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Abstract: In past decades, lidar techniques have become main tools for atmospheric remote
sensing. However, traditional pulsed lidar systems are relatively expensive and require considerable
maintenance. These shortcomings may be overcome by the development of a blue band Scheimpflug
lidar system in Dalian, Northern China. Atmospheric remote measurements were carried out for
10 days in an urban area to validate the feasibility and performance of a 450-nm Scheimpflug lidar
system. A 24-h continuous measurement was achieved in winter on a near horizontal path with an
elevation angle of about 6.4◦. The aerosol extinction coefficient retrieved by the Fernald-inversion
algorithm shows good agreement with the variation of PM10/PM2.5 concentrations recorded by a
national pollution monitoring station. The experimental result reveals that the linear ratio between
the aerosol extinction coefficient and the PM10 concentration under high relative humidity (75–90%)
is about two-times that in low relative humidity (≤75%) when the PM10 concentrations are less than
100 µg/m3.
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1. Introduction

Air pollution, especially anthropogenic particulate pollution has been a serious environmental
problem in China since the rapid development of industrialization and urbanization during past
decades [1,2]. Morbidity and mortality of cardiovascular and respiratory diseases significantly increase
during recent years due to severe hazes in China [3]. Moreover, the absorbing and scattering effects of
particulate matters can also influence earth’s radiation budget and global climates [4–7]. Atmospheric
particles and gas pollutants monitoring appears particularly important and urgent. The Chinese
Environmental Council recently released an air pollution prevention and control action plan, aiming at
reducing inspirable particle concentrations by 20% from 2012 to 2017.

Remote sensing of atmospheric aerosols is traditionally achieved by detecting backscattered light
from nanosecond laser pulses emitted into the atmosphere. Atmospheric backscattering or extinction
coefficient, which are correlated to particle concentrations, can be retrieved from the backscattering
lidar signal according to the Fernald-Klett inversion method, etc. [8–12]. As a remote sensing technique,
lidar is capable of real-time monitoring of atmospheric particle distribution and variation in large areas,
e.g., urban area pollution monitoring, while point monitoring instruments are only able to measure
local concentrations. Extensive work has been pursued by utilizing atmospheric lidar techniques for
atmospheric pollution monitoring [13–19]. Scott M. Spuler et al. presented a field-deployable lidar
system based on an eye-safe laser (1.54 µm) with a blind range of about 500 m [14]. T. Y. He et al.
demonstrated a lidar system employing a 532-nm pulsed Nd:YAG laser, which was capable of tracking
two-dimensional particle distribution with an angular resolution of 0.1◦ [15]. However, the incomplete
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overlap region is rather large, it extends as far as 0.8 km. Recently, C.-W. Chiang, et al., developed a
mobile and portable scanning lidar system for profiling pollutants in lower troposphere [20]. The lidar
systems discussed above mainly employ high-cost and sophisticated laser sources, e.g., Nd:YAG
lasers. Besides, a data acquisition unit with high sampling rate and large dynamic range is often
used to achieve high spatial resolution as well as long detection range. The relatively robust and
inexpensive ceilometers, e.g., Jenoptik CHM15k, are now broadly deployed for cloud and aerosol
layer detections [21,22]. However, the signal-to-noise ratio (SNR) of the atmospheric lidar signal
decreases to about 1 at 4 km during daytime with 30-min signal averaging due to low pulse energy [22].
Furthermore, a common issue of the pulsed lidar systems is the large blind range due to incomplete
geometric overlap between the transmitter and the receiver, which could be partially solved by
measuring the overlap function or adjusting the alignment for near and far range.

Recently, the Scheimpflug lidar (SLidar) technique, based on the Scheimpflug principle, has been
demonstrated successfully for atmospheric remote sensing [23–25]. The backscattering light of the
entire aerosol volume illuminated by the transmitted laser beam can be clearly focused on a tilted
image sensor, if the image sensor plane, the lens plane and the laser beam (object) plane intersect
into a single line—satisfying the Scheimpflug principle. The pixels of the Complementary Metal
Oxide Semiconductor (CMOS)/ Charge-coupled Device (CCD) sensors correspond to the distances
of the illuminated volume. The SLidar technique significantly reduces system complexity and cost
by utilizing high-power continuous-wave laser diodes and highly integrated CMOS/CCD sensors.
Besides, the SLidar technique can achieve a short blind range less than 100 m or even up to 30 m
by employing a large-area rectangular senor. Small-scale 450-nm Scheimpflug lidar system has been
recently implemented, but mainly for applications in short range, such as aquatic ecosystem studies [26]
and oil pollution monitoring [27]. An all-time (24-h) operating blue-band SLidar system has not been
implemented for atmospheric pollution monitoring, in spite of the great interest for atmospheric
aerosol monitoring and differential absorption measurement of NO2 distribution [28–31].

This work aims at developing a SLidar system operating in the blue region by employing a
high-power 3.5-W multimode 450-nm laser diode as the laser source. Twenty-four-hour continuous
atmospheric measurements were performed for 10 days in Dalian, Northern China during haze and
clean weather conditions on a near horizontal path. The Fernald-inversion algorithm is also applied
for the time-range map retrieval of the aerosol extinction coefficient. The performance and feasibility
of employing the 450-nm SLidar system for atmospheric pollution monitoring is also validated by
comparing the experimental results with the PM2.5/PM10 concentrations measured by a national
pollution monitoring station under various atmospheric conditions.

2. Experimental Setup

2.1. The 450-nm Scheimpflug Lidar (SLidar) System

The optical layout and the primary specifications of the SLidar system are shown in Figure 1 and
Table 1, respectively. A high-power multimode continuous-wave 450-nm laser diode and a CMOS
image sensor are employed as the laser source and the detector, respectively. The high-power laser
diode with a TO9 package is housed by a customized mount for fine case temperature controlling. Laser
diodes commonly have large divergence and an elliptical beam shape. For instance, the divergences
of the 450-nm laser diode are about 46◦ along the fast axis (1/e2) and 14◦ along the slow axis (1/e2).
The emission facet is about 1 µm (fast axis) × ≈ 50 µm (slow axis). The large divergence leads to a very
low geometrical transmission efficiency particularly in the fast axis when employing large f-number
optics. In this work, a cylindrical lens pair is employed to reduce the divergence of the laser beam in
fast axis before collimated by a long focal refractor telescope (F6, f = 600 mm, ∅ = 100 mm). The laser
beam along the fast axis is first collimated by a convex cylindrical lens with an acceptance angle of
±19◦ and then a concave cylindrical lens, which are confocal. As a result, the emission facet along
the fast axis is magnified to form an enlarged virtual image, while the divergence is reduced to about
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±4.6◦ that matches the acceptance angle of the F6 lens of the refractor telescope. The laser beam that
has been enlarged in the fast axis is then collimated by the F6 lens and transmitted into atmosphere,
while the slow axis of the laser diode is placed in the Scheimpflug plane (the plane of the optical
layout). The geometrical transmission efficiency along the fast axis can be improved by a factor of
3 compared to the situation with only the F6 lens as the collimator.
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Figure 1. (a) Optical layout of the Scheimpflug lidar system, the figure is not to scale. The slow axis
is placed in the Scheimpflug plane (paper plane), while the fast axis is placed perpendicular to the
paper plane. The laser beam along the fast axis is collimated by both the cylindrical lens pair and the
F6 lens, which are confocal. (b) Recorded image of the laser beam by the Complementary Metal Oxide
Semiconductor (CMOS) image sensor (on image).

Atmospheric backscattering light is collected by a 200-mm F4 Newtonian telescope. Although the
linewidth of the 450-nm laser diode is about 2 nm, interference filters with similar bandwidth are not
readily available. In this work, a 450-nm interference filter with a 10-nm full-width at half maximum
(FWHM) is utilized to suppress the sunlight background radiation. The backscattering light from the
probe volume is clearly focused on a 45◦ tilted CMOS sensor by the Newtonian telescope. The refractor
telescope and the Newtonian telescope are mounted on an aluminum-alloy bar with approximately
806 mm separation to satisfy the Scheimpflug principle. The lidar system is mounted on an equatorial
mount, allowing the adjustment of the observation angle. The laser diode is on/off modulated through
the driving current. As shown in Figure 1a, the exposure signal of the CMOS camera is fed to a Johnson
counter, where the on/off modulation signal is generated. Atmospheric background image (off image)
as well as the backscattering image of the laser beam (on image) are thus captured alternatively in the
region of interest (ROI: 2048 × 200 pixels) of the CMOS sensor. The on/off image pairs are vertically
binned, respectively. The atmospheric background signal is then subtracted by signal interpolation
to obtain a single lidar recording [25]. The raw lidar signal is obtained from the median average of a
number of lidar recordings, e.g., 1000 times.

The exposure time of the CMOS camera is automatically changed during 24-h continuous
measurements to optimize the SNR [32], e.g., 20 ms under full sunshine and 500 ms during nighttime.
The averaging number for a single lidar curve is also changed in order to keep identical total
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measurement time for each lidar curve, e.g., 1000 times @20 ms exposure time and 40 times @500 ms
exposure time. Thus, the total measurement time for a single lidar curve is approximately 45 s,
including the time of measuring both the on/off images, as well as the data acquisition and transfer
time. After signal averaging, the lidar signal is further de-noised by the Savitzky-Golay (S-G) filter
with a frame length of 79 and an eight-order polynomial to eliminate the sunlight background noise
and the noise of the CMOS sensor. Besides, signal resampling is performed for the lidar curve in the
near range (85–700 m) by taking the weighted average of each 3-m subset signals [32].

Table 1. Primary specifications of the 450-nm Scheimpflug lidar (SLidar) system.

Model Specifications

Laser source Nichia, NDB7K75 Wavelength: 450 nm; Power: 3.5 W; Divergence: 14◦ ‖ × 46◦ ⊥;

Collimator
Tianlang, F6 refractor Focal length: 600 mm, Diameter: 100 mm

Cylindrical lens pair:
LJ1918L1-A & LK1426L1-A

Convex lens: f = 5.8 mm, height: 4 mm; Concave lens:
f = −25 mm, height: 10 mm
Laser beam divergence: 0.1 × 0.36 mrad

Receiver Skywatcher, CFP200 Focal length: 800 mm; Diameter: 200 mm

Detector CMOS, CMV2000
Lt225NIR

Tilt angle: 45◦; Resolution: 2048 × 1024 Pixels; Frame rate:170 fps;
Bit depth: 12/8 bit; Pixel size: 5.5 µm × 5.5 µm;
Quantum efficiency: 45% @ 450 nm; ROI: 2048 × 200 pixels

Filters 450 nm interference filters 10 nm FWHM (Edmund optics)

2.2. Divergences of the Laser Beam

The divergences as well as the beam sizes of the transmitted laser beam should be minimized
to achieve the best effective range resolution for the Scheimpflug lidar technique [25]. Atmospheric
backscattering images were thus measured with 500-ms exposure time during nighttime to characterize
the profile of the transmitted laser beam, as shown in Figure 2. The pixel-distance relationship can be
calibrated by measuring the pixel position of the backscattering echo from a hard target (approximately
1 km away). When aligning the slow axis in the Scheimpflug plane (the plane of the optical layout),
the CMOS sensor records the image of the transmitted laser beam along the fast axis (fast-axis image);
vice versa. Figure 2a, b shows the laser images measured with only the F6 lens as the collimator. As can
be seen, the fast-axis and slow-axis images are nearly the same, although the beam divergence and the
chip size of the 450-nm laser diode along the slow and fast axes are quite different. The FWHM of the
laser beam in atmosphere can be estimated from the width of the images according to the geometrical
optics. The image width in different distance (pixel) can be obtained by finding the half maximum
along vertical pixels, as illustrated by the black-solid lines in Figure 2. The width of the laser beam
in atmosphere is estimated according to the lens equation. As shown in Figure 3, the beam width
linearly increases with the measurement distance. The beam divergences along the fast and slow axes
are identical, i.e., 0.1 mrad. Figure 2c shows the fast axis image when the transmitted laser beam is
collimated by the cylindrical lens pair and the F6 lens. As can be seen, the image width in the later
part of Figure 2c, corresponding to the far range, is much larger compared to the situation when the
laser beam is collimated with only the F6 lens. The divergence along the fast axis is increased to about
0.36 mrad.
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Figure 2. Images of the laser beam in atmosphere: (a) fast axis; (b) slow; and (c) fast axis are placed
perpendicular to the Scheimpflug plane, respectively. The laser beam is collimated with the cylindrical
lens pair and the F6 lens in figure (c). The black-solid curves indicate the half intensities of an image in
vertical direction.
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Figure 3. Full-width at half maximum (FWHM) of the laser beam in atmosphere along different axes.
The blue-dot curve is obtained when the laser beam is collimated by the cylindrical lens pair and the
F6 lens.

3. Measurements

Atmospheric measurements were performed in Dalian city on a near horizontal path from
22 December to 31 December 2017. A severe haze occurred on 28 to 29 December. Atmospheric
parameters such as relative humidity, temperature, wind speed, and PM2.5/PM10 concentration were



Sensors 2018, 18, 1880 6 of 12

reported once an hour by a local national pollution monitoring station, located at 2.5 km away from
the lidar system in the southwest-south direction. The elevation angle of the lidar system is about
6.4◦, limited by the field of view of our laboratory. The pixel-distance relationship is calibrated by
measuring the backscattering echo from a tall building located at about 971 m. As shown in Figure 2,
the laser beam image can be fully captured, leading to a geometrical compressions factor of 1 even
in the near range. Thus, the minimum measurement distance, which is then limited by the length
of the CMOS sensor, can reach to about 85 m. Range correction is not required as the backscattering
intensity of the SLidar technique does not decrease with the square of the measurement distance.
The time-space map of the atmospheric backscattering signal is shown in Figure 4. The signal-to-noise
ratios (SNRs) of the lidar curves are beyond 150 during daytime and 300–400 during night time in the
measurement range of 85–150 m. The SNR generally increases with the decreasing of the sunlight
background. However, it is finally limited by the photon-response non-uniformity (PRNU) noise of the
CMOS sensor. Nevertheless, the SNR does not decrease with the square of the measurement distance.
Although the near-range SNR is lower than that in conventional pulsed lidar techniques, the maximum
measurement distance with SNR larger than 10 can still reach up to 7 km during daytime in clean
atmospheric conditions. The maximum measurement range may be limited to 2–3 km during severe
haze weather (PM10 ≈ 200 µg/m3), as can be seen from backscattering signals in the period from 28 to
29 December.
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The aerosol extinction coefficient can be retrieved by the Fernald-inversion method, given by:

αa(z) = −
Sa

Sm
αmol(z) +

P(z) exp
[

2( Sa
Sm
− 1)

zc∫
z

αm(ζ)dζ

]
P(zc)

αa(zc)+
Sa
Sm

αm(zc)
+ 2

zc∫
z

P(ζ) exp

[
2( Sa

Sm
− 1)

zc∫
ζ

αm(z′)dz′
]

dζ

. (1)

Here P(z) is the backscattering intensity at distance z, Sm, and Sa are the molecular and
aerosol lidar ratio, respectively, αm(z) and αa(z) are the molecular and aerosol extinction coefficients,
respectively, zc is the calibration distance of the aerosol extinction coefficient and αa(zc) is often
referred to as the boundary value. The molecular lidar ratio and the extinction coefficient can
be estimated from the atmospheric model, which can be considered as range-independent as the
measurements were performed on a near horizontal path. The aerosol lidar ratio at 450 nm can be
set to 50. The boundary value of αa(zc) must be determined in order to retrieve the range-dependent
aerosol extinction coefficient, as shown by Equation (1). The boundary value is retrieved by linearly
fitting the log-scale lidar signal in a homogeneous subinterval range according to the Colis’ slope
method. The retrieval distance of the boundary value is often in the far end to achieve a more stable
solution for Equation (1). In this work, the maximum retrieval distance of the boundary value is set
to 7 km. As the retrieval range is also limited by the SNR of the lidar signal, the boundary value is
evaluated in the subinterval signal regions where the signal intensity is not less than 10 (SNR > 10).

4. Results and Discussions

The time-space map of the aerosol extinction coefficient is shown in Figure 5, from which the
transportation and time-variation of atmospheric pollution can be readily observed. On 22 December,
a severe haze was accumulating, while the north wind (5–8 m/s) blew away particulate matters at noon.
The peak concentrations of PM2.5 and PM10 are 190 µg/m3 and 118 µg/m3, respectively, corresponding
to an aerosol extinction coefficient of 1.35 km−1. In the early morning on 24 December, the particulate
concentrations as well as the aerosol extinction coefficient suddenly increased in companion with the
strong wind from the North (5–10 m/s). However, the pollution shortly disappeared. This implied
that the suddenly appeared pollution was most likely due to the transportation of external pollution
sources. After this period, the atmosphere is rather clean and homogeneous, and the PM2.5 and PM10
concentration were below 12 µg/m3 and 41 µg/m3 until the morning on 27 December. Nevertheless,
local emissions due to traffic, road construction, etc., can still be observed in the near range between
85–1000 m, corresponding to an altitude below 100 m for an elevation angle of 6.4◦. During this
period, the aerosol extinction coefficient is also very low, about 0.1 km−1. Since the afternoon on
27 December, atmospheric pollution started to accumulate. In the meanwhile, the relative humidity
also gradually increased, and reach up to 80% at midnight. The high relative humidity promoted the
rapid growth of particulates, leading to very high concentrations of PM2.5 and PM10, i.e., 125 µg/m3

and 200 µg/m3, respectively. The aerosol extinction coefficient is about 1.7 km−1. Since the early
morning on 30 December, the atmospheric pollution started to dissipate.

The aerosol extinction coefficient is highly relevant with the particulate concentration as has
been discussed above. In order to compare the result measured by the lidar technique and the point
monitoring station, the aerosol extinction coefficient should be averaged in both space and time.
The spatial averaged value of the aerosol extinction coefficient can obtained from the ratio between the
integral of the aerosol extinction coefficient along the measurement path and the total measurement
range for each lidar signal:

αaer∗ =
1

zmax − zmin

∫ zmax

zmin

αaer(z)dz. (2)

Here zmax and zmin are the maximum and minimum retrieval distances of the extinction coefficient
for each lidar curve. The value of zmax can vary significantly under different weather conditions, while
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the value of zmin is nearly unchanged. The time-variation of the spatial averaged extinction coefficient
together with the PM2.5/PM10 concentration is shown in Figure 6c. As can be seen, the variations of
the extinction coefficient and the particulate concentrations are in good agreement.

The spatial-averaged aerosol extinction coefficient was further averaged in one hour, as the
particle concentrations were reported once-an-hour by the national monitoring station. The relationship
between the one-hour averaged aerosol extinction coefficient and the PM10 concentration with different
relative humidities is shown in Figure 7. Generally speaking, the aerosol extinction coefficient increased
with the increasing of the particulate concentrations. However, the aerosol extinction coefficient
was also influenced by atmospheric relative humidity and particle compositions, etc. As shown in
Figure 8, the coefficients of the linear fitting between the aerosol extinction coefficient and the PM10
concentration are quite different under different relative humidities when the PM10 concentration is
below 100 µg/m3. The coefficient of the linear fitting is 0.015 km−1/µgm−3 in the case of high relative
humidity (>75%), while it is only about 0.0033 km−1/µgm-3 when the relative humidity is no more than
75%. The correlation coefficients between the aerosol extinction coefficient and the PM10 concentration
in the case of high relative humidity (>75%) and low relative humidity (≤75%) are 0.88 and 0.73,
respectively. On the other hand, the discrepancy of the aerosol extinction coefficient under high and
low humidities is not significant when particle concentrations are beyond 120 µg/m3. The relationship
between the aerosol extinction coefficient and particulate concentration is more sophisticated.
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5. Conclusions

This work developed a 450-nm Scheimpflug lidar system for atmospheric pollution monitoring by
employing a 3.5 W 450-nm continuous-wave laser diode and a CMOS image sensor. 24-h continuous
atmospheric monitoring on a near horizontal path in December 2017 is achieved with a 10-nm FWHM
interference filter to suppress the sunlight background. The laser beam of the laser diode, which has
large divergences along the fast and the slow axes, is collimated by a cylindrical lens pair and a F6
achromatic refractor, to improve the geometrical efficiency. The laser power that is transmitted into
atmosphere is estimated to be 2.7 W. The divergence of the laser beam in the Scheimpflug plane is
about 0.1 mrad. The SNRs of the lidar signals were beyond 150 and 300–400 for daytime and nighttime,
respectively. The noise of the lidar signal in daytime measurements is dominated by the sunlight
background and may be further suppressed by employing a narrowband interference filter. However,
it is limited by the PRNU noise of the image sensor during nighttime measurements. The SNR can be
further improved by employing image sensors with lower PRNU noise, e.g., scientific CMOS or CCD
sensors. The PRNU noise could be as low as 0.01%. The promising result also implies that differential
absorption lidar (DIAL) monitoring of atmospheric nitrogen dioxide (NO2) can be feasible during
daytime based on the present 450-nm lidar system with improved SNRs.

The aerosol extinction coefficient is extracted from lidar data by the Fernald inversion method,
which is then spatially averaged to compare with local particle concentrations. It has been found
that atmospheric relative humidity has played a significant role on the aerosol extinction coefficient
due to hygroscopic growth of particles. Experimental result reveals that the linear ratio between the
aerosol extinction coefficient and PM10 concentration under high relative humidity (75–90%) is about
two-times that in low relative humidity (≤75%) when PM10 concentrations are less than 100 µg/m3.
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Nevertheless, the relationship is more sophisticated with the increasing of the relative humidity and
particle concentrations.
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