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Abstract: This paper tackles the problem of sensing coverage for multiple Unmanned Aerial Vehicles
(UAVs) with an approach that takes into account the reciprocal between neighboring UAVs to reduce
the oscillation of their trajectories. The proposed reciprocal decision approach, which is performed in
three steps, is self-organized, distributed and autonomous. First, in contrast to the traditional method
modeled and optimized in configuration space, the sensing coverage problem is directly presented
as an optimal reciprocal coverage velocity (ORCV) in velocity space that is concise and effective.
Second, the ORCV is determined by adjusting the action velocity out of weak coverage velocity
relative to neighboring UAVs to demonstrate that the ORCV supports a collision-avoiding assembly.
Third, a corresponding random probability method is proposed for determining the optimal velocity
in the ORCV. The results from the simulation indicate that the proposed method has a high coverage
rate, rapid convergence rate and low deadweight loss. In addition, for up to 103-size UAVs, the
proposed method has excellent scalability and collision-avoiding ability.

Keywords: sensing coverage; Unmanned Aerial Vehicles; cooperative motion; decentralized decision;
swarm intelligence

1. Introduction

Sensing coverage with a UAV swarm is an important issue of how to cover an accessible region
of interest (ROI) by multiple UAVs with specified sensors in an optimal manner, i.e., achieving
the optimal performance including low coverage time, high coverage rate and so on. It has
multifarious applications, for instance, mapping, search and rescue, forest fire monitoring and fighting,
flood and earthquake response. Though ROI may vary in shape, size and may be cluttered with
obstacles, sensing coverage mainly includes the following series of technical processes after obtaining
surrounding information. First, the area is divided by using some diverse area decomposition method,
after which the UAV makes an action decision [1,2]. Next, the UAV conducts task planning and path
planning [3,4]. Last, the plan is executed by the UAV’s controller and actuator [5]. Among these
technical processes, area decomposition and action decision are the most fundamental and vital;
however, they are coverage decision problems in nature.

Earlier works on the coverage decision problem focused on the methods by which a single UAV
covers the ROI, such as sweep manner [6,7], area decomposition [8,9] and process occasion [10].
Subsequently, researchers focused on multi-UAV cooperating coverage because of its better coverage
performance than the single-UAV mode. Two methods of multi-UAV cooperating coverage are used:
centralized decision and distributed decision. The former method can achieve optimal deployment
and action of the UAVs based on global information; however, the expandability is limited by its
exponentially increasing computation [11,12]. The latter method has more flexibility and scalability
suitable for various situations since it may be difficult to achieve optimal coverage [13–15]. For the
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distributed decision, the emergence of collective behavior by simple UAVs’ interaction with local
information that is self-organized, decentralized and autonomous has drawn greater attention in
recent years [16]. As a result, with the development of swarm intelligence, many programs have
been launched, such as SAGA, Project Wing, LOCUST, OFFSET, and Perdix, implementing the
“swarm sprint”.

The various methods for swarm coverage can be primarily categorized into two strategies:
partition-decision and combined-decision. Partition-decision partitions the area and then makes a
decision based on the partition, whereas combined-decision makes a decision without a partition.
The former strategy includes many partition methods, such as Voronoi decomposition [17],
Boustrophedon decomposition [18], and Constrained Delaunay Triangulation [19], of which Voronoi
decomposition, denoted as the V-based method, is the most popular method. For example, the authors
in [20–23] applied the V-based method to divide the total area into several cells; subsequently, the UAVs
optimized their decision based on the decomposed cells. V-based methods use the neighboring UAVs’
local positions to optimize the coverage decision but ignore the interaction between UAVs, possibly
leading to oscillation or collision. Combined-decision includes the potential fields method, the neural
network method, the heuristic method and the Virtual Forces algorithm. The potential fields method
was used in [24]; in this method, UAVs are treated as virtual particles attracted to each other and
repelled by obstacles to spread throughout the unknown environment. The neural network method
in [25,26] uses a neural network to model the workspace, with robots navigating using the neural
dynamics approach. The heuristic method in [27] computes the suitable placement of UAVs locally
to maximize area coverage. The Virtual Forces algorithm in [28–30] is proposed for wireless mobile
robots, which places emphasis on the biconnectivity with overlap region. Most methods are optimized
in configuration space for the generated decision without considering the reciprocal of UAVs. And
the optimal parameters of some models are difficult to be obtained through repeated experiments
in heterogeneous swarm, especially in multi-UAVs swarm where each UAV’s sensing capability is
changing with its flight height.

In this paper, a self-organized reciprocal decision approach for sensing coverage with multi-UAV
swarms is proposed, whose modeling and optimization are performed in velocity space directly
with no need for determining optimal parameters through repeated experiments. First, the coverage
problem is directly modeled as a decision problem in velocity space because it is more flexible,
scalable and immediate than modeling in configuration space. Second, the optimal reciprocal
coverage-beneficial velocity (ORCV) space is determined by adjusting the action velocity out of
weak coverage velocity relative to the neighboring UAVs. Moreover, it is proven that the ORCV
contains the collision-avoiding assembly. Third, inspired by the Monte Carlo method, a random
probability method is proposed for determining the optimal velocity in ORCV to significantly improve
the effectiveness and flexibility relative to the traditional solution involving deterministic searching.
During the interaction among UAVs, the covered area increases until it converges to an extremal
solution. Finally, compared with two significant methods, the simulation experiments results indicate
that the proposed method has higher coverage rate, faster convergence rate, and less deadweight loss
than the V-based and VFA methods. In addition, for up to 103-size UAVs, the proposed method is
found to have excellent scalability and collision-avoiding ability. And a Robotic Operation System
(ROS) Simulation is conducted to validate the proposed method.

The article is organized as follows: in Section 2, the basic idea of swarm coverage is presented.
In Section 3, the reciprocal decision (RD) approach is presented, with the cooperative coverage between
two-UAV proposed in Section 3.1, extending to multi-UAV swarm coverage in Section 3.2, and the
constraints of avoiding collision described in Section 3.3. In Section 4, the random probability technique
is proposed to determine the optimal velocity in ORCV under two different situations. The simulation
and comparative analysis are shown in Section 5, and the conclusion follows in Section 6.



Sensors 2018, 18, 1864 3 of 22

2. Basic Idea

Swarm coverage is an essential technology aiming to cover a selected region by a fleet of UAVs.
It need a decision process that is self-organized, decentered and autonomous. Self-organization means
that the total mission is assigned to the team with no need to decompose it into a series of subtasks
and assign each UAV a specific task. Decentralization signifies the absence of a leader, with each UAV
able to join or quit the team without any influence on the completion of tasks. Autonomy indicates
that global behavior emerges naturally, though it is unknown to individual UAVs.

In general, the problem of swarm coverage is simplified to the process of designing a distributed
algorithm for the individual UAV to cooperate with other UAVs. The general procedure of each UAV
can be simply divided into three aspects—perception, decision and action—as shown in Figure 1.
The first part is acquiring the information, such as position and velocity, via sensors or communication,
which includes an UAV’s own information and that of other UAVs on factors such as static/dynamic
obstacles and neighboring UAVs. The second part is the decision, which can be divided into two
subparts: modeling and optimizing. Finally, the optimal decision will be executed by the actuator.
The process is continuously repeated.
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The decision part is the core of the aforementioned technique, and the present work focuses
on this aspect. The reciprocal coverage method is designed to model the swarm coverage
problem as the distributed optimization in velocity space by constructing the optimal region that
is coverage-beneficial and collision-free. Moreover, an optimization technique is proposed to select
the optimal velocity in ORCV. The processes of modeling and optimizing are presented in detail in
Sections 3 and 4, respectively.

3. Reciprocal Decision Approach

In this section, the reciprocal decision (RD) approach for sensing coverage, which is
coverage-beneficial and collision-free, is described in detail. Section 3.1 describes the coordination
between two UAVs; the coordination is extended to swarm cooperation in Section 3.2. Collision-free
constraints and the relevant proof are shown in Section 3.3.

3.1. Two-UAV Cooperative Coverage

The region of interest (ROI) to be covered is annotated as Ω, which is a convex compact set
in R2. A set of n UAVs share the environment, with each UAV having its shape with limited coverage.
Without loss of generality, the paper assumes for simplicity that the UAVs moving in the plane R2
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are disc shaped with radius r; the ranges of coverage and communication are discs with radius R
and CR, respectively. Moreover, each UAV A has its maximum speed vmax

A , maximum calculation
disc-range radius Rmax

A , maximum calculation neighbor UAVs nmax
A , and the predicted time interval τ.

The position of an UAV is m, and its velocity is v. The UAVs are randomly distributed in the rectangular
region Ωe with both sides being le, and all of them are initially static.

For two UAVs A and B with limited coverage ability, they are initially close to each other, and
the initial velocity vcur

A = vcur
B = 0; thus, they should move by selecting their own new velocity vnew

A
and vnew

B to maximize their own coverage, which also contributes to the total area coverage. If UAV
A adopts a relative velocity to B in the time interval τ that is against to the increase of its coverage
and the total coverage, we name this velocity “weak coverage velocity”. The set WCVτ

A|B contains all
weak coverage velocity for UAV A relative to UAV B, which will be formally defined in the following.
Let C(m, R) be an open disc of radius R centered at m:

C(m, R) = {w|‖w−m‖ < R} (1)

Thus, the weak coverage velocity set WCVτ
A|B is formally defined as follows.

WCVτ
A|B = {v|∃t ∈ [0, τ] :: tv ∈ C(mB −mA, ‖mB −mA‖)} (2)

The corresponding optimal coverage velocity set OCVτ
A|B for UAV A relative to B is defined as

follows, which is beneficial to the increase of UAV A’s coverage and the total coverage in the time
interval τ:

OCVτ
A|B =

{
v
∣∣∣v /∈WCVτ

A|B

}
(3)

The geometric interpretation of weak coverage velocity set WCVτ
A|B for UAV A is exhibited in

Figure 2; it is clear that WCVτ
A|B and WCVτ

B|A are symmetric with the origin. In Figure 2a, a visual
display of two UAVs A and B in the configuration space is shown, while UAVs A and B have different
radius of shapes (rA and rB) and communication (RA and RB), which are centered at mA and mB.
In Figure 2b, the weak coverage velocity set WCVτ

A|B (gray) for UAV A is presented in velocity space as
a circle with the disc of radius Rτ = ‖mB −mA‖/τ centered at (mB−mA)/τ, where τ is the predicted
time interval; here, τ = 1 and τ = 2. WCVLτ

A|B is a line that separates the weak coverage velocity set
WCVτ

A|B and the optimal coverage velocity set OCVτ
A|B. It is clear that an UAV is difficult to move at a

fixed velocity vB in time interval τ. Thus, if vB ∈ VB (VB is a scope that includes UAV B’s all possible
velocity vB in the time interval τ), then UAV A should select a velocity that is out of the Minkowski
sum [31] sets WCVτ

A|B ⊕VB to increase its area coverage and the total coverage, as shown in Figure 2c.
And the optimal coverage velocity OCVτ

A|B(VB) is defined as follows:

OCVτ
A|B(VB) = {v|v /∈WCVτ

A|B ⊕VB} (4)

Considering the reciprocal of UAVs, if a pair of velocity sets VA, VB for UAV A and B respectively
satisfy the constraints VA ⊆ OCVτ

A|B(VB) and VB ⊆ OCVτ
B|A(VA), then they are reciprocally

coverage-beneficial. ORCVτ
A|B and ORCVτ

B|A are the sets that are reciprocal coverage-beneficial and
maximal during the time interval τ, while they have the most velocities close to A and B’s current
velocities vcur

A and vcur
B . The sets of ORCVτ

A|B and ORCVτ
B|A are defined as follows:
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Definition 1. (optimal reciprocal coverage-beneficial velocity). A is the cardinality of the set A [32]. ORCVτ
A|B

and ORCVτ
B|A are defined as OCVτ

A|B(ORCVτ
B|A) = ORCVτ

A|B and OCVτ
B|A(ORCVτ

A|B) = ORCVτ
B|A.

For all other pairs of reciprocal coverage-beneficial velocities sets VA and VB (i.e., VA ⊆ OCVτ
A|B(VB) and

VB ⊆ OCVτ
B|A(VA)), and for all radii r, it holds that:

SA = ORCVτ
A|B ∩ C(vopt

A , r)

SB = ORCVτ
B|A ∩ C(vopt

A , r)

SA
′ = VA ∩ C(vopt

A , r)
SB
′ = VB ∩ C(vopt

B , r)

Smin = min(SA
′, SB

′)

SA = SB

SA, SB ≥ Smin

(5)

In other words, ORCVτ
A|B and ORCVτ

B|A contain the most velocities close to UAV A and B’s
current velocities vcur

A and vcur
B . The difference between the velocities and vcur

A and vcur
B is equal for A

and B. The establishment of ORCVτ
A|B and ORCVτ
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vcur
A − vcur

B ∈ WCVτ
A|B means that it will lead to the weak coverage for UAV A and B. In such

situation, if A and B adopt new velocity vnew
A and vnew

B respectively, which satisfies that vnew
A − vnew

B is



Sensors 2018, 18, 1864 6 of 22

out of WCVτ
A|B, then the total coverage area will be increased. Let u be the vector from vcur

A − vcur
B to

the closest point on the boundary of WCVτ
A|B:

u = ( argmin
v∈∂WCVτ

A|B

‖v− (vcur
A − vcur

B )‖)− (vcur
A − vcur

B ) (6)

Alternatively, let u′ be the vector from vcur
A − vcur

B to the closest point on the boundary
of WCVLτ

A|B:

u′ = ( argmin
v∈WCVLτ

A|B

‖v− (vcur
A − vcur

B )‖)− (vcur
A − vcur

B ) (7)

n is the outward normal vector of the boundary of WCVτ
A|B at point (vcur

A − vcur
B ) + u. Because u

is the smallest change required for the relative velocity of UAV A and B to avert weak coverage within
τ time and both UAVs share the responsibility of avoiding weak coverage, UAV A adapts velocity 0.5u
at least, and B is responsible for another half:

ORCVτ
A|B = {v|(v− (vcur

A +
1
2

u)) · n ≥ 0} (8)

Clearly, the set ORCVτ
B|A for B is defined symmetrically. Moreover, the above method is applicable

when vcur
A − vcur

B /∈ WCVτ
A|B, which indicates that A and B will not lead to the weak coverage if they

still adopt their current velocities vcur
A and vcur

B , respectively. However, in this situation, both UAVs can
also utilize the abovementioned method to maintain a coverage-beneficial movement.

3.2. Multi-UAV Swarm Coverage

The overall method is as follows: UAV A executes a continuous cycle of sensing and acting with
time step ∆t. In each period, UAV A acquires the coverage radius, current positions and velocities of its
neighboring UAVs and itself. Let Dmax

A be the maximal calculation distance of UAV A with respect to
its neighboring UAV. nmax

A (nmax
A ∈ N) is a positive constant of the maximum considered neighboring

number for UAV A. Hence, when any UAV B satisfies the constraints ‖mA −mB‖ ≤ Dmax
A , UAV A only

concerns its nmax
A neighboring UAV B that are closer than the others in Euclidean distance. KD-tree is

used for UAV A to search the neighboring UAVs in this paper. UAV A deduces the optimal half-plane
of velocities ORCVτ

A|B relative to neighboring UAVs B. And ORCVτ
A is a set of optimal velocity spaces

that are optimal for UAV A relative to all its nmax
A neighboring UAVs, which is the intersection of the

half-planes of optimal velocities conducted by its neighbor. UAV A is also conditioned to its own
maximum speed vmax

A . Therefore, the optimal velocity set ORCVτ
A for UAV A is defined as follows,

and its geometrical expression is shown in Figure 4:

ORCVτ
A = C(0, vmax

A ) ∩ ∩
B 6=A

ORCVτ
A|B (9)

Next, UAV A selects a new velocity vnew
A for itself that is optimal (center velocity of the optimal

space in this paper) among all velocities within the optimal velocities space:

vnew
A = argmin

v∈ORCVτ
A

‖v− vopt
A ‖ (10)

Finally, the UAV A reaches its new position:

mnew
A = mA + vnew

A ∆t (11)

Equations (9) and (10) are the critical computation of vnew
A , which can be done by linear

programing effectively. Though vnew
A is limited to the maximum velocity of UAV A, it does not

change the algorithm dramatically. ORCVτ
A is a convex region bounded by linear constraints, which
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is added by random order in the effective algorithm [33]. Therefore, the running time of algorithm
still depends on constraints’ number n, which is equal to nmax

A here. It has an expected running time
of O(n).
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A.

ORCVτ
A may be available or vacant (shown as Figure 5), which will adopt different

optimization strategies. In the Section 5, the random probability method will be utilized for searching
the optimal velocity.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 23 

  
(a) (b) 

  
(c) (d) 

Figure 5. Two situations of optimal velocity space. (a) Available situation; (b) Available space; (c) 
Vacant situation; (d) Vacant space. 

3.3. Collision-Free Constrains 

3.3.1. Collision Avoidance between UAVs 

The ORCV described by the RD method as noted above satisfies the constraints of avoiding 
collision with other UAVs, as will be proved as below. 

It is clear that UAVs A  and B  will collide within   time if UAV A  selects the velocity 
relative to B  within 

A BVO  [34] defined as follows: 

      { | [0, ] :: ( , r r )}B A A BA BVO t t Cv v m m  (7) 

Obviously, although UAVs remain in a crowded environment, they are assumed to be initially 
collision-free. Next, the UAVs can move without collision between other UAVs by employing the 
RD method. The proof is shown as follows: 

Corollary 1. For any time interval  , it holds that: 

 A B A BVO WCV
 (8) 

Proof. For any time interval  , UAV A  and B  remain in a crowded environment but without 
collision (see Figure 2a) at the beginning, which satisfies: 

    [0, ] :: r rB A A Bt m m   

Then: 

Figure 5. Two situations of optimal velocity space. (a) Available situation; (b) Available space; (c) Vacant
situation; (d) Vacant space.

3.3. Collision-Free Constrains

3.3.1. Collision Avoidance between UAVs

The ORCV described by the RD method as noted above satisfies the constraints of avoiding
collision with other UAVs, as will be proved as below.
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It is clear that UAVs A and B will collide within τ time if UAV A selects the velocity relative to B
within VOτ

A|B [34] defined as follows:

VOτ
A|B = {v|∃t ∈ [0, τ] :: tv ∈ C(mB −mA, rA + rB)} (12)

Obviously, although UAVs remain in a crowded environment, they are assumed to be initially
collision-free. Next, the UAVs can move without collision between other UAVs by employing the
RD method. The proof is shown as follows:

Corollary 1. For any time interval τ, it holds that:

VOτ
A|B ⊆WCVτ

A|B (13)

Proof. For any time interval τ, UAV A and B remain in a crowded environment but without collision
(see Figure 2a) at the beginning, which satisfies:

∀t ∈ [0, τ] :: ‖mB −mA‖ ≥ rA + rB

Then:
∀t ∈ [0, τ] :: C(mB −mA, rA + rB) ⊂ C(mB −mA, ‖mB −mA‖)

Furthermore:
VOτ

A|B = {v|∃t ∈ [0, τ] :: tv ∈ C(mB −mA, rA + rB)}

Moveover:
WCVτ

A|B = {v|∃t ∈ [0, τ] :: tv ∈ C(mB −mA, ‖mB −mA‖)}

Thus:
VOτ

A|B ⊂WCVτ
A|B

�

Corollary 1 is directly shown in the geometry in Figure 6; the space of WCVτ
A|B always contains

VOτ
A|B at any time τ, and the VOτ

A|B is always to the left of WCVLτ
A|B, which indicates that

coverage-beneficial velocity will not collide in the time window τ.
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3.3.2. Avoiding Collision with Obstacles

The coverage environment contains not only UAVs but also static obstacles and perhaps unknown
dynamic objects that are regarded as dynamic obstacles. The reciprocal coverage method is flexible
and extensible and can easily add the constraints of collision-free to shrink the ORCV to meet the need.

Static Obstacle

UAVs should take full responsibility for coverage-beneficial motion when faced with static
obstacles, resulting from the fact that the obstacle cannot cooperate.

In this paper, the obstacles are modeled as a collection of line segments. Let O be one of these line
segments, and let A be an UAV with shape-radius rA and coverage-radius RA positioned at mA. Next,
the weak coverage velocity set WCVτ

A|O generated by obstacle O is defined as follows (o is a selected
point as shown in Figure 7):

WCVτ
A|O = {v|∃t ∈ [0, τ] :: tv ∈ C(o−mA, ‖o−mA‖)} (14)

When the distance between UAV A and obstacle O is less than a constant λA, UAV A should
consider the obstacle O. If allowing UAVs not to be sensitive to the obstacle, then λA can be less than
coverage-radius RA. Otherwise, λA should be equal to RA. If UAV A’s velocity vA is within WCVτ

A|O,
then the weak coverage during the time interval τ is appeared relative to obstacle O. ORCVτ

A|O
is defined for the optimal velocity to realize the coverage-beneficial motion relative to obstacle O,
which is the intersection of WCVLτ

A|O and C(0, vmax). WCVLτ
A|O is determined by selected point o in

segment O, which is the weakest coverage point, as shown in Figure 7a,b.
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point o is on the edge of the segment O; (b) The most weak coverage point o is the endpoint of the
segment O.

The visual displays of UAV A, obstacle O and ORCVτ
A|O are shown in Figure 7. Figure 7a is a

case of UAV A and line-segment obstacle O, where the selected point o is the point with omA⊥O
in segment O. Figure 7b is another case in which o is the endpoint of O, which is close to mA.
The geometric construction of the coverage-beneficial and collision-free space ORCVτ

A|O with the limit
of maximum speed vmax is shown. In this paper, UAV A will not consider obstacle O that is out
of range when the distance between UAV A and obstacle O is greater than their collision distance
value RA.

Dynamic Obstacle

The crux is that dynamic obstacles do not coordinate and even interfere with the
coverage, in contrast with the UAVs. Therefore, the UAVs should take full responsibility for
coverage-beneficial motion.
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As discussed in Section 3.1, u is the smallest change required to the relative velocity of A and B to
avoid weak coverage within time τ, but in contrast to Section 3.1, UAV A should take full responsibility
for collision-free motion or even more, UAV A adapts its velocity by αu (α ≥ 1). The constraints are
as follows:

ORCVτ
A|B = {v|(v− (vcur

A + αu)) · n ≥ 0}, α ≥ 1 (15)

4. Optimal Velocity Decision

The ORCV for UAV A is constructed in Section 4. In this section, a technique for searching
the optimal velocity in ORCV is declared formally, which is effective relative to other traditional
traversal methods.

4.1. Random Probability Method

The traditional traversal method must confirm the exact region of the search space; however, the
exact space is typically difficult to obtain because of the uncertainty of shape. It is inefficient to traverse
all the possible values of ORCV. Therefore, a random probability method inspired by the Monte Carlo
method is proposed for identifying the optimal velocity within the confirmed optimal space.

The random probability method utilizes the concept of convergence in probability, where the
mean of abundant random optimal velocities will approach the center of the optimal velocity space,
despite the specific shape of ORCV being unknown. The core of the random probability method is
shown as follows:

Corollary 2. For the set of G composed of abundant random velocities vrand, vrand ∈ PR, it holds that:

AVE(G)→ vopt (16)

Proof. Assuming all the velocities of PR are traversed, the following is obtained:

vopt = ∑ vi/Num(PR), vi ∈ PR

while:

AVE(G) =
n

∑
i=1

vi/n, vi ∈ G

When n is sufficiently large, according to the Bernoulli law of large numbers:

lim
n→∞

p{
∣∣AVE(G)− vopt

∣∣ < ε} = 1, ∀ε > 0

�

The symbols used in this paper are defined in Table 1.

Table 1. Symbols and their description.

Symbol Description

vopt The optimal velocity decision.
PR The permitted region with unknown shape.

Square(x) Centered at 0, the length of edge is twice that of x.
RV(S) Random velocity in the set of S.

AVE(G) The center of the set of G in Euclidean Space.
IdleVel() The velocity of 0
NUM(S) The number of point in the set of S.



Sensors 2018, 18, 1864 11 of 22

4.2. Optimum Available

When the optimal region is available, the exploration of optimal velocity follows Algorithm 1.
Algorithm 1 is an effective technique to determine an optimal velocity resolution that is very close to
the center of ORCV. Algorithm 1 is described below.

Algorithm 1. Random Probability Exploration of the Optimal Velocity vopt
A .

Input: UAV A maximal velocity vmax
A , constrains of neighbor UAVs ORCVτ

A|∗
Output: The optimal velocity decision vopt

A
1: Computational Rectangle Domain: RandVelRange = Square(‖vmax

A ‖)
2: Random Velocity: vrand = RV(RandVelRange)
3: Set the Accuracy: AN = 1000
4: Initialization: N = 1, FN = 0, FD = Φ
5: while N ≤ AN do
6: if ‖vrand‖ ≤ ‖vmax

A ‖ then
7: if vrand ⊂ ORCVτ

A|∗ then
8: vrand → FD
9: FN = FN + 1
10: end if
11: end if
12: N = N + 1
13: end while
14: Output vopt

A = AVE(FD) B The optimal velocity has been explored.
15: return.

4.3. Vacant Optimal Velocity Space

When the ORCV is empty, the exploration of optimal velocity follows Algorithm 2 as below.
Algorithm 2 is an effective technique to confirm the likelihood that the ORCV is vacant.

Algorithm 2. Lounger strategy.

Input: UAV A maximal velocity vmax
A , constrains of neighbor UAVs ORCVτ

A|∗
Output: The optimal velocity decision vopt

A
Process 1~13 is same as Algorithm 1
14: if FN = 0
15: Output vopt

A = IdleVel() B Adopt idle velocity.
16: end if
17: return.

4.4. Numerical Test

The ORCV constructed via the RD method may be available or null. Therefore, the numerical test
is conducted in these two situations to verify the feasibility and rationality of the technique and the
value adopted in this paper.

4.4.1. Available Set

When the ORCV is available, it may present various situations, such as circular sector, regular
polygon and irregular shape (see Figure 8).

In this paper, the center of the ORCV for each UAV is regarded as the optimal choice because
of the equilibrium of benefit relative to each other neighbor. However, it is difficult to obtain the
optimum with calculations because the shape of the ORCV is difficult to determine. Thus, a technique
for selecting a velocity as close as possible to the optimal velocity is proposed.
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The error between the velocity generated by the proposed technique and the optimal velocity is
shown in Figure 9.Sensors 2018, 18, x FOR PEER REVIEW  13 of 23 
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It can thus be seen that the error decreases as the number of random points increases, and it is
very close to zero with a large number of random points.

4.4.2. Null Set

The situation of a null set may occur in the construction of the ORCV, such as the case of overspeed
or excess constraints (see Figure 10). However, it is also difficult to determine whether the ORCV
is empty. Therefore, the proposed technique is suitable to such a case.

The error of evaluation of the null set while the ORCV is non-empty is shown in Figure 11. It is
intuitive that the error declines with the augmentation of the number of random points.
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The error nearly reaches zero after 200 random points, which confirms the validity of the proposed
technique to evaluate the null set when the number of random point is set to 1000.

The optimal velocity can be improved with an increased number of random points with a
small penalty. However, it is sufficient to set the number of random points to 1000 in this paper.

5. Simulation and Results

To validate the effectiveness and performance of the proposed method with or without static
obstacles, small-scale coverage is simulated in Section 5.1 and extended to large scale in Section 5.2,
which includes various performances, such as coverage rate, deadweight loss, trajectory smoothness,
and convergence speed. In addition, a Robotic Operation System (ROS) simulation is conducted
to improve the reliability of the proposed method further. The simulation is programmed in C++
using OpenMP to parallelize key computation across eight Intel(R) 2.60 GHz cores. The simulations
parameters are shown in Table 2.

The algorithm will be terminated when sup‖a∗i+1 − a∗i ‖2 ≤ ζ. UAVs are random distributed in
Ωa in the beginning.
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Table 2. Simulation parameters.

Parameter Value Description

T 0.25 s simulation step size
ζ 10−5 algorithm terminated value

le, la 250 m, 50 m length of square region Ωe, Ωa
n, n′ 25, 1000 number of UAVs
vmax

i 2 m/s maximum velocity of UAVs
r, R, CR 0.5 m, 25 m, 70 m radius of UAVs’ shape, sensor and communication

nmax
i , Rmax

i 4, 51 m maximum considered neighbor and distance

5.1. Small-Scale

A case in a closed environment Ωe without obstacles is shown in Figure 12. First, UAVs
are randomly distributed in crowded region Ωa, as shown in Figure 12a. Thus, according to
UAVs’ local information, they begin to disperse to improve coverage without collision. The UAVs’
moving trajectories are recorded in Figure 12b, where the smoothness of the trajectories is noticeable.
The algorithm is convergent when simulation step k = 574, and the optimal coverage position of each
UAV is shown in Figure 12c.
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During the movement of UAVs, collisions with other UAVs are avoided. The minimum distance
between UAVs (green thick line) and the collision critical value (red thin dashed line) in each simulation
step k are shown in Figure 13, which demonstrates the collision-free movement of UAVs intuitively.
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A case with a rectangular static obstacle Ωo with both sides being 10 m as shown in Figure 14 is
considered, while other conditions are same as before. UAVs’ initial positions are shown in Figure 14a.
Next, UAVs begin to disperse to improve coverage, balancing the avoidance of collision with other
UAVs and static obstacles. The obstacle is considered only when it is within the range of UAV A, which
is equal to coverage radius R in this paper. UAVs’ moving trajectories are recorded in Figure 14b,
where circumnavigation around the obstacle is noticeable. The algorithm is convergent when the
simulation step k = 1248 and the optimal coverage position of each UAV is shown in Figure 14c.
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Figure 14. The process of coverage with obstacle Ωo. (a) The initial positions; (b) The moving
trajectories; (c) The optimal coverage.

During the movement of UAVs, collisions with other UAVs and with obstacles are avoided. If the
minimal distance between two UAVs is greater than the collision critical value (the sum of two UAVs’
shape radii), then the collision between these two UAVs would occur at that moment. In Figure 15, the
minimum distance between UAVs (green thick line) and the collision critical value (red thin dashed
line) in each simulation step k are shown, demonstrating the effectiveness of averting collision with
other UAVs intuitively.
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In Figure 16, the distance between the UAVs and obstacle is shown only when the obstacle is 
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Figure 15. The variation of the minimum distance between UAVs.

In Figure 16, the distance between the UAVs and obstacle is shown only when the obstacle is within
the range of the UAV, demonstrating the effectiveness of averting collision with an obstacle intuitively.
In this case, only UAV 1, UAV 8 and UAV 16 are assumed to consider the obstacle, while other UAVs
only require consideration of their neighboring UAVs and the boundary of Ωe.
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To quantify and objectively appraise the performance of the RD method proposed in this paper,
comparisons with the traditional V-based method [20] and the VFA method [30] under the environment
without obstacles is shown as follows. The traditional V-based method and the VFA method use the
same parameters as the RD method.

The coverage situations of the V-based method and the VFA method are shown in Figure 17, of
which (a–c) are belong to the V-based method and (d–f) are belong to the VFA method. The initial
positions of each UAV are shown in Figure 17a,d, the recorded trajectories of UAVs in simulation step
k = 0 ∼ 574 are shown in Figure 17b,e, and the situation at k = 574 are displayed in Figure 17c,f,
where the RD method (shown in Figure 12c) is superior to the V-based method and the VFA method in
the field of convergence speed and the coverage rate can be easily found visually.Sensors 2018, 18, x FOR PEER REVIEW    19 of 25 
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Figure 17. The coverage situations of the V-based and VFA methods. (a) The V-based coverage (k = 0);
(b) The recorded trajectories of UAVs by the V-based method ( k = 0 ∼ 574); (c) The V-based coverage
at k = 574; (d) The VFA coverage (k = 0); (e) The recorded trajectories of UAVs by the VFA method
( k = 0 ∼ 574); (f) The VFA coverage at k = 574.
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During the simulation step k = 0 ∼ 574, the trajectories of UAVs generated by the RD method,
the V-based method and the VFA method are shown in Figure 18, where Figure 18a is the RD
method’s trajectories, Figure 18b is the V-based method’s trajectories and Figure 18c is the VFA
method’s trajectories. A feature of the trajectory of UAV 23 reveals the improved smoothness and
lower oscillation of the RD method than the V-based method and the VFA method. The reason is that
RD considers the reciprocal of UAVs but the other methods ignore it.
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The calculation speed in various environments but with  25n  UAVs is shown in Table 3. For 
each UAV, it takes 14.807 ms in average to optimize coverage decision while utilizing the RD method. 
For each UAV, more than 500 ms is required to make a decision using the V-based method and the 
VFA method needs about 42.798 ms in average. This is because RD is direct optimized in velocity 
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Next, the comparison of the coverage rate and deadweight loss among the RD, V-based and VFA
methods are exhibited in Figure 19a,b respectively, which shows that the RD method has a higher
coverage rate and less deadweight loss than the other two methods at the same time. The advantage
of RD in coverage rate and deadweight loss also owes to its consideration of the UAVs’ reciprocity.
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Figure 19. The comparison of coverage rate and deadweight loss. (a) Comparison of coverage rate;
(b) Comparison of deadweight loss.

With the increasing scale of UAVs, the difference in convergence speed among these three methods
is shown in Figure 20, which indicates that the RD method is more scalable and adaptable than the
other two methods.

The calculation speed in various environments but with n = 25 UAVs is shown in Table 3. For each
UAV, it takes 14.807 ms in average to optimize coverage decision while utilizing the RD method. For
each UAV, more than 500 ms is required to make a decision using the V-based method and the VFA
method needs about 42.798 ms in average. This is because RD is direct optimized in velocity space
while V-based method spends a lot of time in Voronoi partition in configuration space.
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Table 3. Comparison of the calculation speed of UAVs’ scale (n = 25).

Method Case 1 Case 2 Case 3 Ave Time (ms)

RD 10.857 20.280 13.266 14.807
V-Based 591.148 605.856 632.880 609.961

VFA 36.749 48.072 43.573 42.798

5.2. Large-Scale

To verify the scalability of the RD method, a case of swarm coverage is simulated by 1000 UAVs in
a 2000 m× 1000 m rectangular region ΩC

′ with static obstacles as shown in Figure 21. The parameter
of each UAV is the same as in Section 5.1.
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Figure 21. Cooperation coverage by 1000 UAVs. (a) Coverage (t = 0); (b) Trajectory ( t = 0 ∼ 5226);
(c) Coverage (t = 5226).

First, UAVs are static and randomly distributed within a 1000 m× 500 m rectangular region
Ωa
′ as shown in Figure 21a. During the collision-free interaction among UAVs, the covered area is

increasing, as shown in Figure 21b. Finally, the algorithm is converged to an extremum solution, as
shown in Figure 21c.

From the simulation and data above, the advantages of RD can be easily summarized. First,
RD with the property of distributed, asynchronous and self-organized UAVs has a higher coverage
rate and less deadweight loss while converging quickly. Additionally, RD leads to smoother moving
trajectory and faster decisions. Finally, the RD method is more adaptive to various scenes, such as
situations with obstacles or large-scale coverage, and provides the capacity for collision-avoiding,
scalability and flexibility.
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5.3. Robotic Operation System (ROS) Simulation

For the sake of verifying the proposed method’s effectiveness further, a simulation of multi-UAV
sensing coverage is conducted by using ROS Jade and Gazebo 5.0 on an Intel PC (×86) running
Ubuntu 14.04.

Limited by PC’s performance, a mimitype multi-UAV sensing coverage is customized, where
16 UAVs execute a cooperative coverage of mountainous region. The region is an area of 16,384 square
meters, whose both length and width are 128 m. Each UAV flies at 50-m height with a maximum
velocity of 20 m/s and sensing scope of 30 m × 30 m. In addition, each UAV is instantiated
as an independent ROS node, which means that the simulation is running in a distributed way.
The printscreen of simulation on Gazebo is exhibited in Figure 22.
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Figure 22. A screenshot of the simulation on Gazebo.

In Figure 23, three typical moments are captured, where Figure 23a shows that 16 UAVs assemble
in the center of the mountainous region at t = 0. Then, UAVs begin to scatter for maximizing the
sensing coverage in Figure 23b. Finally, UAVs reach steady state that they have get their maximum
coverage at 10 s. As can be seen from the simulation, the proposed method has potential and
practical value.
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6. Conclusions and Future Work

In this paper, a reciprocal decision approach is proposed for sensing coverage with
multi-UAV swarms. The approach is self-organized, distributed, and autonomous, with no need
for determining optimal parameters through repeated experiments, which is more suitable for
heterogeneous sensing coverage especially in multi-UAVs swarms where each UAVs’ sensing capability
is changing with its flight height. In contrast to the traditional configuration methods, the coverage
problem is directly optimized in velocity space, which is more concise and efficient. First, the
reciprocal of UAVs has been considered to reduce the oscillation of UAVs’ trajectories. Second,
the coverage-beneficial and collision-free set ORCV is determined by adjusting the velocity out of WCV
relative to neighboring UAVs. Furthermore, a corresponding random probability method is proposed
for selecting the optimal velocity in ORCV. Finally, compared with two significant methods, the
simulation results corroborate that the proposed method has better performance in terms of coverage
rate, convergence rate, trajectory smoothness and scalability than the V-based and VFA methods.
In addition, a ROS simulation is conducted to validate the availability and practicability of the
RD method. The model of UAVs can be more specific in terms of the kinematics and dynamics and the
capacity of coverage by adding constraints to the velocity space. Moreover, the 2-D environment is
demonstrated in this paper; the method can be further extended to the 3-D situation.
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