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Abstract: This paper presents the design, implementation and characterization results of a pixel-level
readout chain integrated with a FET-based terahertz (THz) detector for imaging applications.
The readout chain is fabricated in a standard 150-nm CMOS technology and contains a cascade
of a preamplification and noise reduction stage based on a parametric chopper amplifier and a direct
analog-to-digital conversion by means of an incremental Σ∆ converter, performing a lock-in operation
with modulated sources. The FET detector is integrated with an on-chip antenna operating in the
frequency range of 325–375 GHz and compliant with all process design rules. The cascade of the FET
THz detector and readout chain is evaluated in terms of responsivity and Noise Equivalent Power
(NEP) measurements. The measured readout input-referred noise of 1.6 µVrms allows preserving
the FET detector sensitivity by achieving a minimum NEP of 376 pW/

√
Hz in the optimum bias

condition, while directly providing a digital output. The integrated readout chain features 65-dB
peak-SNR and 80-µW power consumption from a 1.8-V supply. The area of the antenna-coupled
FET detector and the readout chain fits a pixel pitch of 455 µm, which is suitable for pixel array
implementation. The proposed THz pixel has been successfully applied for imaging of concealed
objects in a paper envelope under continuous-wave illumination.

Keywords: readout circuit; field-effect transistor (FET); terahertz imaging; direct detectors;
incremental ADC; flicker noise; lock-in; chopper; parametric amplifier

1. Introduction

Recent advancement in THz technology for developing imaging systems has drawn a great deal
of attention [1,2]. Imaging at THz frequencies provides many interesting and peculiar properties,
such as the non-ionizing nature and the low photon energy of the radiation, making it an inherently
safe technology, a relatively high resolution (with respect to microwaves) and, lastly, the capability
of penetrating several materials such as clothes, plastics and paper. Accordingly, THz radiation
holds great promise for a vast variety of commercial applications ranging from security screening of
concealed threats [3] to biomedical diagnosis [4] and from food inspection [5] and quality control [6] to
non-destructive material testing [7].

Therefore, the recent research was devoted to the development of efficient detectors that
could achieve a room-temperature performance comparable to commercially available detectors
and compatible with industrial CMOS technologies. THz direct detectors were prominent, since they
have successfully demonstrated adequate detection performance and modest sensitivity without
using heterodyne techniques that require a complex experimental setup [8]. Among the good
candidates of THz direct detectors, microbolometers [9], Schottky Barrier Diodes (SBDs) [10] and
Field-Effect Transistors (FETs) [11] have been customized to build THz Focal Plane Arrays (FPAs) for
imaging applications.
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Typically, microbolometers require specialized process technologies, such as a post-CMOS
micromachining, or above-IC wafer processing to make them compatible with CMOS technologies.
Moreover, they need to operate in a particular environment (e.g., vacuum packaging) to achieve
their typical sensitivity, which dramatically increases the fabrication complexity and cost. On the
other hand, CMOS-based THz detectors such as SBDs and FETs are more suitable for cost-effective,
video-rate imaging, thanks to CMOS technology that facilitates system-on-chip solutions through
a standard fabrication process with high integration capabilities. SBDs were originally used for
microwave detection, because of their high sensitivity and their ability to operate at ambient or
cryogenic temperatures. However, they still have the issues of non-availability as a standard cell in
CMOS and the need to bias them with a current, which directly increases the 1/f noise. In addition,
their fabrication process still suffers from significant performance fluctuations when realized in large
imaging arrays [12]. Instead, FETs have the advantage that they are not limited by their cut-off
frequency as in SBDs due to the plasmonic behavior that takes place inside the transistor’s channel
enabling the THz detection.

The major challenges for FET-based THz detectors are related to the low detected signal intensity,
which is of the order of a few tens of microvolts with a limited bandwidth, since the frame rate
goes from several tens of Hz to a few kHz in the case of THz imaging applications. With this signal
characteristic, the low-frequency flicker noise and the DC-offset severely influence the FET detector
sensitivity and therefore degrade the dynamic range of the imaging system. However, this can be
addressed by amplifying the weak FET signal, while suppressing the flicker noise and the DC-offset
and, hence, achieving a high Signal-to-Noise Ratio (SNR) within the detector’s signal bandwidth.

A standard technique to reduce the noise level consists of externally interfacing the FET detector
with a lock-in amplifier for measuring its weak DC voltage signal. However, this technique is not a
feasible approach for simultaneous readout of multi-pixel FET detector arrays with pixels acquiring
instantaneously the signal at the kHz-frame rate. Instead, a CMOS-based readout interface can be
potentially integrated inside the pixel for performing the signal amplification and filtering.

In the literature, several approaches for the readout interface have been presented, attempting
to enhance FET detector sensitivity. In [13], a 3 × 5 FPA for imaging at 650 GHz has been presented,
with a readout circuit realizing a differential amplifier, which was a source of significant noise and
therefore degraded the system performance. Moreover, THz characterization of such an FPA is still
dependent on the lock-in technique to obtain raster-scanned THz images with very slow frame rates.
The work in [14] presented an architecture for a FET-based 1-k pixel camera for video imaging. In this
architecture, an integration capacitor of 8 pF per pixel is utilized to decrease the integrated noise by
reducing the system cut-off frequency, but still not filtering all the noise down to the signal bandwidth.
Other work in [15] efficiently addressed the noise filtering by using a demodulation chain based on
high-Q Switched-Capacitor (SC) filtering. However, the 1/f noise reduction depends on the possibility
of modulating the THz source at hundreds of kHz, which is not a cost-effective solution for THz
imaging system. A more recent work in [16] presented an FPA for imaging at 860 GHz, integrated with
a single-readout chain containing a cascade of a chopper instrumentation amplifier and a sigma-delta
ADC. Despite the achieved THz performance parameters of the imaging system, the large area of
the readout circuit makes it not be compact to be fully integrated inside each pixel for simultaneous
readout of multi-pixel imaging arrays. Moreover, the power consumption is expected to be large due
to the noise constraints with such a complex readout structure.

In this work, we present the design and complete THz characterization of a low noise readout
chain integrated with a FET THz detector, capable of preserving its minimum NEP at a low modulation
frequency (<1 kHz). The proposed design aims, in terms of size and power consumption, to constitute
a building block for a future focal-plane array implementation. A preliminary characterization of
the proposed structure was previously presented in [17,18]. In Section 2, the design considerations
for the FET THz detector are explained. Section 3 describes the architecture and circuit design of the
proposed readout chain. Section 4 presents the implementation of the THz pixel structure. Moreover,



Sensors 2018, 18, 1867 3 of 18

the THz characterization and imaging setups along with the experimental results are discussed. Lastly,
Section 5 presents the conclusions of the work.

2. Antenna-Coupled FET Detector

2.1. FET-Based THz Detector

The FET THz detection mechanism has been clarified by plasma wave theory, in which
the transistor channel is modeled as an electron gas with a hydrodynamic behavior [19]. Then,
the distributed resistive self-mixing theory [20] modeled the transistor channel as a Non-Quasi-Static
(NQS) R-C ladder network in a more circuit-focused understanding. In both theories, the FET transistor
performs a self-modulation, therefore rectifying the incident THz radiation induced by the integrated
antenna into a DC signal at its drain terminal. A DC gate bias voltage is also provided to control the
modulation inside the transistor channel.

The FET detector performance is mainly described by two key indicators, which can be clarified
by Figure 1. First is the detector responsivity (RV , V/W), which is essentially dependent on the power
coupling efficiency from the integrated antenna, as well as the antenna-detector impedance-matching
condition. Both are highly related to the effects of parasitic elements between the gate and the drain
under certain gate bias voltage. It is observed in [21] that, by designing the FET with minimum
dimensions and tuning its gate voltage to reach an optimum bias point, a considerable improvement
in the responsivity can be achieved at the proper impedance matching. Figure 2 shows the FET input
impedance as a function of the gate bias voltage. The FET impedance has been calculated as described
in [22], according to the process model parameters in the chosen CMOS technology at 325 GHz. While
it is true that Rds decreases with high Vgs, the real part of the FET impedance increases with Vgs

according to the given model because it is based on a combination of parallel/series connections and it
does not necessarily have the same behavior as Rds, as shown in [16].

Figure 1. FET-based THz detector model.

Figure 2. Simulated FET input impedance versus the gate bias voltage at 325 GHz.

Next, the Noise Equivalent Power (NEP, W/
√

Hz), which evaluates the FET detector sensitivity,
is defined as the ratio between the FET’s output noise voltage spectral density (V/

√
Hz) and the
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voltage responsivity RV . In a cold-biased configuration, the FET’s drain current ID is nearly negligible,
and thus, the flicker noise has no relevant influence on the detector sensitivity. Thus, the FET noise
contribution is mainly due to the thermal noise voltage of the channel resistance Rds as expressed by:

Vn =
√

4kBTRds∆ f (1)

where kB is the Boltzmann constant, T is the temperature and ∆f is the detector’s noise bandwidth.
At optimum gate bias voltage, a minimum NEP can be achieved. Based on the chosen CMOS process,
we anticipate that a transistor with minimum feature size (W/L = 0.32 µm/0.15 µm) gives a minimum
NEP at Vgs = 300 mV. Therefore, the channel resistance Rds = 800 kΩ at this bias point introduces a
thermal noise voltage of 3.64 µVrms for a detector noise bandwidth of 1 kHz. Therefore, the integrated
readout chain must be designed with the input referred noise specification well below this value to
maintain the FET detector sensitivity.

2.2. On-Chip Bow-Tie Antenna Design

A differential bow-tie antenna has been designed to operate in the frequency range of 325–375 GHz
according to the methodology described in [23]. Figure 3 describes the antenna structure with the
metal stack of the CMOS technology. The antenna cell dimensions are 455 × 320 µm2. The adopted
CMOS process provides six metal layers, with a thick metal option, sandwiched between layers of
a dielectric with a relative permittivity (εr) of 4.1. The bow-tie is built by the top thick metal layer
(MT), while the bottom layer M1 is utilized as a ground plane in order to shield the substrate and
avoid the losses caused by the surface waves. The dielectric height from the ground plane to the
bow-tie is approximately 7 µm. The remaining layers (M2–M6) are utilized as square dummy patches
to achieve the required metal density in order to meet the process design rules of CMOS technology.
Furthermore, the top thick metal layer (MT) is compliant with the foundry rules without any dummy
because of antenna arms. The gate and source terminals of the FET detector are directly connected
to the differential antenna through stacked metal vias. The antenna performance has been validated
through CST Microwave studio EM simulations. In order to transfer the maximum power, the antenna
impedance and the FET impedance have to be a complex conjugate pair. The antenna impedance
(ZANT) versus the signal frequency is plotted in Figure 4a, indicating ZANT = (146 + 497j) Ω at a
frequency of 325 GHz. As is visible in Figure 4b, the radiation efficiency is in the range of 26–33% from
325 to 375 GHz with a range of directivity of 4.5–5.1 dBi. In fact, the obtained efficiency is low due
to the thin dielectric layer between the bow-tie and the ground plane, in addition to the conductor
and dielectric losses at this frequency range. However, we do not expect sidelobes due to the surface
waves thanks to the reflector.

Figure 3. Design of the differential bow-tie antenna in the adopted 150-nm CMOS technology.
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Figure 4. Simulation results of the bow-tie antenna: antenna impedance (a); antenna radiation efficiency
and directivity (b).

3. THz Readout Chain Design

Figure 5 illustrates the block diagram of the FET THz detector circuit integrated with the readout
chain. The FET THz detector is realized by two NMOS transistors in a gate-driven configuration: One
of them is connected to the integrated antenna, acting as an active FET THz detector. The second
NMOS is acting as a blind detector, providing a reference voltage for offset compensation of the
differential input pair, and thus, only the voltage difference between the two detectors is amplified.
The two detectors are provided with the same gate bias voltage. The integrated readout chain is
composed of a cascade of a preamplification and noise reduction stage based on a parametric chopper
amplifier and a direct analog-to-digital conversion by means of an incremental Σ∆ converter followed
by a decimation stage that provides a 12-bit digital output as a measure of the intensity of the rectified
FET signal.

Figure 5. Block diagram of the proposed THz detector and readout structure.

3.1. Parametric Chopper Amplification

The operation principle of the parametric amplifier is schematically clarified in Figure 6.
The parametric amplifier operates in a discrete-time mode, containing two sampling switches followed
by two MOS varactors [24]. The amplification process has the advantage of being noise-free with
low power consumption [25]. The obtained gain is basically given as the ratio of the small-signal
gate capacitances of the MOS varactors through alternating the signals Clks and Clkboost in two
non-overlapped clock phases. The parametric amplifier is enclosed by the chopper modulators
that operate at a frequency of fch, which is half of the operating frequency of the parametric amplifier.
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Therefore, they eliminate the 1/f noise from the signal path simultaneously along with reducing the
thermal noise during the sampling and the boost phases of the parametric amplifier.

Figure 6. 1/f noise and offset cancellation by using the parametric chopper amplifier.

The value of the passive gain is approximately 2–3, reducing the overall input referred thermal
noise contribution of the readout chain. Figure 7 shows the simulations of the gain and noise of the
chopper parametric amplifier, performed by Parametric Steady-State, AC and Noise (PSS/PAC and
PNOISE) analyses. The simulations show a negligible noise contribution of 9 nV/

√
Hz dominated

by only thermal noise with a passive voltage gain of 2.3 at a chopping frequency of 100 kHz. Three
choppers are placed around the parametric amplifier and the transconductors in the feed-forward and
feedback paths to reduce 1/f noise and the DC-offset. Only the feed-forward path is considered in
Figure 6 for clarification. The first chopper at the input modulates the FET signal, which is located at
the source modulation frequency fmod, to the odd harmonics of the chopping frequency fch. Then, the
modulated signal together with 1/f noise and the DC-offset are amplified by a certain gain provided
by the loop filter (Gm stages with the Miller integrator) of the incremental ADC. Afterwards, the last
chopper at the transconductor output demodulates the signal back to fmod and shifts the 1/f noise and
the offset to the odd harmonics of chopping frequency, such that they will be filtered out by the loop
filter. All the switches in the chopper modulators are implemented with a complementary transmission
gate with minimum transistor dimensions, to reduce the chopper spikes caused by the charge injection
during the switching between the two clock phases.

Figure 7. Gain and noise simulation results of the parametric amplifier at a chopping frequency of 100 kHz.
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3.2. Continuous-Time Incremental Conversion

Incremental sigma-delta (Σ∆) Analog-to-Digital Converters (ADCs) benefit from the oversampling
and noise shaping techniques with relaxed matching requirements similar to traditional Σ∆ ADCs [26].
The incremental Σ∆ operation offers the advantage of simultaneously integrating the rectified FET
signal and averaging the detector noise, providing a one-to-one mapping between the FET signal and
the digital output at each conversion cycle [27].

In this design, a first order modulator structure is realized, since it offers a medium resolution
(i.e., more than 10 bits) that fulfills the requirements of THz imaging applications, without increasing
the complexity in both the loop filter and the decimator [28]. A Continuous-Time (CT) loop filter
based on a Gm-C structure has been implemented, since it relaxes the settling and bandwidth
requirements when compared to the switched-capacitor counterpart, and hence, it achieves lower
power consumption [29]. The operating principle of the readout chain is described in the conceptual
timing diagram of Figure 8. The CT loop filter and the decimator are reset at the beginning of each
conversion cycle (Tconv). Then, the slowly varying FET voltage signal (VFET) is continuously integrated
and sampled for an integration period of Tint = 2n Tqnz, where n is the converter resolution and Tqnz is
the sampling period. In each period of Tqnz, the integrator output voltage is compared to the quantizer
threshold and a decision is made. Next, depending on the quantizer decision, the voltage DAC feeds
back either a +VREF or a −VREF signal to the input of the feedback transconductor; accordingly, the
up-down digital counter, which is realized as a decimator, will either increment or decrement its value.
At the end of Tconv, the integrator output voltage can be described by:

Vint =
Gmin

Cint
Tqnz

[
2nVFET −

Gm f b

Gmin

(Nup − Ndown)VREF

]
(2)

where Cint = C1 + C2, Gmin and Gm f b are the integrating capacitor and effective transconductance
values in the feed-forward and feedback paths, respectively. Nup and Ndown are the number of
subtractions and additions of VREF respectively. The Least Significant Bit (LSB) resolution is thus
defined by VREF scaled by both of the transconductance values in the feed-forward and feedback
paths, as well as the number of clock cycles per one conversion as given by:

VLSB =

(
Gmin

Gm f b

)(
VREF

2n

)
(3)

Figure 8. Timing diagram of the THz readout chain.
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Finally, the digital counter value is extracted by a parallel-to-serial shift register and a new
conversion cycle begins with cleared counter. The digital modulator is realized between the quantizer
and the counter and operates at the same frequency of the source fmod, thus, enabling the measurement
of the pixel output in both conditions (source on/source off) so as to calculate the difference between
them, similar to the lock-in technique. Figure 9 shows the schematic of the implemented decimator.

Figure 9. Schematic of the implemented decimator.

The transconductors (Gm stages), depicted in Figure 10a, are designed using a pseudo-differential
source degeneration topology with resistors acting as transconducting elements [30]. In principle,
the follower transistors (M1–M2) transfer the input voltage to the resistor, consequently improving the
linearity in the V-I conversion. Then, the current mirrors (M3–M6) transfer the currents to the outputs.
Therefore, the effective Gm value will be approximately equal to 1/R. PMOS transistors operating in
weak inversion were used for the input differential pair due to their lower 1/f noise contribution and
to satisfy the input common-mode specification for the FET voltage signals. All the other transistors
are sized to have a large length and operated in strong inversion such that the noise should be only
dominated by the input pair.

The output currents from the Gm stages are added/subtracted and then injected into a Miller
integrator [31], so that the effect of finite output impedance at the transconductors’ outputs is reduced.
The amplifier employed in the Miller integrator is composed of a current buffer common-gate input
followed by a common-source stage as visible in Figure 10b. The bias current in the Gm stages and the
Miller integrator, which sets the noise floor of the incremental ADC, is 4 µA, resulting in a total current
dissipated in the incremental loop filter of 24 µA.

Figure 10. Schematic of the pseudo-differential Gm-C loop filter: (a) transconductor; and (b) the
amplifier used in the Miller integrator.
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Figure 11 shows the schematic of the implemented single-bit quantizer. It is based on the structure
presented in [32], containing a pre-amplifier stage to avoid the kick-back noise, followed by a positive
feedback latched comparator. The implemented comparator is designed with minimum transistor
size, except for the bias transistor Mtail , which was scaled with respect to a current mirror-based bias
circuit. Transient simulations were performed to scale the coefficients of the CT loop transfer function
and guarantee that the integrator outputs are within a proper bound (i.e., ±VREF). The integrating
capacitors are sized to be 800 fF, while the Gm values in the feed-forward and feedback paths are scaled
to be 130.33 µS and 3.33 µS, equivalent to degeneration resistors of 7.5 kΩ and 300 kΩ, respectively.
The loop filter can provide an amplification for the integrated FET signal by a voltage gain that can be
evaluated as,

Gain =

(
2Gmin

Cint

)
TConv (4)

Figure 11. Schematic of the implemented single-bit quantizer.

According to [33], the chopping frequency is chosen to be: (i) several times greater than the
1/f noise corner (which is around 10 kHz from the noise simulation), to effectively eliminate the
flicker noise; and (ii) below the bandwidth of the loop filter in order to suppress the chopper spikes.
The integrating capacitors are utilized as Metal-Insulator-Metal (MIM) capacitors, while high-resistivity
polysilicon is used for realizing the degeneration resistors.

4. THz Characterization and Measurements

The design has been fabricated in a 150-nm standard CMOS technology. A micrograph of the
pixel structure is shown in Figure 12 with an inset demonstrating the detailed layout of different
blocks of the readout chain realized in a total area of 90 × 300 µm2. Two identical readout circuits are
implemented: one of them is integrated with the antenna-coupled FET THz detector, and the other is
for the purpose of performing an electrical test for the readout circuit operation.
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Figure 12. Micrograph of the fabricated THz pixel structure.

4.1. Electrical Measurements of the Readout Chain

The measurement of the input-referred noise power is performed in three different configurations
of the THz readout chain as presented in Figure 13a. The noise measurements were acquired at the CT
loop filter output, while the differential input pins are shorted to ground. Then, it is divided by the
total closed-loop gain in order to be referred to the input of the readout chain. The noise measurements
are obtained at a chopping frequency of 100 kHz to effectively eliminate the 1/f noise and the DC-offset
in the signal bandwidth.

It can be seen that the flicker noise is dominant at low frequency when the choppers are not
active. In the case of bypassing the parametric amplifier and only using the conventional chopper
technique, the flicker noise is effectively reduced, and only the thermal noise remains in the signal
bandwidth. The input noise spectrum density averages around −139 dB/Hz at lower frequencies.
However, when a passive gain of 2–3 is provided by the parametric amplifier at the beginning of the
readout chain, the thermal noise is further reduced by more than 6 dB. The measured input noise
remains around −146 dB/Hz, which corresponds to a total integrated noise of 1.6 µVrms over a 1-kHz
bandwidth. By comparing this measured value to the intrinsic noise originated by the FET detector,
which is around 3.64 µVrms, the readout can efficiently preserve the minimum NEP of the FET detector
that is only limited by its thermal noise voltage of the channel resistance. Figure 13b demonstrates the
simulation of the total input noise power of the readout chain: when no noise reduction technique is
applied and when the chopper parametric amplifier is operating at a chopping frequency of 100 kHz,
showing a good agreement with the measurement results.

To validate the performance of the incremental sigma-delta converter, a small amplitude 500-Hz
sine wave has been injected into the readout chain. A Fast Fourier Transform (FFT) has been performed
on the quantizer output by using a broadband oscilloscope. Figure 14a shows the measured graph
of the output signal Power Spectral Density (PSD) showing a first order quantization noise shaping
with an oversampling rate of 500, which is in a good agreement with the simulated one. Moreover,
the output noise power spectral density is presented in Figure 14b. The measured SNR is 65 dB,
which is equivalent to be 10.6 effective number of bits (ENOB), evaluated as [26]:

ENOB = log2

(
2Vin,max

VLSB

)
(5)

where Vin,max is the maximum input voltage. The sampling rate of the incremental converter is set as a
tradeoff between the bandwidth of the CT loop filter and the desired resolution, which depends on the
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number of clock cycles. Since the FET-detected signals have a maximum bandwidth of 1 kHz, a high
sampling rate is not necessary. Therefore, the quantizer is designed to operate with a sampling frequency
of 1 MHz to achieve an Oversampling Ratio (OSR) of 500 for the incremental conversion operation.

Figure 13. (a) Measured input noise power: without noise reduction (black), with the conventional
chopper technique (red) and with the proposed parametric chopper amplification (blue), chopping
f = 100 kHz; and (b) simulation of the input noise power of the readout chain: without noise reduction
(black) and with the chopper parametric amplifier (red).

Figure 14. Simulated and measured output signal PSD of the incremental sigma-delta converter tested
with an input sinusoidal tone at 500 Hz and sampling rate 1 MHz (a); and noise PSD measured with
shorted input to ground (b).

4.2. THz Experimental Setup

The experimental setup utilized to characterize the FET detector and the readout chain is
illustrated in Figure 15. A Continuous-Wave (CW) frequency synthesizer with a multiplier chain was
used as the THz source to generate a signal with frequencies between 265 and 375 GHz. Afterward,
the generated signal was transmitted into free space through a horn antenna. A Zeonex lens, with a
focal length of 5 cm, was used to focus the THz beam on the chip. The amplitude of THz signal was
electrically modulated at different frequencies by using a function generator.

A control and acquisition board was used to generate the necessary control waveforms and to
obtain the measured responses from the readout chain. In addition, a User-Controlled Attenuation
(UCA) switch performed background noise subtraction measurements, hence removing any coupling
or interference in the setup. According to the measurement methodology described in [34],
the impinging input power received by the FET detector was measured by obtaining the impinging
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power density of a pyroelectric device as a reference detector with known characteristics. Then, it was
multiplied by the antenna effective area Ae f f , as evaluated by:

Ae f f =
Dλ2

4π
(6)

where D is the antenna directivity and λ is the wavelength of the THz signal. The impinging power
delivered to the FET detector was estimated as:

PFET =

(
VPyro

Rpyro

)(
Ae f f

APyro

)
(7)

where APyro, VPyro and Rpyro are the pyroelectric sensitive area, the measured pyroelectric voltage
response and its responsivity, respectively.

Figure 15. Block diagram of the THz characterization setup.

4.3. Antenna-Coupled FET Detector Measurements

Initially, the performance of a standalone antenna-coupled FET THz detector was evaluated
through a lock-in amplifier with sensitivity and time constant of 500 µV and 200 ms, respectively.
The FET voltage responsivity was evaluated as the measured FET voltage response VFET normalized
by the impinging power PFET . By sweeping the gate bias from the sub-threshold to a strong inversion
region, as is visible in Figure 16a, the FET detector achieved a peak responsivity of 318 V/W at a
gate bias voltage of about 0.3 V; while it decreased towards both: (i) the strong inversion region,
since the Rds was reduced, and thus, the output voltage drop across it decreases, as well, and (ii) the
sub-threshold, due to the lowering of the cutoff frequency of the FET-lock-in interface well- below the
source modulation frequency [35,36]. The FET detector output noise voltage spectrum density was
measured around 115 nV/

√
Hz, which was equivalent to the thermal noise contribution originated

from the measured FET channel resistance Rds = 800 kΩ at a gate bias voltage of 0.3 V, as shown in
Figure 17. Then, NEP can be estimated by dividing the measured thermal noise voltage by the FET
responsivity, that is,

NEP =

√
4kBTRds

RV
(8)

Correspondingly, a minimum NEP of 281 pW/
√

Hz was obtained at the same gate bias point of
0.3 V. Figure 16b shows the frequency sweep analysis for the FET responsivity with an inset illustrating
the THz beam spot sensed by the FET detector. The beam spot was acquired on an X-Y transverse
plane to the optical axis by scanning the test chip in 0.4-mm steps using a stepper motor. It is also
possible to notice that the FET detector responsivity is above 200 V/W from 355–375 GHz with a peak
value of 318 V/W near 365 GHz.
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Figure 16. Measured FET voltage responsivity and Noise Equivalent Power (NEP) versus gate bias
voltage (a); and measured FET voltage responsivity versus signal frequency (b).

Figure 17. Simulated and measured FET detector noise voltage spectral density versus frequency.

4.4. Readout Responsivity and NEP Measurements

Measurements of responsivity and NEP for the FET THz detector were eventually acquired
through the implemented readout chain, in place of the external lock-in amplifier. The measurements
were performed by modulating the THz source and the digital modulator (see Figure 5) at three
different frequencies within the range of the FET detector bandwidth of 1 kHz.

Thanks to the digital modulator, the recorded digital response was the net value of the difference
between the two states of the modulating signal waveform (while the THz signal was present and
while there was no THz signal), such that it could perform the lock-in function. The voltage response
of the FET detector was recorded as 12-bit digital code through the shift register output per each
conversion cycle. The integration time of the readout chain was correlated to the modulation frequency
of the FET signals (<1 kHz), which was typically in the range of 1–10 ms. The measured responsivity as
a function of gate bias voltage is presented in Figure 18a at different modulation frequencies, showing
a peak response near a 0.3-V gate bias voltage.

Since the readout directly converts the FET response to a digital output without any representative
voltage except the detector’s, we need to rewrite the responsivity, which then would not be comparable
to RV of course, but the NEP still gave a metric for comparison because it was input-referred.
The responsivity was expressed as a digital number per unit of impinging power (DN/W) instead of
(V/W), as given by:

Rdig =
DN
PFET

(9)

Similarly, Figure 18b shows the responsivity as a function of signal frequency, exhibiting peak
values near 365 GHz. NEP curves in Figure 19 were measured by calculating the standard deviation of



Sensors 2018, 18, 1867 14 of 18

several acquired digital outputs δDN , i.e., the RMS of the output code of each conversion cycle, divided
by the measured responsivity acquired at a signal frequency of 365 GHz. Then, it was divided by the
square root of the FET bandwidth (e.g., fmod), as given by:

NEP =
δDN

Rdig
√

fmod
(10)

Figure 18. Readout responsivity as a function of FET gate bias voltage (a) and signal frequency (b).

The minimum NEP value of 376 pW/
√

Hz was obtained at a gate bias voltage of 0.3 V and a
modulation frequency of 130 Hz. The measured NEP was only due to the thermal noise contribution of
the FET detector without being influenced by the readout noise, since the measured input noise power
was significantly below the FET thermal noise. However, due to the fact that the dummy FET detector
contributes to the thermal noise voltage by its channel resistance, the obtained NEP by the readout
chain was approximately

√
2-times higher than the measured NEP of a single FET detector. The NEP

of both active and dummy FETs is visible in the dashed line in Figure 19, exhibiting a good match with
the readout measurements. It can be seen that the total NEP (FETs + readout) was generating less noise
than FETs only at a lower gate voltage due to the fact that the responsivity of the detector alone was
lower in that range due to the RC time constant (e.g., the connection to the instrumentation), which
was not present with the readout chain.

Figure 19. NEP as a function of FET gate bias voltage (measured at 365 GHz).

4.5. THz Imaging

The optical experimental setup used for performing THz imaging acquisition is presented in
Figure 20. The image object was vertically positioned in the focal point between two Zeonex lenses,
such that the THz beam was focused on the object by the first lens and collimated by the second lens
and then refocused on the test chip. Since our sensor contains only a single pixel, mechanical scanning
was required to obtain a wide field of view. A stepper motor stage was used to scan the objects in
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the vertical and horizontal directions by a step size of 0.4 mm. Metallic and plastic objects concealed
inside a paper envelope were mechanically scanned and captured in transmission mode at 365 GHz
and a modulation frequency of 130 Hz. As shown in Figure 21, the scanned images clearly resolve the
structural details of the objects such as screws, a SIM card, a nut and a metallic ring. The scanned area
is 20 × 20 mm2 with a total resolution of 50 × 50 pixels.

Figure 20. Block diagram of the THz imaging setup.

Figure 21. THz images of different metallic/plastic objects hidden inside a paper envelope acquired at
365 GHz (source modulation f = 130 Hz) along with the photographs of the objects.

The total acquisition time of each image was around 3.5 h, due to the limited speed of the stepper
motors, which was essentially dominated by the actuator’s speed, while the effective acquisition time
amounted to just several seconds. The background interference pattern appearing in the images was
produced by the standing waves inside the paper envelope. In comparison with the conventional
lock-in technique, typically the lock-in amplifier required an integration time in the range of 200–500 ms
in order to achieve similar signal quality, while the proposed readout chain acquires the data of each
pixel during an integration period in the range of 1–10 ms, depending on the applied modulation
frequency. This is regardless of the time consumed by the stepper motors to move between different
pixels. The overall performance of the presented THz pixel structure is summarized in Table 1 and
compared to the recently-reported state of the art. The proposed THz pixel features: (1) a first order
incremental ADC that is compact in terms of area and power and can be fully integrated inside the
THz pixel, providing simultaneous integration and readout; (2) suitable for pixels also with smaller
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antennas (e.g., 800 GHz); (3) it does not require sources with a high modulation frequency, so that the
cost of the THz imaging system could be significantly reduced; (4) a direct conversion to the digital
domain, which means robust and easy signal management. (5) Low input-referred noise.

Table 1. Performance comparison with the recently reported state of the art.

This Work T-TST’17 [16] Sensor’16 [15] JSSC’12 [14] JSSC’09 [13]

Process 0.15 µm 0.18 µm 0.13 µm 65 nm 0.25 µm
Input-Referred Noise 1.6 µVrms 2.03 µVrms 0.2 µVrms 2.45 µVrms -
Power Consumption 80 µW - 320 µW 2.5 µW 5.5 mW

Source Frequency 325–375 GHz 860 GHz 270 GHz 856 GHz 650 GHz
Modulation Frequency 10 Hz–1 kHz 177 Hz 156 kHz 5 kHz 30 kHz

On-chip Antenna Bow-tie antenna Patch antenna Bow-tie antenna Ring antenna Patch antenna
Pixel Size 455 × 455 µm2 1330 × 440 µm2 240 × 240 µm2 80 × 80 µm2 200 × 150 µm2

Maximum Responsivity 783 DN/µW 3.3 kV/W 300 kV/W 140 kV/W 80 kV/W
Minimum NEP 376 pW/

√
Hz 106 pW/

√
Hz 533 pW 12 nW 300 pW/

√
Hz

@130 Hz @177 Hz @156 kHz @500 kHz @30 kHz

5. Conclusions

In this paper, a noise efficient readout chain integrated with an antenna-coupled FET THz
detector has been developed in 150-nm CMOS technology. The electrical measurements and THz
characterization demonstrate the performance of the readout chain, which effectively performs the
function of integrated lock-in amplification with a direct digital output. Owing to the in-pixel
parametric chopper technique and the anti-aliasing filtering of the incremental conversion loop,
the flicker noise and the DC-offset are effectively eliminated without modulating the THz source at high
frequencies. The integrated readout noise of 1.6 µVrms over a 1-kHz bandwidth resulted in a peak-SNR
of 65 dB, sufficient for obtaining a good signal quality for THz imaging applications. The detection
behavior of the FET detector with the readout chain has shown a good sensitivity with a minimum NEP
value of 376 pW/

√
Hz at 365 GHz, while providing a direct digital responsivity. Moreover, the acquired

THz images through the readout chain with its compact pixel size of 455× 455 µm2 and the low power
consumption of 80 µW have demonstrated good performance as detectors in THz imaging.
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