− rnorm ( NoOfTrials , mean = pH2, sd = upH2)
33
34 # Calculate the pH for distributions of variables.
35 pHxMC <− pHxModel (E1MC, E2MC, ExMC, pH1MC, pH2MC) ;
36
37 # Calculate the standard uncertainty of the result.
38 upHx <− sd (pHxMC) ;
39
40 # Stop timing.
41 toc ( )
42
43 # Write the pH and its estimated uncertainty to the display.
44 c a t ( s p r i n t f ( ’The standard uncertainty of pHx is %f. \n’ , upHx) )
45 c a t ( s p r i n t f ( ’The pHx is %f +- \%f with 95 pct. confidence level.\n’ , pHx, 2∗upHx) )

Appendix D. Python Code

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 import numpy as np
5 import numpy . random as nprnd
6 import time
7
8 # Input data:
9 NoOfTrials = 10∗∗7



Sensors 2018, 18, 1915 19 of 21

10 E1 = 182 . 4
11 uE1 = 0 .2 07
12 E2 = −103.8
13 uE2 = 0 .18 7
14 Ex = 9 . 3
15 uEx = 0 .20 0
16 pH1 = 4
17 upH1 = 0 .0289
18 pH2 = 9
19 upH2 = 0 .0289
20
21 # Start timing.
22 t = time . time ( )
23
24 # Define the output as a function. Use element-wise
25 # operations so that the function accepts array-valued input as well
26 # as scalar-valued input.
27 def pHx_model ( E1 , E2 , Ex , pH1, pH2) :
28 return pH1−(Ex−E1 ) /(E1−E2 ) ∗ (pH2−pH1)
29
30
31 # Calculate pHx for observed values of variables.
32 pHx = pHx_model ( E1 , E2 , Ex , pH1, pH2)
33
34 # Calculate distributions for measured variables with observed values as means and the

specified standard deviations.
35 E1_MC = nprnd . normal ( l o c =E1 , s c a l e =uE1 , s i z e =NoOfTrials )
36 E2_MC = nprnd . normal ( l o c =E2 , s c a l e =uE2 , s i z e =NoOfTrials )
37 Ex_MC = nprnd . normal ( l o c =Ex , s c a l e =uEx , s i z e =NoOfTrials )
38 pH1_MC= nprnd . normal ( l o c =pH1, s c a l e =upH1 , s i z e =NoOfTrials )
39 pH2_MC= nprnd . normal ( l o c =pH2, s c a l e =upH2 , s i z e =NoOfTrials )
40
41 # Calculate the pH for distributions of variables.
42 pHx_MC = pHx_model (E1_MC, E2_MC, Ex_MC, pH1_MC, pH2_MC) ;
43
44 # Calculate the standard uncertainty of the result.
45 upHx = np . std (pHx_MC) ;
46
47 # Stop timing.
48 elapsed = time . time ( ) − t
49 print ’Elapsed time is %.2f s.’ % elapsed
50
51 # Write the pH and its estimated uncertainty to the display.
52 print ’The standard uncertainty of pHx is %f.’ % upHx
53 print ’The pHx is %f pm %f with 95 %% confidence level.\n’ % (pHx, 2∗upHx)
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