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Abstract: The Internet of Things (IoT) utilizes algorithms to facilitate intelligent applications across
cities in the form of smart-urban projects. As the majority of devices in IoT are battery operated,
their applications should be facilitated with a low-power communication setup. Such facility is
possible through the Low-Power Wide-Area Network (LPWAN), but at a constrained bit rate.
For long-range communication over LPWAN, several approaches and protocols are adopted.
One such protocol is the Long-Range Wide Area Network (LoRaWAN), which is a media access layer
protocol for long-range communication between the devices and the application servers via LPWAN
gateways. However, LoRaWAN comes with fewer security features as a much-secured protocol
consumes more battery because of the exorbitant computational overheads. The standard protocol
fails to support end-to-end security and perfect forward secrecy while being vulnerable to the replay
attack that makes LoRaWAN limited in supporting applications where security (especially end-to-end
security) is important. Motivated by this, an enhanced LoRaWAN security protocol is proposed,
which not only provides the basic functions of connectivity between the application server and the
end device, but additionally averts these listed security issues. The proposed protocol is developed
with two options, the Default Option (DO) and the Security-Enhanced Option (SEO). The protocol is
validated through Burrows–Abadi–Needham (BAN) logic and the Automated Validation of Internet
Security Protocols and Applications (AVISPA) tool. The proposed protocol is also analyzed for
overheads through system-based and low-power device-based evaluations. Further, a case study on
a smart factory-enabled parking system is considered for its practical application. The results,
in terms of network latency with reliability fitting and signaling overheads, show paramount
improvements and better performance for the proposed protocol compared with the two handshake
options, Pre-Shared Key (PSK) and Elliptic Curve Cryptography (ECC), of Datagram Transport Layer
Security (DTLS).
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1. Introduction

The Internet of Things (IoT) with its principles of “connectivity to all” and “connectivity with
all” has become a crucial part of the telecommunication system [1–3]. IoT facilities many social
issue-solving applications such as smart cities, intelligent transportation, urban surveillance, day-work
management and smart-farming [4–8]. With the increasing popularity of IoT, the number of connected
devices is bound to increase exponentially. The IoT network can be scaled for improved performance by
the use of software-defined and application-aware networking [9,10]. The software technologies can be
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modeled to enhance the privacy rules and help to enhance the authentication procedures [11–13].
With effective strategies for collaborative applications, IoT can be used for long, as well as short
distance communications [14–17].

In the past, IoT was emphasized to incorporate many short-range communications
technologies [18–22], which sometimes present an obstacle for efficient working of devices.
As an alternative, Low Power Wide Area Network (LPWAN) technologies are adopted with the
property of long-range and low-power computation, but for low-bit rate requirements [23–26].
However, with the short-distance communications, incorporation of IoT into cyber-physical systems
and cloud architectures is always a challenge because of security concerns and a lack of privacy
preservation over limited range spectrums [27–29]. These security issues worsen when the underlying
architecture is used for real-time applications with the involvement of crucial user data [30–34].

Recently, the Long-Range Wide Area Network (LoRaWAN) has become one of the most significant
technologies for LPWAN due to its property of long-range communication with energy-efficient
computations [35]. These features help to maintain the trade-off between the network latency and
the battery lifetime. LoRaWAN also effectively complies with specific features of IoT through the
dedicated physical and Medium Access Control (MAC) layer.

The innovative features of the LoRaWAN network are the reasons for compatibility with many
low-power applications involving IoT, smart cities, and industrial applications [36,37]. Its advantages
are formulated in terms of bandwidth, battery life, range, latency and throughput. Recently,
LoRaWAN has been influenced by the standard properties and adopted as a standard mechanism for
resource-constrained networks [38].

With the advantages and an enhanced scope of improvements, the LoRaWAN network has
already become an emerging area of research. In spite of being well designed, the LoRaWAN network
faces several security vulnerabilities, which have been pointed out by many researchers [39–42].
In more detail, it fulfills the basic security properties, but suffers from the following vulnerabilities.
First, its join procedure causes a vulnerability, which leads to exploitation by replay attacks.
Second, the protocol cannot provide end-to-end security because the application session key between
each device and its application server is established with the help of the core network. In other
words, the traffic between the two parties can be easily known by the LoRaWAN network server.
Third, the network and application session keys, which are established based on a long-term shared
key, cannot provide perfect forward secrecy. Considering that every device can be easily broken and
compromised, their long-term key can also be exposed, thereby causing the past session keys and
their encrypted data to be recovered. It is obvious that the security flaws mentioned above present an
obstacle to the successful settlement of the LoRaWAN network.

In order to address these security flaws, several types of research have been conducted [41–44].
However, they are lacking in terms of implementation, while maintaining the standard spectrum.
Most of them need changes in the existing standard protocol. Therefore, a more secure and effective
low-power consumption scheme is required, which is acceptable under the benchmarks of the existing
standard. On the other hand, in the LoRaWAN network, it can be considered to apply Datagram
Transport Layer Security (DTLS) [45] to provide the end-to-end security between each device and its
application server. However, the DTLS handshake procedure results in excessive message signaling
and computation overheads, which are not clearly suited for the LoRaWAN network. As an alternative,
we can design a lightweight version for the authentication and key exchange between the two parties,
which is the strong motivation of this paper.

The goal of this paper is to bring out a comprehensive analysis of the LoRaWAN’s security scheme
and the existing solutions for its limitations, as well as provide an effective remedy for their problems.
Along with such analyses, a secure scheme is proposed to focus on addressing the replay attacks
and achieving both the perfect forward secrecy and the end-to-end security between each device
and its application server. Note that the proposed protocol can be divided into two parts where the
first one is the standard join procedure and the second one is the key exchange protocol. After the
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proposed protocol (i.e., the strong master session key is established between a device and its application
server), the two parties can run the DTLS record protocol based on the established key. The proposed
protocol supports the majority of the security properties including mutual authentication, secret key
exchange, perfect forward secrecy, end-to-end security and defense against the replay attack to
support the security-sensitive applications the should keep the end-to-end security. The proposed
protocol is formally analyzed for its security through Burrows–Abadi–Needham (BAN) logic [46]
and the Automated Validation of Internet Security Protocols and Applications (AVSIPA) tool [47].
Further, the performance analysis is presented in comparison with the DTLS’s two handshake options,
Pre-Shared Key (PSK) and Elliptic Curve Cryptography (ECC), along with a case study on a smart
factory-enabled parking system [45,48]. In the case study, the proposed protocol is analyzed for its
performance by securing communication between the end devices (sensors) at the parking lot and the
application server, which is hosted by the smart factory, as shown in Figure 1. The results are analyzed
for network latency with reliability fitting and signaling overheads for the proposed protocol.

Figure 1. An exemplary illustration of the LoRaWAN-enabled network architecture.

The rest of this paper is structured as follows: Section 2 provides details of LoRaWAN and its
functionalities. Section 3 presents insight into the related works on LoRaWAN security. Section 4 gives
the details on the proposed protocol, its functioning and policies. Analyses through BAN logic and the
AVISPA tool are presented in Section 5. Performance evaluations with the smart parking case study are
presented in Section 6. Finally, Section 7 concludes the paper along with future directions and remarks.

2. Background

This section presents details on LoRaWAN, its architecture, key exchange policies and
procedures [49,50]. The basic notations used to describe the LoRaWAN join procedure and the
proposed protocol are provided in Table 1.

2.1. LoRaWAN Network Architecture

LoRaWAN is designed to be used for battery drain applications where low power consumption
with long-range communication is a primary objective. In the LoRaWAN specification v1.02 [51],
network range is defined to be 5–15 km, data rates are between 0.3 kbps and 50 kbps and the network is
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operated over the 868-MHz and 900-MHz ISM bands. LoRaWAN, based on the star topology, has
grown as one of the most popular technologies for IoT. Its architecture aims to provide interoperability
among IoT devices irrespective of their characteristics.

Table 1. Notations table.

Symbol Description

Join_request Join request to attach the end device to the LoRa network
AppEUI Application identifier
DevEUI Device identifier
DevNonce Nonce value randomly generated by the device
DevNoncei The i-th nonce value computed by the device
AES128− CMAC(K, M) AES 128 cipher-based MAC function with the secret key K and the message M
MIC Message integrity code
MICi The i-th message integrity code except for the digital signatures MIC3a and MIC4
NwkSKey Network session key
AppSKey Application session key
AppKey The long-term key shard between a device and a network server
AppNonce Nonce value randomly generated by the network server
AppNoncei The i-th nonce value computed by the network server
NetID Network identifier
DevAddr End device address
RxDelay Delay between RX and TX
CFList Optional list for channel frequencies
sha1(M) SHA 1 hash function, which takes an input M and produces a 160-bit
App_Auth_Req Application authentication request message
App_Auth_Res Application authentication response message
Seqi The i-th sequence number
SK The session key between a device and its application server
|| Concatenation operation
App_Auth_Ack Application authentication acknowledgment message
PRAPP Private key of the application server
PUAPP Public key of the application server
a and DPa Device’s elliptic curve Diffie–Hellman private and public keys
b and DPb Application server’s elliptic curve Diffie–Hellman private and public keys
G Elliptic curve Diffie–Hellman base point
pad16 Function adding zero octets to make the length of the data a multiple of 16
hval[.] hval refers to hash value and [.] to the index.

Its network architecture consists of four entities: device (sensors), gateway, network server
and application server. As illustrated in Figure 1, each device is connected to its network server via
the corresponding gateway(s) where the device-gateway path is over a single wireless hop and the
gateway-network server is interconnected with the non-LoRaWAN network (IP connections). Like the
gateway-network server path, the network server communicates with the application servers via a
non-LoRaWAN network (IP connections).

2.2. Standard LoRaWAN Protocol

In the LoRaWAN network, each device needs to perform a join procedure to enter into the
network. The join procedures are classified as Over-The-Air Activation (OTAA) and Activation By
Personalization (ABP).

2.2.1. Over-the-Air Activation and Activation by Personalization

In the OTAA mode, a device and its network server mutually authenticate each other and exchange
the network and application session keys, NwkSKey and AppSKey, through the Join procedure. Among
the exchanged session keys, the application key AppSKey is forwarded to the corresponding application
server so that the device and the application server securely exchange data. On the other hand, in ABP
mode, it is assumed that the two session keys, NwkSKey and AppSKey, are stored on their device with
the device address DevAddr. Therefore, each device can immediately start to communicate with its
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application server via the LoRaWAN network while skipping the join procedure. This paper focuses
on OTAA mode.

2.2.2. Join Procedure

The join procedure is depicted in Figure 2. In order to enter the LoRaWAN network, the device
starts the join procedure by sending the Join_Request message. Prior to this, it first randomly generates
DevNonce and then computes MIC1 with the long-term secret key AppKey. Upon receiving the
message, the network server verifies the included MIC1. If positive, it gains trust for the device
and then randomly generates AppNonce to proceed to the next steps. Afterwards, the network
server prepares for the Join_Accept message by computing MIC2 and encrypting the message
AppNoncei||NetID||DevAddr||RFU||RxDelay||CFList||MIC2 with AppKey. At the same time,
it makes the two session keys AppSKey = E(AppKey, 0X01||AppNonce||NetID||DevNonce||pad16)

and NwkSKey = E(AppKey, 0X02||AppNonce||NetID||DevNonce||pad16). The network server
concludes the join procedure by sending the Join_Accept message to the device and forwarding
AppSKey to the application server. On receipt of the message, the device decrypts it and verifies the
included MIC2. If the verification is successful, the network server is authenticated to the device,
which then generates the two session keys, AppSKey and NwkSKey. As a result, the device and the
network server mutually authenticate each other while exchanging the two session keys. In addition,
AppSKey is shared between the device and the application server.

Figure 2. LoRaWAN Join procedure.

2.3. Problems with the Standard LoRaWAN Protocol

The standard LoRaWAN protocol faces the following problems irrespective of its
preliminary securities:

• There is no prevention against the replay attack in the Join_Request and Join_Accept messages
because the device and the network server cannot accept the freshness of AppNonce and
DevNonce, respectively.

• The end-to-end security between the device and the application server is broken because AppSKey
is known to the network server.
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• The session keys are derived from the long-term secret key AppKey. Therefore, if AppKey is
compromised, the past session keys can be recovered while the encrypted traffic can be decrypted,
i.e., the perfect forward secrecy does not hold.

3. Related Work

As mentioned above, because the network server generates two session keys, network operators
are able to decrypt and intercept all the data passing through the network server. Girard [52] pointed
out this problem and suggested to deploy the trusted third party to enhance the LoRaWAN network.
According to the LoRaWAN specification v1.02 [51], it is clearly defined that compromising the
keys of the one device does not impact the other ones’ secure communication. However, in ABP
mode, the keys are derived from the device address, which leads to a vulnerability with reverse
engineering [40]. Further, with the standard protocol, there exists a loophole of the end-to-end security
and the vulnerability to the replay attack.

Avoine and Ferreira [53] introduced several attacks that affect the network availability, data
integrity and data confidentiality in the earlier versions of LoRaWAN. The authors emphasized the
replay or decrypt attack and desynchronization attack. These attacks are discussed by considering
an end-device or the network server as the target entity. In the replay attack scenario, the authors
discuss two techniques for attack: replay of a Join_Accept message and harvest of Join messages.
Similarly, in the desynchronization attack, the target can be an end device or the network server,
which is responsible for disconnecting the end-device from the network. By considering these
attacks, the authors recommended that AppNonce value should follow freshness, provide the detection
mechanism against the replay attacks, verify that the received Join_Accept message corresponds to the
sent Join_Request message and also check that session keys are shared or not.

Kim and Song [42] tried to provide end-to-end security between the device and the application
server by allowing the two parties to directly negotiate AppSKey without involving the network
server. However, it needs to change the standard, which makes its application difficult in the existing
LoRaWAN network. Moreover, this approach cannot provide the perfect forward secrecy.

Na et al. [41] introduced an effective countermeasure against the replay attack in the join procedure.
In more detail, this approach uses eXclusive-OR DevNonce with AppKey or the previous session key to
make the Join_Request message fresh. Even though this approach effectively addresses the replay
attack, it does not support the end-to-end security, nor the perfect forward secrecy.

In Garcia et al. (radius-based) [44], an explicit entity termed as the join server is used, which is
responsible for authentication of devices. The join server plays the role of an external Authentication,
Authorization, and Accounting (AAA) server. In this approach, the AAA server instead of the network
server mutually authenticates the device while exchanging the session keys. With the integration of
the LoRaWAN joining procedure with the radius mechanism, the AAA server can make the network
server free from the key management overheads. However, even in such a scenario, the network server
knows all the keys, thus being able to decrypt all the packets between the device and the application
server (i.e., the end-to-end security is broken). Moreover, a long latency is also caused because of the
involvement of the AAA server. Further, this scheme does not focus on the replay attack problem in
the join request.

In Garcia et al. (diameter-based) [43], the network server serves as the diameter client to
communicate with the AAA server. On receiving the join request from the device, the network
server counts on the AAA server to authenticate the device and generate the session keys. Similar to
the radius-based approach, this approach can make the network server free from the key management
overheads. However, because the network server knows all the keys, it can decrypt and understand
all the packets between the device and the application server (i.e., the end-to-end security is broken).
In addition, a long latency happens without a focus on the replay attack problem in the join request.
A state-of-the-art comparison of different LoRaWAN schemes is presented in Table 2.
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Table 2. Comparisons of different LoRaWAN schemes.

Standard
LoRaWAN [51]

Na
et al. [41]

Kim and
Song [42]

Garcia
et al. [43]

Garcia
et al. [44] Proposed

Scheme Standard XoR Dual Diameter Radius DO-SEO
Mutual Authentication YES YES YES YES YES YES
Secure Key Exchange YES YES YES YES YES YES
Perfect Forward Secrecy NO NO NO NO NO YES
End-to-End Security NO NO NO NO NO YES
Defense against a Replay Attack NO YES NO NO NO YES

4. Enhanced LoRaWAN Security Protocol

This section presents the enhanced LoRaWAN security protocol, which addresses the standard
one’s security flaws. It not only suggests the DevNonce generation method to prevent the replay attack,
but also enables a device and its application server to achieve the true end-to-end security through the
Elliptic Curve Diffie Hellman (ECDH)-based key exchange [54], which is authenticated by the Elliptic
Curve Digital Signature Algorithm (ECDSA) [55]. Especially, the presented protocol provides two
options, the Default Option (DO) and the Security-Enhanced Option (SEO), to prevent a malicious
network server from breaking the end-to-end security between a device and its application server.
The first option DO aims to defend against a malicious network server attempting to eavesdrop on the
communication between a device and its application server. In the second option SEO, a malicious
network server is blocked from manipulating packets between a device and its application server,
as well as impersonating these two parties.

The proposed protocol has the following assumptions: (i) AppKey is a long-term secret shared
between a device and its network server. (ii) A secure channel is pre-established between the network
and application servers. (iii) Every device has and trusts its application server’s ECDSA public key
PUAPP, which is used to verify the application server’s digital signature. (iv) In the case of SEO, every
device should have its own ECDSA public key pair, and its public key PUDEV should be trusted by
the application server. How PUAPP and PUDEV are safely delivered, revoked and updated is beyond
this paper’s scope. Here, the LoRa gateway is skipped because it has no contribution to security.

4.1. Default Option

Figure 3 outlines the first option DO, which is composed of six steps. In the first two steps,
the device and the network server authenticate each other while exchanging two session keys. Then,
the device and the application server perform mutual authentication, as well as establish the strong
session key, SK, based on which, both the end-to-end security and the perfect forward secrecy hold.

Details on this option are described as follows.

(1) A device attempts to enter the LoRaWAN network by sending the Join_Request message.
To protect this message, the device generates the i-th fresh nonce DevNoncei and the
message integrity code MIC1. Figure 4 shows how the DevNoncei is computed in the way
of making the Join_Request message fresh, which enables this step to prevent replay attacks.
In addition, MIC1 is obtained by computing AES128− CMAC(AppKey, Join_Request).

(2)–(3) On receiving the Join_Request message, the network server verifies if the received
DevNoncei and MIC1 are correct. In the positive case, the device is successfully
authenticated to the network server, which then prepares for the network server’s i-th
nonce AppNoncei by eXclusive-ORing a randomly generated nonce AppNonce with the
received DevNoncei, generates two session keys AppSKey and NwkSKey and computes
MIC2. Note that AppNoncei can guarantee the device the Join_Accept message’s freshness
and relation to the received Join_Request message. Finally, the network server encrypts with
AppKey all the message contents including AppNoncei, NetID, DevAddr, RFU, RxDelay,
CFList and MIC2 into the Join_Accept message, which is then sent to the device. At the
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same time, the network server forwards the application server the newly-generated session
key AppSKey so that the App_Auth_Req message can be safely exchanged with that key.
Upon a receipt of the Join_Accept message, the device decrypts it with AppKey and verifies
the correctness of the decrypted AppNoncei and MIC2. If the verification is successful,
the device can conclude that the message is fresh and the network server is authentic,
followed by computing the two session keys, AppSKey and NwkSKey. At this point,
it is worth noting that this protocol provides the first two messages’ freshness, the mutual
authentication between the device and the network server and the session key exchange.

(4) Once having successfully verified the Join_Accept message, the device proceeds
with the remaining Steps (4)–(6) by preparing for the App_Auth_Req message.
For this message, it first computes Seq1 = (16, sha1(64, AppSKey)), which is made
fresh by being derived from AppSKey. In addition, its ECDH private key d is
randomly generated, and the corresponding public key DPd = dG is computed
where G is the base point. Finally, the session key AppSKey is applied to
compute MIC3 = AES128− CMAC(AppSKey, App_Auth_Req), which secures both the
App_Auth_Req message and the ECDH key exchange.

(5) Upon receiving the App_Auth_Req message, the application server validates
Seq1 and MIC3. If valid, it randomly creates its own ECDH private key
a and calculates the corresponding public key DPa = aG, followed by
obtaining SK = sha1(aDPd||Seq2). At this point, the application server
can defend against resource exhaustion attacks by flooding the App_Auth_Req
messages because it first checks MIC3 prior to the expensive ECDH operations.
Afterwards, it makes MIC4 = E(PRApp, sha1(Seq2||AppEUI||DevEUI||DPd||DPa||SK)
and MIC5 = AES128− CMAC(AppSKey, App_Auth_Res), which, together with other
values, constitute the App_Auth_Res message. Note that MIC4, which is a digital signature
generated with the application server’s private key PRApp, plays a role in defending against
the man-in-the-middle attacks launched by a malicious network server. The application
server finishes Step (5) by responding to the device with the App_Auth_Res message.

(6) After receiving the App_Auth_Res message, the device first verifies the received Seq2 and
MIC5. If they are valid, the device trusts that the received message is fresh and protected
by AppSKey. Such a trust allows the device to establish the session key SK without being
vulnerable to the replay and resource exhaustion attacks. Then, the device validates MIC4

with the application’s public key PUAPP. If MIC4 is correct, the application server is
authenticated to the device, which then concludes the proposed protocol by sending the
App_Auth_Ack message. At this point, the device can prevent the man-in-the-middle attacks
by a malicious network server because MIC4 can only be generated by the application
server. Once the message arrives, the application server attempts to verify if it is fresh
and valid with the received Seq3 and MIC6. If this verification is successful, the device is
authenticated to the application server, as well as shown to have SK.

It is worth noting that the first option DO counts on the digital signature MIC4 to block a
malicious network server from carrying out the man-in-the-middle attack on the ECDH-based key
exchange. That makes it impossible for the malicious server to interpret and manipulate the packets
transmitted between the device and the application server. However, this option is still vulnerable to
the impersonation attack that the malicious network server can launch by forging the App_Auth_Req
message with AppSKey.
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Figure 3. Proposed protocol’s default option.

Figure 4. DevNonce generation.

4.2. Security-Enhanced Option

The second option SEO aims at defeating the impersonation attack mentioned above while
keeping the DO’s security properties. Therefore, as shown in Figure 5, this option’s messages are
exactly the same as those of DO except for the App_Auth_Req message. In order to prevent the
impersonation attack by the malicious network server, the App_Auth_Req message includes the digital
signature MIC3a generated with the device’s ECDSA private key, PRDEV . This signature disables the
network server to masquerade as the device by using AppSKey. Here, we assume that with the given
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DevEUI, the application server can securely retrieve the device’s ECDSA public key, PUDEV , from its
centralized repository rather than directly from the device.

Figure 5. Proposed protocol’s security-enhanced option.

5. Security Analysis

In this section, the proposed protocol is formally analyzed through BAN logic [10,46,56,57],
and then, the possibility of attack is thoroughly examined by the AVISPA tool.

5.1. BAN Analysis

According to the typical BAN logic analysis, the proposed protocol is first idealized;
its assumptions and goals are defined, and then, the belief derivation is repeatedly conducted until
obtaining the intended results. The BAN logic’s notations and rules are shown in Table 3 and Figure 6.

Table 3. Burrows–Abadi–Needham (BAN)-logic notations.

Statement Meaning

P believes X P believes X and acts as if X were true.
P sees X P receives X at present or in the past time.
P said X P once said X, which means that X was sent to P at some point.
P controls X P has jurisdiction over X.
#(X) X is fresh.
{X}K X is encrypted with a secret K.
〈X〉K It means that X is combined with secret K. MIC can be expressed by this notation.
P K←→ Q K is a secret key only known to P and Q.
K−→ P K is P’s public key.
P K⇐⇒ Q K is a secret only known to P and Q.

5.1.1. Default Option

At first, the default option DO is translated into an idealization as follows (where D, NS and APP
denote device, network server and application server, respectively):

(1) 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒𝑖 𝐴𝑝𝑝𝐾𝑒𝑦 

(2) 𝐽𝐴𝐵𝑜𝑑𝑦,  𝐷
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

𝑁𝑆,  𝐷
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

𝑁𝑆, 𝐽𝐴𝐵𝑜𝑑𝑦 𝐴𝑝𝑝𝐾𝑒𝑦
𝐴𝑝𝑝𝐾𝑒𝑦

  

𝑤ℎ𝑒𝑟𝑒 𝐽𝐴𝐵𝑜𝑑𝑦 = {𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒𝑖 , 𝑁𝑒𝑡𝐼𝐷, 𝐷𝑒𝑣𝐴𝑑𝑑𝑟, 𝑅𝐹𝑈, 𝑅𝑥𝐷𝑒𝑙𝑎𝑦, 𝐶𝐹𝐿𝑖𝑠𝑡}  
(3) 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼 𝐴𝑝𝑝𝑆𝐾𝑒𝑦 

(4) 𝑆𝑒𝑞2, 𝐷𝑃𝑎 , 𝐷
𝑆𝐾
 𝐴𝑃𝑃,𝐷

𝑆𝐾
𝐴𝑃𝑃, 𝑆𝑒𝑞2, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑃𝑑, 𝐷𝑃𝑎 𝑃𝑈𝐴𝑃𝑃

−1 𝐴𝑝𝑝𝑆𝐾𝑒𝑦 

(5) 𝑆𝑒𝑞3, 𝐷
𝑆𝐾
 𝐴𝑃𝑃,𝐷

𝑆𝐾
𝐴𝑃𝑃 𝑆𝐾 
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𝑃 believes 𝑃
𝐾
 𝑄, 𝑃 sees 𝑋 𝐾

𝑃 believes 𝑄 said 𝑋
 

𝑃 believes 𝑃
𝐾
 𝑄,  𝑃 sees 𝑋 𝐾

𝑃 believes 𝑄 said 𝑋
 

𝑃 believes 
𝐾
 𝑄  𝑃 sees 𝑋 𝐾−1

𝑃 believes 𝑄 said 𝑋
 

  

Message-Meaning Rule (MM) 

𝑃 believes #(𝑋), 𝑃 believes 𝑄 said 𝑋

𝑃 believes 𝑄 believes 𝑋
 

Nonce-Verification Rule (NV) 

𝑃 believes 𝑄 contols 𝑋, 𝑃 believes 𝑄 believes 𝑋

𝑃 believes 𝑋
 

Jurisdiction Rule (JR) 

𝑃 bleives #(𝑋)

𝑃 believes # 𝑋, 𝑌
  
𝑃 believes 𝑋, 𝑃 believes 𝑌

𝑃 belives (𝑋, 𝑌)
 
𝑃 believes (𝑋, 𝑌)

𝑃 belives 𝑋
 

ECDH Rule (DH) 

𝑃 believes 𝑄 said 
𝑦𝐺
𝑄, 𝑃 believes 

𝑥𝐺
𝑃

𝑃 believes 𝑃 
𝑥𝑦𝐺
 𝑄

 
𝑃 believes 𝑄 said 

𝑦𝐺
𝑄, 𝑃 believes 

𝑥𝐺
𝑃

𝑃 believes 𝑃 
𝑥𝑦𝐺
 𝑄

 

ETC Rule (ETC) 

Figure 6. BAN logic rules.

As the next step, it is necessary to make the DO’s assumptions and goals. The assumptions are
as follows:

(A1) NS believes D
𝐴𝑝𝑝𝐾𝑒𝑦

 NS 
(A2) NS believes #(𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒𝑖) 

(A3) NS believes D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

 NS 

(A4) NS believes D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦 

NS 

(A5a) D believes D
𝐴𝑝𝑝𝐾𝑒𝑦

NS 

(A5b) D believes D
𝐴𝑝𝑝𝐾𝑒𝑦

NS 
(A6) D believes #(𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒𝑖) 

(A7) D believes NS controls D
𝐾
  NS 

(A8) APP believes APP
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

 D 

(A9) APP believes #(𝑆𝑒𝑞1) 

(A10) APP believes 
𝐷𝑃𝑎
APP 

(A11) D believes #(𝑆𝑒𝑞2) 

(A12) D believes 
𝐷𝑃𝑑
D 

(A13) D believes 
𝑃𝑈𝐴𝑃𝑃

APP 

(A14) APP believes #(𝑆𝑒𝑞3) 

Strictly speaking, (A8) is not reasonable because AppSKey is known to the network server in
addition to the device and the application server. However, DO does not consider the malicious
network server trying to impersonate the device by forging the App_Auth_Req message. Therefore,
(A8) is maintained to reason about DO under such an attacker model.

The goals are as follows:

(G1) NS believes D believes 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼  

(G2) D believes NS believes JABody 

(G3) D believes D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS 

(G4) D believes D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS  

(G5) D believes NS believes D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS 

(G6) D believes NS believes D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS 

(G7) D believes APP believes 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼  

(G8) APP believes D believes 𝑆𝑒𝑞3 

(G9) D believes D 
𝑆𝐾
 APP 

(G10) D believes D 
𝑆𝐾
APP  

(G11) D believes APP believes D
𝑆𝐾
 APP 

(G12) D believes APP believes D 
𝑆𝐾
App 

(G13) APP believes APP
𝑆𝐾
  D 

(G14) APP believes APP 
𝑆𝐾
D 

(G15) APP believes D believes D
𝑆𝐾
 APP 

(G16) APP believes D believes D
𝑆𝐾
APP 

In the above goals, (G1) and (G2) indicate the mutual authentication between the device and the
network server, while (G7) and (G8) indicate the mutual authentication between the device and the
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application server. On the other hand, (G3)–(G6) mean that the device obtains the belief that it shares
the two session keys, NwkSKey and AppSKey, with the network server. In addition, the remaining goals
express that the session key SK is securely exchanged between the device and the application server.
With the above-idealized version, assumptions and goals, the formal analysis proceeds.

From (1), we derive:

(D1) NS sees 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒𝑖 𝐴𝑝𝑝𝐾𝑒𝑦 

(D2) NS believes D said 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒𝑖  by D1 , A1 , MM 
(D3) NS believes D believes 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑒𝑣𝑁𝑜𝑛𝑐𝑒𝑖  by D2 , A2 , ETC, NV 
(D4) NS believes D believes 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼  by D3 , ETC 

From (2), we derive:

(D5) D sees JABody,  D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS,  D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS, JABody 𝐴𝑝𝑝𝐾𝑒𝑦
𝐴𝑝𝑝𝐾𝑒𝑦

 

(D6) D believes NS said JABody,  D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS,  D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS, JABody 𝐴𝑝𝑝𝐾𝑒𝑦  by D5 , A5a , MM 

(D7) D believes NS believes JABody, D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS,  D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS, JABody 𝐴𝑝𝑝𝐾𝑒𝑦  by D6 , A6 , ETC, NV 

(D8) D believes NS believes JABody by D7 , ETC 

(D9) D believes NS believes D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS by D7 , ETC 

(D10) D believes NS believes D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS by D7 , ETC 
(D11) D believes NS believes JABody by D7 , ETC, A5b , MM, A6 , ETC, NV 

(D12) D believes D
𝑁𝑤𝑘𝑆𝐾𝑒𝑦

NS by D9 , A7 , JR 

(D13) D believes D
𝐴𝑝𝑝𝑆𝐾𝑒𝑦

NS by D10 , A7 , JR 

From (3), we derive:

(D14) APP sees 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼 AppSKey 

(D15) APP believes D believes  𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼  by D14 , A8 ,MM, A9 , ETC, NV 
(D16) APP believes D believes  𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼  by D15 , ETC 
(D17) APP believes D believes  𝐷𝑃𝑑 by D15 , ETC 

(D18) APP believes APP 
𝑆𝐾
D by D17 , A10 , DH where 𝑆𝐾 = 𝑎𝐷𝑃𝑑 =  𝑎𝑑𝐺 

(D19) APP believes APP
𝑆𝐾
  D by D17 , A10 , DH 

From (4), we derive:

(D20) D sees  𝑆𝑒𝑞2, 𝐷𝑃𝑎 , D
𝑆𝐾
 APP, D

𝑆𝐾
APP, 𝑆𝑒𝑞2, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑃𝑑, 𝐷𝑃𝑎 𝑃𝑈𝐴𝑃𝑃

−1 AppSKey 

(D21) D believes APP believes 𝑆𝑒𝑞2, 𝐷𝑃𝑎 , D
𝑆𝐾
 APP, D

𝑆𝐾
APP, 𝑆𝑒𝑞2, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑃𝑑, 𝐷𝑃𝑎 𝑃𝑈𝐴𝑃𝑃

−1   

by D20 , D13 ,MM, A11 , ETC, NV 
(D22) D believes APP believes 𝐷𝑃𝑎 by D21 , ETC 

(D23) D believes D 
𝑆𝐾
 APP by D22 , A12 , DH where 𝑆𝐾 = 𝑑𝐷𝑃𝑎 =  𝑎𝑑𝐺 

(D24) D believes D 
𝑆𝐾
APP by D22 , A12 , DH 

(D25) D sees D
𝑆𝐾
 APP, D

𝑆𝐾
APP, 𝑆𝑒𝑞2, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑃𝑑, 𝐷𝑃𝑎 𝑃𝑈𝐴𝑃𝑃

−1 by D21 , ETC 

(D26) D believes APP believes D
𝑆𝐾
 APP, D 

𝑆𝐾
App, 𝑆𝑒𝑞2, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼, 𝐷𝑃𝑑, 𝐷𝑃𝑎  

by A13 , D25 ,MM, A11 , ETC, NV 

(D27) D believes APP believes D
𝑆𝐾
 APP by D26 , ETC 

(D28) D believes APP believes D 
𝑆𝐾
App by D26 , ETC 

(D29) D believes APP believes 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑈𝐼  by D26 , ETC 
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From (5), we derive:

(D30) APP sees 𝑆𝑒𝑞3, D
𝑆𝐾
 APP, D

𝑆𝐾
APP SK 

(D31) APP believes D believes 𝑆𝑒𝑞3, D
𝑆𝐾
 APP, D

𝑆𝐾
APP  by D30 , D19 ,MM, A14 , ETC, NV 

(D32) APP believes D believes D
𝑆𝐾
 APP by D31 , ETC 

(D33) APP believes D believes D
𝑆𝐾
APP by D31 , ETC 

(D34) APP believes D believes 𝑆𝑒𝑞3 by D31 , ETC 

Based on the above derivations, we can show that the goals are satisfied as follows, while thus
concluding that DO is correct.

• (G1) and (G2) are satisfied by (D4) and (D8), respectively.
• (G3)–(G6) are satisfied by (D12), (D13), (D9) and (D10), respectively.
• (G7) and (G8) are satisfied by (D29) and (D34), respectively.
• (G9)–(G16) are satisfied by (D23), (D24), (D27), (D28), (D18), (D19), (D32) and (D33), respectively.

5.1.2. Security-Enhanced Option

In order to analyze SEO, we focus on only the App_Auth_Req message because DO and SEO are
the same except for it. Therefore, the App_Auth_Req message is idealized as follows:

(3) 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼, 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼 𝑃𝑈𝐷𝐸𝑉
−1 𝐴𝑝𝑝𝑆𝐾𝑒𝑦 

The assumption (A15) and the goal (G17) are added as follows:

(A15) APP believes 
𝑃𝑈𝐷𝐸𝑉

D (G17) APP believes D believes 𝑆𝑒𝑞1 

Here, like (G8), (G17) indicates that the device is authenticated to the application server. In other
words, (G8) is complemented by (G17), which is obtained through ECDSA.

From (3), we derive:

(D35) APP sees 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼, 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼 𝑃𝑈𝐷𝐸𝑉
−1 AppSKey 

(D36) APP believes D believes  𝑆𝑒𝑞1, 𝐷𝑃𝑑 , 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼, 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼 𝑃𝑈𝐷𝐸𝑉
−1   

by D35 , A8 ,MM, A9 , ETC, NV 
(D37) APP believes D believes  𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼  by D36 , ETC 
(D38) APP believes D believes  𝐷𝑃𝑑 by D36 , ETC 

(D39) APP believes App 
𝑆𝐾
D by D38 , A10 , DH where 𝑆𝐾 = 𝑎𝐷𝑃𝑑 =  𝑎𝑑𝐺 

(D40) APP believes App
𝑆𝐾
  D by D38 , A10 , DH 

(D41) APP sees 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼 𝑃𝑈𝐷𝐸𝑉
−1  by D35 , ETC 

(D42) APP believes D believes 𝑆𝑒𝑞1, 𝐷𝑃𝑑, 𝐴𝑝𝑝𝐸𝑈𝐼, 𝐷𝑒𝑣𝐸𝑅𝐼  by D41 , A15 ,MM, A9 , ETC, NV 
(D43) APP believes D believes 𝑆𝑒𝑞1 by D42 , ETC 

Obviously, the goal (G17) is achieved by obtaining (D43), while (G13) and (G14) are satisfied
through D(39) and (D40). Unlike DO, SEO aims to defeat the malicious network server trying to
masquerade as the device with AppSKey. For this goal, the device is authenticated to the application
server by using the digital signature MIC3a computed with the ECDSA private key PRDEV . Moreover,
AppSKey plays a role in preventing the resource exhaustion attack by allowing the application server to
check MIC3b prior to the expensive operations, i.e., ECDSA digital signature verification and ECDH key
exchange. Thus, it is still reasonable to maintain (A8). As a result, we can conclude that SEO is correct.
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5.1.3. Security Properties

Mutual authentication: The proposed protocol provides the two mutual authentications,
i.e., the one between the device and the network server and the other between the device and the
application server. Here, by presenting the two lemmas, Lemma 1 and Lemma 2, we prove that the
two mutual authentications hold in the proposed protocol.

Lemma 1. The device and network server mutually authenticate each other.

Proof. It is demonstrated from (D4) and (D11) that the device and the application authenticate
each other. Therefore, the proposed protocol satisfies the mutual authentication between the device
and the application server.

Lemma 2. The device and application server mutually authenticate each other.

Proof. This mutual authentication needs to be proved considering the two options DO and SEO.
In the DO case, the proof relies on (D29) and (D34) to show that the device and the application
authenticate each other. Note that DO allows (A8) and (D17) because of not taking into consideration
the malicious network server impersonating a device. Consequently, the mutual authentication is
achieved in DO. On the other hand, in the SEO case, it can be shown from (D29) and (D43) that the
mutual authentication between the two parties is satisfied. Clearly, these two obtained beliefs indicate
that it is impossible for the malicious network server to launch the man-in-the-middle and impersonate
attacks and break the end-to-end security. As a result, it is concluded that the proposed protocol
achieves the mutual authentication between the device and the application server.

Secure key exchange: In the proposed protocol, three session keys including NwkSKey, AppSKey
and SK are exchanged where NwkSKey is shared between the device and the network server, as well
as both AppSKey and SK are shared between the device and the application server. Here, we provide
Lemma 3 and Lemma 4 to prove that these keys are securely exchanged.

Lemma 3. NwkSKey and AppSKey are securely exchanged between the device and network server.

Proof. Based on (D9), (D10), (D12) and (D13), we can verify that the session key exchange is
authenticated to the device. On the other hand, it can be shown from (D4), (A3) and (A4) that
the network server validates the session key exchange. As a result, we can reason that NwkSKey and
AppSKey are securely exchanged between the two parties. Note that once the session key exchange is
successfully performed, AppSKey is forwarded to the application server. Thus, AppSKey is finally
shared between the device and the application server. This session key is properly used according to
the selected option, i.e., DO or SEO, so that the security threats caused by the malicious network server
can be avoided.

Lemma 4. SK is securely exchanged between the device and application server.

Proof. In the DO case, it can be seen from (D18), (D19), (D23), (D24), (D27), (D28), (D32) and (D33) that
SK is securely exchanged between the device and the application server. In the SEO case, the secure
key exchange between the two parties can be verified based on (D23), (D24), (D27), (D28), (D32), (D33),
(D39) and (D40). Consequently, we can conclude that SK is securely established between the device
and the application server.

End-to-end security: In the proposed protocol, it is very important to provide the end-to-end security
between the device and the application server. AppSKey, which aims to protect the application traffic,
cannot keep this security property because it is known to the network server in addition to the two
involved parties. To solve this problem, the proposed protocol allows the device and the application
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server to securely share the session key SK by relying on the ECDH-based key exchange and the
ECDSA digital signature. Lemma 5 is proposed to prove that the proposed protocol achieves the
end-to-end security between the device and the application server.

Lemma 5. The end-to-end security is provided between the device and application server.

Proof. In the DO case, it is shown from (D18), (D19), (D23) and (D24) that SK is established between
the device and the application server via the ECDH-based key exchange. Especially, (D17) and (D29)
validate that this key exchange can be trusted. Similarly, in the SEO case, (D23), (D24), (D39) and (D40)
verify that the device and the application share SK by the ECDH-based key exchange. Such a key
exchange is secured according to (D29) and (D43). As mentioned above, SK is exchanged in a way that
it is only known by the two parties involved through the ECDH-based key exchange. In other words,
the network server cannot decrypt or modify the application traffic once it is encrypted or protected
with the session keys derived from SK. Therefore, it can be concluded that the end-to-end security is
offered between the device and the application server.

Perfect forward secrecy: Perfect forward secrecy is a security property where the compromise of
long-term keys does not cause the past session keys to be exposed [58]. For this property, we take into
consideration SK because it is used to encrypt the application traffic. Below, we provide Lemma 6 to
testify that the proposed protocol achieves perfect forward secrecy on the application traffic.

Lemma 6. Perfect forward secrecy is provided for SK.

Proof. According to the obtained beliefs (D18), (D19), (D23), (D24), (D39) and (D40), it is verified
that SK is securely exchanged between the device and the application server via the ECDH-based
key exchange. In addition, we can see from (D17), (D29) and (D43) that the SK exchange is protected
through the ECDSA digital signature, thus defending against the man-in-the-middle attack. It is worth
noting that the generated ECDH private keys are forgotten after their session. That makes it impossible
for the past session keys to be recovered even when long-term keys are compromised. Therefore, it is
proven that perfect forward secrecy is provided for SK.

Defense against resource exhaustion attack: Here, we provide Lemma 7 to show that the proposed
protocol prevents the resource exhaustion attack, which sends many messages requesting the expensive
public key operations to cause the application server and the device to uselessly waste their resources.

Lemma 7. The proposed protocol defends against resource exhaustion attack.

Proof. In the proposed protocol, the application server checks MIC3 or MIC3b prior to the expensive
public key operations. Similarly, the device verifies the digital signature after validating MIC5.
Therefore, from the derived beliefs (D17), (D22) and (D38), it is demonstrated that the proposed
protocol defends against the resource exhaustion attack.

Defense against replay attack: In the proposed protocol, DevNoncei is made fresh according
to the DevNonce generation method, while AppNoncei is made fresh by eXclusive-ORing the
randomly-generated nonce AppNonce with DevNoncei. Thus, by including these fresh values,
the Join_Request and Join_Accept messages are not vulnerable to the replay attack. On the other hand,
the App_Auth_Req, App_Auth_Res and App_Auth_Ack messages depend on the sequence numbers
Sep1, Sep2 and Sep3 to prevent the replay attack. Especially, Sep1 is guaranteed to be fresh because it is
derived from the new session key AppSKey, and the subsequent numbers are generated by increasing
their previous number by one. As a result, the proposed protocol is not vulnerable to the replay attack.
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5.2. AVISPA Analysis

AVISPA [47] is an automatic tool for modeling and analyzing security protocols. In AVISPA,
a security protocol is modeled based on the High-Level Protocol Specification Language (HLPSL) [59]
and converted via HLPSL2IF to Intermediate Format (IF). The converted IF version is then formally
analyzed through four sub-modules as shown in Figure 7, and the result is derived.

Figure 7. Architecture of Automated Validation of Internet Security Protocols and Applications (AVISPA).

The four sub-modules are as follows:

• OFMC: On-the-Fly Model-Checker [60]
• SATMC: SAT-based Model-Checker [61]
• CL-AtSe: CL-based Attack Searcher [62]
• TA4SP: Tree-Automata-based Protocol Analyzer [63]

5.2.1. Default Option

The proposed protocol’s DO is modeled in the HLPSL version, which is composed of three roles:
the basic, composed and environment roles.

Basic role: The DO’s HLPSL version includes the three basic roles, r_Device, r_Network_Server
and r_Application_Server, which correspond to a device, network server and application server,
respectively. Figure 8 shows the source code of the device’s basic role r_Device.

This role possesses the shared key App_Key and its application server’s public key PUapp.
Furthermore, it communicates with r_Network_Server using the SND_DN and RCV_ND channels
while communicating with r_Application_Server using the SND_DA and RCV_AD channels. Note that
all the basic roles including r_Device apply the Dolev–Yao (dy) model, one of the attacker models,
to the channels. The basic operations of r_Device are defined in the transition section.

In Figure 9, r_Network_Server is defined as a basic role to model the network server. This role
shares App_Key and Kna with r_Device and r_Application_Server, respectively. Especially, Kna is used
to protect the channel SND_NA between r_Network_Server and r_Application_Server. Moreover,
the SND_ND and RCV_DN channels are defined for communication between r_Device and
r_Network_Sever. How r_Network_Server works is described in detail in the transition section.
The last basic role r_Application_Sever is expressed for the application server as shown in Figure 9.
With the symmetric key Kna, this role is able to securely communicate with r_Network_Server over
the channel RCV_NA. In addition, the private key corresponding to PUapp, which is expressed as
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inv(PUapp), is utilized to calculate a digital signature. The detailed operations of r_Application_Sever
are specified in the transition section.

transition 

 

1. State = 0   /\ RCV_ND(start) =|> 

    State' := 2 /\ AppEUI' := new()  

                     /\ DevEUI' := new()  

      /\ Dev_Nonce' := new() 

      /\ MIC1' := CMAC(App_Key.AppEUI'.DevEUI'.Dev_Nonce') 

      /\ SND_DN(AppEUI'.DevEUI'.Dev_Nonce'.MIC1') 

      /\ witness(Device, Network_Server, auth1, App_Key) 

 

3. State = 2   /\ RCV_ND({App_Nonce'.NetID'.Dev_Addr'.MIC2'}_App_Key) =|> 

    State' := 4 /\ Seq1' := new() 

                     /\ X' := new() 

      /\ GX' := exp(G,X') 

      /\ App_Skey' := {App_Nonce.NetID.Dev_Nonce}_App_Key 

      /\ MIC3' := CMAC(App_Skey'.Seq1'.GX'.AppEUI.DevEUI) 

      /\ SND_DA(Seq1'.GX'.AppEUI.DevEUI.MIC3') 

      /\ request(Device, Network_Server, auth2, App_Key) 

      /\ witness(Application_Server, Device, auth3, App_Skey) 

 

6. State = 4   /\ RCV_AD(Seq2'.GY'.{SK'.Seq2'.AppEUI.DevEUI.GX.GY'}_inv(PUapp). 

         CMAC(App_Skey.Seq2'.GY'.{SK'.Seq2'.AppEUI.DevEUI.GX.GY'}_inv(PUapp))) =|> 

    State' := 6 /\ GXY' := exp(GY,X) 

      /\ SK' := SHA1(GXY'.Seq2) 

      /\ Seq3' := ADD(Seq2.1) 

      /\ MIC6' := CMAC(SK'.Seq3') 

      /\ SND_DA(Seq3'.MIC6') 

      /\ witness(Device, Application_Server, auth4, SK') 

end role 

role r_Device( 

 Device, Network_Server, Application_Server: agent, 

 G: text, 

 App_Key: symmetric_key, 

 PUapp: public_key, 

 CMAC, SHA1, ADD: function, 

 SND_DN, RCV_ND, SND_DA, RCV_AD: channel(dy)) 

 

played_by Device 

 

def = 

 local 

  State: nat, 

  AppEUI, App_Nonce: text,  

  DevEUI, Dev_Nonce: text,  

  Dev_Addr, NetID: text, 

  Seq1, X: text, 

  App_Skey, Nwk_Skey, SK: message, 

  GX, GY, GXY: message, 

  Seq2, Seq3: message, 

  MIC1, MIC2, MIC3, MIC4, MIC5, MIC6: message 

 init 

  State := 0 

 

Figure 8. r_Device role.

role r_Network_Server( 

      Device, Network_Server, Application_Server: agent, 

      App_Key, Kna: symmetric_key, 

      CMAC: function, 

      SND_ND, RCV_DN, SND_NA: channel(dy)) 

 

played_by Network_Server 

def= 

      local 

         State: nat, 

            AppEUI, App_Nonce, DevEUI, Dev_Nonce, Dev_Addr, NetID, N1, N2 : text, 

            App_Skey, MIC1, MIC2 : message 

      init 

            State := 1 

      transition 

  

      2. State = 1   /\ RCV_DN(AppEUI'.DevEUI'.Dev_Nonce'. 

                   CMAC(App_Key.AppEUI'. DevEUI'.Dev_Nonce')) =|> 

          State' := 3 /\ App_Nonce' := new()  

 /\ N1' := new() /\ N2' := new()  

 /\ NetID' := new() 

 /\ App_Skey' := {App_Nonce'.NetID'.Dev_Nonce}_App_Key 

 /\ MIC2' := CMAC(App_Key.App_Nonce'.NetID'.Dev_Addr') 

 /\ SND_ND({App_Nonce'.NetID'.Dev_Addr'.MIC2'}_App_Key) 

 /\ SND_NA({App_Skey'}_Kna)  

 /\ request(Network_Server, Device, auth1, App_Key) 

 /\ witness(Network_Server, Device, auth2, App_Key) 

end role 

role r_Application_Server( 

      Device, Network_Server, Application_Server: agent, 

      G: text, 

      Kna: symmetric_key, 

      PUapp: public_key, 

      CMAC, SHA1, ADD: function, 

      SND_AD, RCV_DA, RCV_NA: channel(dy)) 

 

played_by Application_Server 

def= 

      local 

         State: nat, 

            AppEUI, DevEUI, Seq1, Y: text, 

            App_Skey, Seq2, GX, GY, GXY, SK, Seq3, MIC3, MIC4, MIC5, MIC6: message 

      init 

            State := 1 

      transition 

      4. State = 1   /\ RCV_NA({App_Skey'}_Kna) =|> 

          State' := 3 /\ secret(Kna, sec1, {Application_Server, Network_Server}) 

 

      5. State = 3   /\ RCV_DA(Seq1'.GX'.AppEUI'.DevEUI'. 

                CMAC(App_Skey.Seq1'.GX'.AppEUI'.DevEUI')) =|> 

          State' := 5 /\ Seq2' := ADD(Seq1.1) 

 /\ Y' := new() /\ GY' := exp(G,Y') /\ GXY' := exp(GX,Y')  

/\ SK' := SHA1(GXY'.Seq2') 

/\ MIC4' := {SK'.Seq2'.AppEUI.DevEUI.GX.GY'}_inv(PUapp) 

 /\ MIC5' := CMAC(App_Skey.Seq2'.GY'.MIC4') 

 /\ SND_AD(Seq2'.GY'.MIC4'.MIC5') 

 /\ request(Device, Application_Server, auth3, App_Skey) 

 /\ secret(SK', sec2, {Application_Server, Device}) 

      7. State = 5   /\ RCV_DA(Seq3'.CMAC(SK.Seq3')) =|> 

     State' := 7 /\ request(Application_Server, Device, auth4, SK') 

end role 

Figure 9. r_Network_Server role and r_Application_Server role.

Composed role and environment role: Figure 10 illustrates the composed role of the HLPSL model,
r_Session, which represents a session of the proposed protocol.

After declaring all channels, r_Session arranges and calls three basic roles with necessary
parameters to express an entire session. The r_Environment role is specified for the proposed
protocol in Figure 10, which defines important constants for agents, keys, functions, etc, sets the
attacker’s knowledge and decides how the proposed protocol executes. Moreover, this role makes the
security goals that the proposed protocol should satisfy. In more detail, the four goals, auth1, auth2,
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auth3 and auth4, are defined to check if the proposed protocol’s authentication holds, followed by the
two goals sec1 and sec2, defined for confirming the proposed protocol’s secrecy.

role r_Session( 

    Device, Network_Server, Application_Server: agent, 

    G: text, 

    App_Key, Kna: symmetric_key, 

    PUapp: public_key, 

    CMAC, SHA1, ADD: function) 

def= 

    local 

 SND_Device_Network, RCV_Network_Device, 

 SND_Device_Application, RCV_Application_Device, 

 SND_Network_Device, RCV_Device_Network, 

 SND_Network_Application, RCV_Network_Application, 

 SND_Application_Device, RCV_Device_Application: channel(dy) 

 

    composition 

r_Device(Device, Network_Server, Application_Server, G, App_Key,  

         PUapp, CMAC, SHA1, ADD, SND_Device_Network,  

         RCV_Network_Device, SND_Device_Application,  

         RCV_Application_Device) 

 /\ r_Network_Server(Device, Network_Server, Application_Server,  

       App_Key, Kna, CMAC, SND_Network_Device,  

       RCV_Device_Network, SND_Network_Application) 

 /\ r_Application_Server(Device, Network_Server, Application_Server, G, Kna,  

       PUapp, CMAC, SHA1, ADD, SND_Application_Device,  

       RCV_Device_Application, RCV_Network_Application) 

end role 

role r_Environment() 

def= 

    const 

 device, network, application: agent, 

 g: text, 

 appkey, kna: symmetric_key, 

 puapp: public_key, 

 cmac, sha1, add: function, 

 auth1, auth2, auth3, auth4, sec1, sec2: protocol_id 

 

      intruder_knowledge = {device, network, application, g, puapp, cmac, sha1, add} 

 

      composition 

 r_Session(device, network, application, g, appkey, kna, puapp, cmac, sha1, add) 

end role 

 

goal 

       authentication_on auth1, auth2, auth3, auth4 

       secrecy_of sec1, sec2 

end goal 

 

r_Environment() 

Figure 10. r_Session role and r_Environment role.

Result: Figure 11 shows how the proposed protocol runs in the AVISPA environments. Furthermore,
in this figure, we can see the formal verification results on the proposed protocol obtained through
the sub-modules of OFCM and CL-AtSe, respectively. According to the results, we can confirm that
there is no attack.
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Figure 11. DO simulation and analysis result.

5.2.2. Security Enhanced Option

In SEO, the DO’s roles are modified to model the device’s digital signature MIC3a and its related
operations. As depicted in Figure 12, the major changes are made in the transitions of r_Device
and r_Application. The SEO’s simulation and analysis results are exactly the same as those of DO,
indicating that no attack is found.

6. Performance Evaluation

Initial evaluations are conducted to calculate the message size and the overheads involved in
the proposed protocol during communication between the end-to-end devices through coding over
real hardware. Next, the two options of the proposed protocol, DO and SEO, are analyzed for their
performance by using numerical simulations in comparison with the DTLS-PSK and DTLS-ECC
protocols through a case study on a smart factory-enabled parking system.
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3. State = 2  /\ RCV_ND({App_Nonce'.NetID'.Dev_Addr'.MIC2'}_App_Key) =|> 

 State' := 4 /\ Seq1' := new() 

   /\ X' := new() 

   /\ GX' := exp(G,X') 

   /\ App_Skey' := {App_Nonce.NetID.Dev_Nonce}_App_Key 

   /\ MIC3a' := {SHA1(Seq1'.GX'.AppEUI.DevEUI)}_inv(PUdev) 

   /\ MIC3b' := CMAC(App_Skey'.Seq1'.GX'.AppEUI.DevEUI) 

   /\ SND_DA(Seq1'.GX'.AppEUI.DevEUI.MIC3a'.MIC3b') 

   /\ request(Device, Network_Server, auth2, App_Key) 

   /\ witness(Application_Server, Device, auth3, App_Skey) 

r_Device’s transition is changed: 

r_Application’s transition is changed: 

5. State = 3 /\ RCV_DA(Seq1'.GX'.AppEUI'.DevEUI'.{SHA1(Seq1'.GX'.AppEUI'.DevEUI')}_inv(PUdev). 

     CMAC(App_Skey.Seq1'.GX'.AppEUI'.DevEUI')) =|> 

 State' := 5   /\ Seq2' := ADD(Seq1.1) 

   /\ Y' := new() 

   /\ GY' := exp(G,Y') 

   /\ GXY' := exp(GX,Y') 

   /\ SK' := SHA1(GXY'.Seq2') 

   /\ MIC4' := {SK'.Seq2'.AppEUI.DevEUI.GX.GY'}_inv(PUapp) 

   /\ MIC5' := CMAC(App_Skey.Seq2'.GY'.MIC4') 

   /\ SND_AD(Seq2'.GY'.MIC4'.MIC5') 

   /\ request(Device, Application_Server, auth3, App_Skey) 

   /\ secret(SK', sec2, {Application_Server, Device}) 

Figure 12. Major changes in the Security-Enhanced Option (SEO).

Figures 13 and 14 illustrate the communication scenario between a client and a server for
DTLS-PSK and DTLS-ECC, respectively. Both DTLS protocols are evaluated using the TinyDTLS
0.8.2 library with their respective cipher suite over the system with configurations presented in Table 4.

Figure 13. DTLS-ECC.
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Figure 14. DTLS-PSK.

Table 4. Tiny DTLS-PSK 0.8.2 and Tiny DTLS-ECC 0.8.2 environments for evaluation.

Environment Specific

CPU Intel R© CoreTMi5-6300HQ 2.30 GHz (0.88 GHz)
RAM 8GB
Compiler gcc (GCC) 6.4.0
OS Windows 10 64bit (Cygwin32)
DTLS Library TinyDTLS 0.8.2
Cipher Suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
Cipher Suite TLS_PSK_WITH_AES_128_CCM_8

DTLS-PSK uses client and server initiations along with the exchange messages followed by the
finish mechanisms for handshake during a contact between the client and the server. The client
messages for DTLS-PSK cause an overhead of 1 ms for each operation, whereas there is no overhead
due to server-initiation. Here, overheads are measured as the difference between the time after
sending a handshake message and the time utilized before generating a handshake message.
The server-overhead is only caused by finishing the communication. This lesser dependence on
the server causes fewer overheads on the communication setup, but with compromised security.
The details of packet size and overheads for DTLS-PSK are provided in Table 5. Using each packet
size, the total message size used for handshaking between the client and the server is calculated,
as shown in Table 6. From these system-based evaluations, it is obtained that DTLS-PSK causes a total
overhead of 5 ms with a total message size of 198 bytes.

Table 5. DTLS-PSK packet size and overheads.

Message Size (Bytes) Overhead (ms)

Client_Hello(1) 42 1
Hello_Verify_Request 19 -
Client Hello(2) 58 1
Server_Hello 38 -
Server_Hello_Done 0 -
Client_Key_Exchange 17 1
Finished(Client) 12 1
Finished(Server)_Verify 12 1

Total Overhead 5
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Table 6. DTLS–PSK handshake message packet.

Message Size (Bytes)

Client_Hello(1) 42
Hello_Verify_Request 19
Client_Hello(2) 58
Server_Hello, Server Hello Done 38
Client_Key_Exchange, Finished 29
Finished 12

Total Message Size 198

DTLS-ECC uses similar policies for a handshake as used by DTLS-PSK, but with the
involvement of certification procedures for enhanced security of communication between the client
and the server. The overhead scenarios are also similar to DTLS-PSK, i.e., 1 ms, but excessive overheads
are caused due to the certificate exchange and verification procedures that raise the overhead to 31 ms.
The details of total overhead for various procedures involved in the communication between the
client and the server by using DTLS-ECC are presented in Table 7. Because of the certification scheme,
DTLS-ECC uses a heavy packet size for a handshake between the involved entities. The maximum
size packet is used for certificate-exchange procedures, which is 304 bytes, and the total message size
reaches up to 746 bytes, as shown in Table 8.

Table 7. DTLS-ECC packet size and overheads.

Message Size (Bytes) Overhead (ms)

Client_Hello(1) 72 1
Hello_Verify_Request 19 -
Client Hello(2) 88 1
Server_Hello 56 -
Certificate 97 1
Server_Key_Exchange 143 -
Certificate_Request 8 -
Server_Hello_Done 0 -
Client_Key_Exchange 66 31
Certificate_Verify 76 31
Finished(Client) 12 31
Finished(Server) 12 1 (for verification)

Total Overhead 97

Table 8. DTLS-ECC handshake message packet.

Message Size (Bytes)

Client_Hello(1) 72
Hello_Verify_Request 19
Client_Hello(2) 88
Server_Hello, Certificate, Server_Key_Exchange, Certificate_Request, Server_Hello_Done 304
Certificate, Client_Key_Exchange, Certificate_Verify, Finished 251
Finished 12

Total Message Size 746

Similarly to DTLS-PSK and DTLS-ECC, it is required to calculate the system-based message
size and overhead caused by the proposed protocol for its implementation in practical scenarios.
The environment setup for system-based evaluations of the proposed protocol is presented in Table 9.
The proposed extended LoRaWAN protocol is evaluated for both its options. In DO, the overhead
due to request and acknowledgment is 1 ms, and that of response is 9 ms. The message size varies
between 37 and 53 bytes for request and response, respectively. The acknowledgment uses 4 bytes
for its procedures. Thus, the total message size and the overhead for the proposed protocol in
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DO are 94 bytes and 11 ms, respectively, as shown in Table 10. In SEO of the proposed protocol,
a malicious network server is blocked from manipulating packets between a device and its application
server along with impersonating them. Thus, SEO consumes more time in generating final responses.
Overall, the mechanism is not much different, but the extra features increase the message size of the
SEO approach. The system-based evaluation for the proposed approach in SEO suggests that the
total message size reaches up to 126 bytes, and the total overhead is 16 ms, as shown in Table 11.
A comparison is drawn in Table 12 to understand the impact on the system-based evaluation for
DTLS-PSK, DTLS-ECC and extended LoRaWAN protocol with DO and SEO.

Table 9. Proposed protocol environment for evaluation.

Environment Specific

CPU Intel R© CoreTMi5-6300HQ 2.30 GHz (0.88 GHz)
RAM 8 GB
Compiler Visual Studio 2017 32 bit
OS Windows 10 64 bit

Table 10. Message size and overhead for the proposed protocol’s Default Option (DO).

Message Size (Bytes) Overhead (ms)

App_Auth_Req 37 1
APP_Auth_Res 53 9
App_Auth_ACK 4 1

Total Overhead 11

Total Message Size 94

Table 11. Message size and overhead for the proposed protocol’s SEO.

Message Size (Bytes) Overhead (ms)

App_Auth_Req 69 3
APP_Auth_Res 53 12
App_Auth_ACK 4 1

Total Overhead 16

Total Message Size 126

Table 12. System-based comparison for DTLS-PSK, DTLS-ECC and extended LoRaWAN protocol with
DO and SEO features.

Protocol Overhead (ms)
Overhead
Impact
w.r.t. DO

Overhead
Impact
w.r.t. SEO

Message Size (Bytes)
Message
Size Impact
w.r.t. DO

Message
Size Impact
w.r.t. SEO

DO 11 - −31.25% 94 - −25.39%
SEO 16 +31.25% - 126 +25.39% -
DTLS-PSK 5 −54.54% −68.75% 198 +52.52% +36.36%
DTLS-ECC 97 +88.65% +83.50% 746 +87.39% +83.10%

6.1. Evaluation of the Proposed Protocol over a Low-Power Device

The system-based evaluations in the previous subsection help to determine the performance of
the proposed protocol in a generic environment. However, the devices involved as end users in a
LoRaWAN setup are of low-power ratings, such as mobiles, that may cause excessive overheads
because of a difference in the type of CPU. To understand this variation, the two options, DO and
SEO, of the proposed protocols are tested on a mobile platform with configurations given in Table 13.
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From the configurations, it can be identified that the CPU is limited in processing compared with
system-based evaluations. The two options of the proposed protocol are coded separately for the
Android version, and the results are recorded for overheads. The evaluations suggest that the proposed
protocol with DO causes overhead in the range between 18 and 22 ms with a variation of 18.18%,
whereas the proposed protocol with SEO causes overhead in the range between 26 and 33 ms with a
variation of 21.21%, as shown in Table 14. The results for overhead are low even for a low-power device,
which illustrates significant improvements in terms of security without affecting the performance.

Table 13. Proposed protocol environment for evaluation over a mobile device.

Environment Specific

Device Type Mobile
Make Lenovo
Chipset Mediatek MT6753
CPU Octa-core 1.3 GHz Cortex-A53
GPU Mali-T720MP3
Compiler Visual Studio 2017 (Android Kit)
OS Android 5.1.1

Table 14. Overhead for the proposed protocol (DO and SEO) over a low-power device.

Message DO (min) (ms) DO (max) (ms) SEO (min) (ms) SEO (max) (ms)

App_Auth_Req 12 12 20 20
APP_Auth_Res 5 9 5 12

App_Auth_ACK 1 1 1 1
Total Overhead 18 22 26 33

6.2. Smart Factory-Enabled Parking System with the Proposed Protocol

Further, in order to understand the behavior of the proposed protocol, a smart parking scenario
is considered, as shown in Figure 15. The scenario is comprised of multiple parking spaces
each equipped with sensors, which transmit traffic to a local body via a gateway. The local body
provides support for the LoRa network server, which is connected to the application server that
is placed at the central authority. This case study can be matched with a special case, where a
smart factory wants to track all the processes and the available parking places across the state.
This information can be passed directly to the intended users via particular applications. On the
contrary, the application servers can be replaced with direct communication with the users. However,
in such a case, the authentication of the user is also to be considered, which may cause excessive
overheads. Nevertheless, considering the scenario illustrated in this paper, the results are recorded for
network latency and signaling overheads.

Irrespective of the communication, the traffic in the considered smart factory-enabled parking
scenario passes through a series of wired, as well as wireless links. Thus, network latency is
calculated by considering a single wired and a single wireless link in the network. Since the traffic
remains the same, a similar message size, as computed previously, is used for evaluating the overall
latency of the network. Thus, in this scenario, the network latency is calculated as [64]:

N (O)
L = Td +

(
M
F − 1

)
I + L2 +

(
MK
B +Wd

)
, (1)

where Td is the one-frame transport delay, M is the message size, F is the frame size, I is the
inter-frame time, L2 is the link layer delay, K is the number of intermediate hops, B is the network
bandwidth andWd is the wired delay.
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Figure 15. An illustration of the case study of protocols for a smart factory-enabled parking system.

Next, the signaling overheads are calculated for the proposed approach by following host-based
principles as the devices or the sensors are responsible for initiating the communication in the proposed
setup. Thus, signaling overhead is given as [65]:

SO
S =

KM
τ

, (2)

where τ is the session time between the involved entities. In case the network includes a master parking
sensor, which manages all the sensors in the parking lot, the signaling overhead is calculated as:

SO
M =

KM
τ

+
(N − 1)KM

τ
, (3)

where N is the number of sub-sensors in the parking lot. The details of values for each of the
parameters used in the above formulations are given in Table 15.

Table 15. Parameter configurations.

Parameter Value

N 10
B 11 Mbps
I 20 ms
F 64 Bytes
L2 45.35 ms
Td 10–50 ms
K 1–10
τ 100 ms
Wd 20 ms

The proposed protocol operates with a maximum network latency of 485.4 and 485.5 ms for DO
and SEO, respectively, whereas DTLS-PSK and DTLS-ECC operate with a maximum latency of 485.8
and 488.0 ms, respectively, with variation in the number of intermediate hops. The results in Figure 16
show an enhanced performance of DO and SEO for the given smart parking scenario. The results for
network latency are evaluated over Weibull fitting for understanding the reliability of the proposed
enhanced LoRaWAN protocol in comparison with the DTLS-PSK and DTLS-ECC through MATLABTM,
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as shown in Figure 17. The reliability curves suggest that the proposed protocol performs better and
offers a higher reliability of communication for the smart factory-enabled parking system. These results
are dominated by the message size, and the overhead study presented in earlier parts plays a crucial
role in deciding these outputs.1 2 3 4 5 6 7 8 9 10485486487488489490491 Number of intermediate hops (K)Network latency (N LO ) (ms) Proposed Protocol (DO)Proposed Protocol (SEO)DTLS−PSKDTLS−ECC

Figure 16. Network latency (ms) vs. the number of intermediate hops.483 484 485 486 487 488 489 490 491 49200.20.40.60.811.21.41.61.82 Network latency (NLO) (ms)Density DTLS−ECCReliability (DTLS−ECC)DTLS−PSKReliability (DTLS−PSK)Proposed Protocol (SEO)Reliability (Proposed Protocol (SEO))Proposed Protocol (DO)Reliability (Proposed Protocol (DO))
Figure 17. Density (network latency) vs. network latency with reliability fitting.

Network latency is also affected by the frame-delays over the wired links. This can be seen in
Figure 18, which shows an increasing trend for all the protocols with an increase in the one-frame
transport delay. Further, DTLS-ECC suffers from the highest latency because of the certification
procedures that result in the higher message size. The average network latency for the proposed
protocol with DO, the proposed protocol with SEO, DTLS-PSK and DTLS-ECC is 505.7, 505.9, 506.4
and 510.4 ms, respectively.
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Figure 18. Network latency (ms) vs. transport delay.

Finally, results are recorded for signaling overheads by following (2) and (3), as shown in
Figure 19. These results are recorded for two sub-scenarios in the considered smart parking case
study. Firstly, the results include signaling overheads (SO

S ) by using one-to-one communication
between the application server and the single sensor, and secondly, the results include signaling
overheads (SO

M) by using one-to-one communication between the application server and the single
master sensor, which facilitates multiple sensors of a particular parking lot. The results show that
the proposed protocol in DO causes 52.5% and 87.3% fewer signaling overheads than DTLS-PSK and
DTLS-ECC, respectively; and the proposed protocol in SEO causes 36.3% and 83.1% fewer signaling
overheads than DTLS-PSK and DTLS-ECC, respectively.

6.3. Applicability to the New LoRaWAN Specification v1.1

Recently, a new LoRaWAN specification v1.1, as shown in Figure 20, has been released, which
covers the majority of the shortcomings of the LoRaWAN specification v1.02. The new specification
comprises similar components as that of the v1.02 specification except that network server’s
functionalities are divided into home, serving and forwarding entities with security dependence
on the join server. In the LoRaWAN specification v1.1, the data transferred between the application
server and the end device are encrypted using the keys generated by the join server. Here, the involved
network server aggregation is considered as trusted; however, a malicious network server may be able
to alter the content of the data messages in transit, which may even help the compromised network
server to infer some information about the data by observing the reaction of the application end-points
to the altered data. Therefore, end-to-end security is needed between the application server and the
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end device, through which the data transmission can be protected in terms of confidentiality and
integrity, and not compromised by the network server or any other entity.1 2 3 4 5 6 7 8 9 100100200300400500600700 Number of intermediate hops (K)Signaling overheads (hops * bytes per second) SSO Proposed Protocol (DO)SMO Proposed Protocol (DO)SSO Proposed Protocol (SEO)SMO Proposed Protocol (SEO)SSO DTLS−PSKSMO DTLS−PSKSSO DTLS−ECCSMO DTLS−ECC

Figure 19. Signaling overheads vs. number of intermediate hops.
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Figure 20. A general overview of the LoRaWAN specification v1.1 architecture.

These issues are further highlighted in the official release of the LoRa (https://www.lora-
alliance.org/lorawan-for-developers), AllianceTM, as well as by the organizations (http://iotdesign.
embedded-computing.com/articles/lora-networks-in-buildings-reduce-infrastructure-costs/; https:
//www.businesswire.com/news/home/20180220005492/en/Cypress-ESCRYPT-Unveil-End-to-end-
LoRaWAN-based-Security-Solution; https://micromaxtechnology.com/wp-content/uploads/Gemalto-
IoT-LoRaWAN-Brochure.pdf; https://www.escrypt.com/en/solutions/secure-lorawan-communications)
working on LoRaWAN applications. These detailed reports have clarified that the new specification
assumes trust for network servers, but true end-to-end confidentiality and integrity protection are
not yet covered by this new specification. Effective and secure strategic solutions are required for
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supporting the applications that have such requirements as their primary concern. All of these are
supported by the proposed protocol that can secure the communications for both the LoRaWAN
specifications v1.02 and v1.1.

It is to be noted that in the proposed protocol, DO focuses on preventing the passive attacks by
the malicious network server, and SEO focuses on the active attacks by the malicious network server.
Therefore, depending on the security requirements for the target service, a proper option can be selected
for the LoRaWAN networks. The analyses presented in this paper by using BAN logic, the AVISPA tool,
system simulations and the smart-parking case study demonstrate the performance of the proposed
enhanced LoRaWAN protocol with the capability of securing the end-to-end communication between
the device and the application server.

7. Conclusions and Future Remarks

Urban networks are largely affected by the need for smart applications, such as healthcare,
city management, smart transportation and smart industry. Such networks are in demand, and with
IoT, their applications can easily be extended across cities in the form of smart projects. In recent years,
smart applications in the Internet of Things (IoT) were applied through a low-power communication
setup, as the majority of devices in these networks are battery operated and smart applications running
on them consume most of the battery life. One such facility is provided by the Low-Power Wide
Area Network (LPWAN), but at a constrained bit rate. For facilitating long-range communication
over LPWAN, several approaches and protocols are provided by different researchers and research
organizations across the globe.

One of the popular protocols is the Long Range Wide Area Network (LoRaWAN), which is a media
access layer protocol for long-range communication between the devices and the application servers
via LPWAN gateways. However, LoRaWAN comes with issues related to security as a much-secured
protocol will consume the majority of the resources (battery life) because of the excessive computational
overheads and signaling cost. This may lead to several types of attacks on the network. The standard
protocol fails to support the perfect forward secrecy, the end-to-end security and the defense against
the replay attack. Thus, considering this as a problem, an enhanced LoRaWAN security protocol was
proposed in this paper, which not only provides the functionalities of the basic protocol, but also
prevents against different security threats.

The proposed protocol was developed with two options, the Default Option (DO) and the
Security-Enhanced Option (SEO), to prevent a malicious network server from breaking the end-to-end
security between a device and its application server. The initial security validations were conducted
through the Burrows–Abadi–Needham (BAN) logic and the Automated Validation of Internet
Security Protocols and Applications (AVISPA) tool. Next, system-based and low-power device-based
performances were evaluated to understand the message size and the overhead of the proposed
protocol. Further, for practical applications, the problem of a smart factory-enabled parking system
was considered for secure and efficient parking management in smart cities. The results, in terms of
network latency with reliability fitting and signaling overheads, show significant improvements and
better performance for the proposed protocol in comparison with other security protocols, namely
Datagram Transport Layer Security-Pre-Shared Key (DTLS-PSK) and Datagram Transport Layer
Security-Elliptic Curve Cryptography (DTLS-ECC).

It is to be noted that the new LoRaWAN specification v1.1 is unable to support the end-to-end
security between the user and the application server. This shortcoming can be overcome through our
protocol, but details on the hardware-based implementation of the proposed protocol for LoRaWAN
specification v1.1 will be presented in our future reports.
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