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Abstract: An acoustic–seismic mixed feature extraction method based on the wavelet coefficient
energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in
wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à
trous algorithm, which is a concise method used to implement the wavelet transform of a discrete
signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained,
the energy ratio of each layer coefficient was calculated as the feature vector of the target signals.
Subsequently, the acoustic and seismic features were merged into an acoustic–seismic mixed feature
to improve the target classification accuracy after the acoustic and seismic WCER features of the
target signal were simplified using the hierarchical clustering method. We selected the support vector
machine method for classification and utilized the data acquired from a real-world experiment to
validate the proposed method. The calculated results show that the WCER feature extraction method
can effectively extract the target features from target signals. Feature simplification can reduce the
time consumption of feature extraction and classification, with no effect on the target classification
accuracy. The use of acoustic–seismic mixed features effectively improved target classification
accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.

Keywords: feature extraction; wavelet coefficient energy ratio (WCER); hierarchical clustering;
vehicle classification; wireless sensor networks (WSNs)

1. Introduction

Wireless sensor networks (WSNs) consist of nodes capable of sensing, signal processing, and
communicating. In addition to object detection, also of interest are the inherent properties of control
and activation in WSNs [1]. One application of WSNs is the classification of moving vehicles
in the interested area, which is a precondition for further decision-making in military operations.
Moreover, vehicle classification is an important signal processing task and has found widespread
civilian applications, such as intelligent transportation systems [2] and real-time traffic surveillance [3].

Signal feature extraction is the basis of vehicle classification and significantly affects the results of
classification. Feature extraction methods of target signals applied to WSNs can be classified into two
categories: Data fusion algorithms and algorithms based on a special sensor signal.

The feature extraction algorithm, based on data fusion, requires at least two signal sequences
of the vehicle. The Haar discrete wavelet transform (DWT)-based method [4] is a vehicle feature
extraction method based on data fusion. This method was proposed after combining the multi-sensor
data fusion method with the wavelet transform (WT) method. This method employs a maximum
entropy measure to determine significant wavelet coefficients. Features are obtained by calculating the
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energy of coefficients grouped around the competing clusters. Li et al. [5] proposed a multiple sensor
information fusion method for vehicle type recognition based on the wireless geomagnetic sensor
network. A maximum likelihood estimation method is used to perform vehicle feature waveform
information fusion to improve vehicle type recognition accuracy. The feature in, feature out [6] process
is another novel fusion method for achieving a joint feature vector estimate based on multiple sensors.
The output of this process is fused feature vectors based on the single-source feature vector of an
observed object provided by each sensor in the distributed embedded system.

The proposed algorithms based on the data fusion method [7,8] utilize target signals acquired
from multi-sensors in WSNs to enhance the accuracy of target classification, but they require greater
communication between nodes in a group or in a cluster and consume more energy. However, as
hardware and software resources of nodes in WSNs are limited, the complexity and amount of
resources required by the algorithms should be considered first. Despite the satisfactory performance
demonstrated by a classification-algorithm-based fusion method [9], its high resource requirement has
prompted researchers to consider feature extraction methods based on a special sensor signal.

Feature extraction algorithms based on a special sensor signal often use target features in the
frequency domain or wavelet domain of their acoustic, seismic, or magnetic signals. The improved
time-encoded signal processing algorithm [10] is a feature extraction method based on the acoustic
signal of a special sensor. This method was proposed to ameliorate the time-encoded signal processing
algorithm, which is effective for feature extraction of speech signals, but not suitable for vehicle
acoustic signals. This algorithm designs an extensional symbol table with 40 characters according to
the characteristic features of the vehicle acoustic signal and, thereafter, uses a support vector machine
(SVM) [11] as the classifier to recognize different vehicle types. A fast Fourier transform (FFT)-based
feature extraction method [12] was introduced to extract vehicle features in a real-life vehicle tracking
sensor network. The extracted features, which were based on the frequency spectrum of the acoustic
signals of the target, were used to test three classification algorithms. There have also been studies
attempting to use the time-domain features of the target signal to classify vehicles. For example, a time
domain harmonics amplitude method [13], which extracts features from the energy of the target signal
by estimating the strongest harmonic frequency and the harmonics’ amplitude from a template of the
acoustic signal, was developed for vehicle classification in a sensor network.

The algorithms mentioned above utilize the acoustic signal, seismic signal, or magnetic signal of
the target acquired by a single sensor node in WSNs to classify the target type. In this paper, we propose
a different approach to extract the signal feature based on the acoustic and seismic signals acquired
from a single sensor node for vehicle classification. Instead of using a traditional spectral-domain
or time-domain method, we use a WT-based method to extract features from acoustic and seismic
signals. First, the signal sequence was decomposed into a set of wavelet coefficients by using the à
trous algorithm. After the wavelet coefficients of the target acoustic and seismic signals were obtained,
the energy ratio of each layer coefficient was calculated and utilized as the feature vector of the target
signals. Subsequently, the acoustic and seismic features were merged into an acoustic–seismic mixed
feature to improve target classification accuracy.

The rest of the paper is organized as follows. The wavelet coefficient energy ratio (WCER) method,
based on wavelet decomposition using the à trous algorithm, is introduced in Section 2. Section 3
introduces the feature vector, simplified using the hierarchical cluster method, and Section 4 introduces
the acoustic–seismic mixed feature of the target signal. After briefly reviewing the data source and
the DARPA SensIT project [12], and utilizing the subset data provided by this experiment to validate
the proposed method, the performance of the method is discussed in Section 5. Section 6 concludes
the paper.

2. WCER Feature Extraction Method

Wavelet transform is a signal processing technique that represents a transient or non-stationary
signal in terms of time and scale distribution, and is an excellent tool for data compression [14],



Sensors 2018, 18, 1862 3 of 18

analysis, and denoising [15]. After wavelet composition of the signal, the wavelet coefficients represent
the signal components in different frequency bands, making it feasible to differentiate signals of
different targets.

2.1. Wavelet Decomposition Based on à Trous Algorithm

The wavelet decomposition method and reconstruction method are based on WT. WT decomposes
a signal into wavelet coefficients by using a set of base functions [16]. A set of functions gained
following basic wavelet function Ψ(t) were flexed in scale and displaced in the time domain.

WTx(a, b) =< x(t), Ψa,b(t) >=
1√
|a|

∫ −∞

+∞
x(t)Ψ∗

(
t− b

a

)
dt, a, b ∈ R, a 6= 0 (1)

where Ψ(t) is the wavelet “prototype”, which can be considered a bandpass function [17], a is the
contraction–expansion or scale factor, and b is the displacement factor.

Instead of continuously varying the parameters, as in the case of the continuous wavelet
transform [18], which contains a large amount of redundant information, we can analyze the signal
with a smaller number of scales with a varying number of translations at each scale. This is the
DWT process [19]. The à trous algorithm [20] is one of the most concise methods to implement
the fast DWT. The algorithm utilizes the equivalent translocation property of the z-transform and
performs a convolution operation of orthogonal filter coefficients and signal to calculate the wavelet
coefficients of the signal sequence after inserting a certain number of zeros between the coefficients of
the orthogonal filter.

Figure 1 shows the scheme of the three-level wavelet decomposition based on the à trous algorithm.
x(k) is the signal sequence and hj and gj are the orthogonal filter bank coefficients of the (j − 1) level
in the wavelet decomposition process of the signal. cAj(k) indicates the wavelet approximation
coefficients of the jth level and represents the low-frequency components of the current wavelet
decomposition of the signal. cDj(k) indicates the wavelet detail coefficients of the jth level and
represents the high-frequency components of the current wavelet decomposition of the signal. hj
represents h0 up-sampled by 2j, while gj represents g0 up-sampled by 2j. When using the à trous
algorithm to decompose the target signal, the orthogonal filter bank coefficients of the upper level are
interpolated to obtain the filter coefficients of the current level first and, thereafter, the input sequence
of the current level is convolved with the orthogonal filter banks to calculate the wavelet coefficients.
The approximation coefficient obtained at the previous level is utilized as the input signal of the next
level. The formulas for the calculation of cAj(k) and cDj(k) are as follows:

cAj(k) = cAj−1(k)⊗ hj =
k

∑
l=1

hj(l)cAj−1(k− l + 1), hj(l) = 0 while l > Lj (2)

cDj(k) = cDj−1(k)⊗ gj =
k

∑
l=1

gj(l)cDj−1(k− l + 1), gj(l) = 0 while l > Lj (3)

where ⊗ represents a convolution operation; k = 1, 2, . . . , K and K is the length of the signal sequence;
and j = 1, 2, . . . , J and J is the desired wavelet composition depth. The lengths of the orthogonal filter
bank coefficients, gi and hi, at each decomposition level are different. Lj represents the length of the
orthogonal filter bank coefficients at the jth level. cA0(k) is equal to the initial signal sequence, x(k),
when calculating cA1(k) and cD1(k) using Equations (2) and (3), respectively. The length of the result
sequence after the convolution operation is K + Lj − 1, which indicates that the sequence length after
convolution at different levels of wavelet decomposition is not the same. To simplify the calculation,
we intercept a sequence of length K from the middle of the convolution result sequence at each wavelet
decomposition level.
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Considering the wavelet decomposition of the first layer as an example, the convolution result of
the signal, x(k), and decomposition high-pass filters, g0, is the wavelet detail coefficient, cD1(k), and
the wavelet approximation coefficient, cA1(k), is obtained using the convolved signal, x(k), and the
decomposition low-pass filters, h0. cA1(k), is, thereafter, utilized as the input signal of the second level.
After this wavelet decomposition algorithm is completed, the signal, x(k), is decomposed into a set of
approximation coefficients and detail coefficients.

2.2. Wavelet Coefficients Energy Ratio (WCER) Method

As the wavelet coefficients of the signal correspond to different frequency bands of the target
signal with different signal spectrum distribution, the wavelet coefficients of the target signals have
different characteristics and can be utilized to extract spectrum features for classification purposes.

The difference on spectrums of different target signals make the energy of the signal component
in different frequency bands discrepant, hence, the wavelet coefficients of acoustic and seismic signals
of different targets vary. WCER, which can indicate the difference between energies of coefficients,
can intuitively reflect the energy difference of signals in different frequency bands. WCER can be
expressed as the wavelet detail coefficient energy ratio (WDcer) and wavelet approximation coefficient
energy ratio (WAcer), which are defined as follows:

WDcer(j) =
PD(j)

J
∑

j=1
PD(j)

, WAcer(j) =
PA(j)

J
∑

j=1
PA(j)

(4)

where J is the desired wavelet transform depth, PD(j) represents the jth wavelet detail coefficient energy,
and PA(j) represents the jth wavelet approximation coefficient energy. The formulas for calculating
PD(j) and PA(j) are as follows:

PD(j) =
K

∑
k=1

(cDj(k))
2, PA(j) =

K

∑
k=1

(cAj(k))
2 (5)

where N is the length of the wavelet coefficient, which is also the length of the signal sequence. After
WDcer and WAcer are calculated, the feature of the target signal based on WCER can be obtained. The
feature vector of the target signal is denoted as f.

f = [WDcer(1), · · · , WDcer(J); WAcer(1), · · · , WAcer(J)] (6)

2.3. Signal Feature Extraction

The feature vector should be extracted after a specified length of the signal sequence is acquired.
Assuming the feature of the target signal sequence is extracted every K points, the target signal that is
acquired is divided into N segments. The process of feature extraction based on WCER is shown in
Figure 2.
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Figure 2 shows the process of feature extraction based on WCER. J is the desired wavelet
decomposition depth and K is the length of each segment of the signal. cDj(k) (k = 1, 2, . . . , K)
represents the wavelet detail coefficient and cAj(k) represents the wavelet approximation coefficient of
the jth level. F represents the feature matrix of the target signal. f = [W1, W2, . . . , Wm] represents the
feature vector and fi is the feature vector of the ith segment of the target signal. Wm is the mth variables
of the feature vector, f, and [w1m, w2m, . . . , wNm] is the observation sequence of the variable Wm.

If the sensors acquire acoustic and seismic signals of targets at a sampling rate of 4096 Hz and the
signal generated by the target lasts 10 s, then the sensor node acquired 40,960 points sequence. With
the K set to 512, then the acquired signal sequence is divided into 80 segments and every 512 points is
taken as a segment for feature extracting using the WCER method. This means point 1 to point 512
is the first segment, point 513 to point 1024 is the second segment, and the entire data sequence is
segmented in this way.

Subsequently, we utilize the feature extraction method, based on the WCER, to process the
real-world acquired signal of vehicles in WSNs. The datasets were gathered from a real-world
experiment, the third SensIT situational experiment [12]. In the experiment, 75 sensor nodes with
acoustic, seismic, and infrared sensing capability were located at the Marine Corps Air Ground Combat
Center. Testing runs were performed by driving different kinds of vehicles across the testing field. Four
target vehicle classes were used: Assault amphibian vehicle (AAV), main battle tank, high-mobility
multipurpose wheeled vehicle, and dragon wagon (DW). The acoustic and seismic data of each run
were recorded and the sampling rate of the signals was 4096 Hz. There were three paths in the
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experimental area for the vehicles to pass and a testing run was accomplished by driving the vehicle on
the path. A series of numbers was utilized to indicate these runs, e.g., DW3, DW4, DW5. The acoustic
and seismic data of each run were recorded by the sensor nodes deployed at the side of the road. The
details of the experiment are described in the paper mentioned above.

K, which is also the length of the segment of the target signal sequence, was set to 512 and
the desired wavelet transform depth, J, was set to 8. In addition, a nearly orthogonal design of a
bi-orthogonal filter bank, shown in Table 1, was utilized as the orthogonal filter bank to decompose
the signal sequence.

Table 1. Coefficients of quasi-orthogonal bi-orthogonal filters.

l h0(l) g0(l) l h0(l) g0(l)

0 0.5613 0.5601
−1 0.2865 −0.2961 1 0.3030 −0.2961
−2 −0.0432 −0.0470 2 −0.0508 −0.0470
−3 −0.0465 0.0552 3 −0.0582 0.0552
−4 0.0166 0.0220 4 0.0244 0.0220
−5 0.0055 −0.0105 5 0.0112 −0.0105
−6 −0.0027 −0.0058 6 −0.0064 −0.0057
−7 0 0.0018 7 −0.0018 0.0018
−8 0 0.0007 8 0.0008 0.0007
−9 0 −0.0003 9 0.0004 −0.0003
−10 0 0 10 0.0001 0
−11 0 0 11 0 0

Subsequently, we utilize the feature extraction method, based on the WCER, to extract the acoustic
and seismic features of AAV3 runs.

In the AAV3 run, the acoustic and seismic signals of AAV were sensed and acquired by
18 sensor nodes in the WSN monitoring system. All the acquired signal sequences were divided
into 4676 segments at intervals of 512 points for feature extraction. Figure 3b shows the extracted
features of the segmented acoustic signal sequence using the WCER method and Figure 3d shows
the extracted seismic features. The horizontal axis represents the number of signal segments, which
also could be considered as a set of observations of a certain feature variable, while the vertical axis
represents the WCER of each segmented signal.
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3. Feature Vector Simplification Using Hierarchical Cluster Method

The acoustic and seismic signal features of AAV3, shown in Figure 3, indicate that differences
between parts of the WCER feature variables are evident and can reflect the target characteristic,
whereas the differences between the remaining feature variables are insignificant. Simplifying the
feature vector will remove the redundant variables in the feature vector, which can decrease the
computational complexity of the subsequent target classification and effectively reduce the time
consumption of the process of target classification. The hierarchical cluster method [21] and principal
component analysis (PCA) method [22] are two effective approaches to reduce the dimensions of the
feature matrix.

3.1. Hierarchical Cluster Method

The hierarchical cluster method can aggregate variables into several clusters based on their
similarity. After determining representative variables from aggregated clusters to reduce the number
of variables, the dimension of the feature vector will be reduced. The feature vector of the signal
obtained using the WCER method is f = [W1, W2, . . . , Wm], m = 2J, and J is the desired wavelet
decomposition depth. The observation matrix of the feature vector of the target signal is denoted
as F, whose column vector is the data sequence of the variable in the feature vector, f. By analyzing
the sample observation matrix, the main variables in the feature vector are selected to realize its
dimensionality reduction.

The hierarchical cluster method utilizes the distance between variables in the feature vector, f,
and between clusters in the process of clustering to quantify the similarities between variables and the
clusters. First, a pair of the nearest feature variables is selected to be merged into a new class according
to the calculated feature variable distance matrix, D, expressed in Equation (7), then the two closest
clusters are merged into a class. This process is repeated until a preset number of clusters is achieved:

D =


0

dist(W2, W1) 0
...

... 0
dist(W2J , W1) · · · dist(W2J−1, W1) 0

 (7)

where dist (Wu,Wv) represents the distance between the variable, Wu, and the variable, Wv. Wu is the
uth variable in the feature vector and Wv is the vth variable.
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Figure 4 shows the distance between variables in the feature vector and between clusters in the
clustering process. d (r,s) represents the distance between the cluster, r, and the cluster, s.Sensors 2018, 18, x FOR PEER REVIEW  8 of 17 
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The distance between the variables, Wu and Wv, is calculated using their correlation coefficient
and the calculation method is expressed in Equation (8).

dist(Wu, Wv) = 1− R(Wu, Wv) = 1− C(Wu, Wv)√
C(Wu, Wu)C(Wv, Wv)

(8)

where R (Wu,Wv) represents the correlation coefficient of Wu and Wv. C(Wu,Wv) is the covariance of
Wu and Wv, and it is calculated as follows:

C(Wu, Wv) = E[(Wu − E(Wu))·(Wv − E(Wv))] (9)

After obtaining the distance matrix, we must also calculate the distance between the clusters in
the clustering process. In this study, the unweighted pair grouping method with arithmetic mean
(UPGMA) [23] was utilized to calculate the distance between clusters. UPGMA is a widely used
bottom-up hierarchical clustering method that defines cluster similarity [24] in terms of the average
pairwise distance between all the objects in two different clusters. If the two clusters in the clustering
process are the cluster, r, and the cluster, s, the formula for calculating the distance between them
utilizing the UPGMA is expressed in Equation (10).

d(r, s) =
1

nrns

nr

∑
p=1

ns

∑
q=1

dist(Wrp, Wsq) (10)

where nr is the number of objects in cluster r and ns is the number of objects in cluster s. Wrp is the pth
subject in cluster r and Wsq is the qth subject in cluster s.

3.2. PCA Method

The PCA method is another efficient approach to reduce the dimension of the feature vector. This
approach reduces the dimensions of the feature by extracting several factors that contribute the most
to signal differences in the observation matrix of the target feature vector.
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The feature vector of the signal is f = [W1, W2, . . . , Wm] and the column vector, [wi1, wi2, . . . , wim],
in the feature matrix, F, is the data sequence of the variable, Wi, in the feature vector, f. The variable
should be normalized according to Equation (11) before performing principal component analysis.

W̃i =
Wi − µi

si
(11)

where µi is the mean and Si is the standard deviation of the sequence of the variable, Wi. After
calculating the correlation coefficient of the variables in the feature vector, the correlation coefficient
matrix can be achieved.

C =

 R(W̃1, W̃1) · · · R(W̃1, W̃m)
...

. . .
...

R(W̃m, W̃1) · · · R(W̃m, W̃m)

 (12)

Then, all the eigenvalues, λi (i = 1, 2, . . . , m), of the correlation coefficient matrix, C, and the
corresponding eigenvectors, [ui1, ui2, . . . , uim], are calculated. Then the eigenvectors consists of m new
indicator variables shown as follows:

y1 = u11·W̃1 + u12·W̃2 + · · ·+ u1m·W̃m

y2 = u21·W̃1 + u22·W̃2 + · · ·+ u2m·W̃m

· · · · · · · · ·
ym = um1·W̃1 + um2·W̃2 + · · ·+ umm·W̃m

(13)

where yi is the ith principal component. The contribution rate of the principal component, which
means how much the new indicator variable contributes to the difference of the target features, is
calculated from its corresponding eigenvector:

bk =
λk

∑m
i=1 λi

k = 1, 2, · · · , m (14)

When the sum of the former P contribution rates of the of new indicator variables is approximately
1 (usually 0.9 or 0.95), the former P indicator variables, [y1, y2, . . . , yP], are selected as the new features
vector instead of the original m features.

3.3. Comprasion of Two Feature Simplification Methods

To show the performance of these two methods, we calculated the time consumption of the signal
feature extraction using the methods for feature dimensionality reduction. We also calculated the
classification accuracy of the features after reducing the dimensions using two methods. The acoustic
feature data of AAV3 and AAV4 after dimension reduction were used to train the SVM classifier.
Subsequently, we used the trained classifier to classify the dataset of the other 15 runs (AAV5–AAV11,
DW5–DW12) after their acoustic feature data were simplified using the two methods. The classification
accuracy is denoted as Ac. We evaluated the accuracy as follows:

Ac =
#correctly classified data

#total testing data
× 100% (15)

The classification accuracy of the ith dataset is denoted as Ac(i) (i = 1, 2, . . . , M) and the average
classification accuracy Aca is:

Aca =
1
M

M

∑
i=1

Ac(i) (16)

where M is the number of datasets, acquired from different targets, that have been classified.
A comparison of the time needed and classification accuracy when using the hierarchical

clustering and principal factor analysis methods to simplify features is shown in Table 2. fa_HC
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represents the acoustic features of the target after being simplified by hierarchical clustering and
fa_PCA represents the acoustic features of the target after being simplified by principal factor analysis.
It can be seen from Table 2 that after training the classifier, when using hierarchical clustering to reduce
the dimensions of the feature, the feature extraction time is slightly less than when using principal
factor analysis and the classification accuracy is higher. Therefore, the hierarchical clustering method
was chosen for simplifying the feature vector.

Table 2. Average classification accuracy and time consumption of feature extraction using different
simplification methods. fa_HC, acoustic features after hierarchical clustering; fa_PCA, acoustic features
after principal factor analysis.

Using fa_HC Using fa_PCA

Average classification accuracy 66.98% 63.52%

Time consumption of feature extraction 4.1543 s 4.1809 s

3.4. Feature Vector Simplification Using Hierarchical Clustering

The acoustic and seismic signal features of AAV3 were considered as examples for simplifying
the variables in the feature vectors using the hierarchical clustering method.

Figure 5 shows the clustering results of the feature vectors of AAV3. Eight-level wavelet
decomposition of the acoustic and seismic signals of AAV3 yields two feature vectors with 16 variables.
The acoustic feature vector is denoted as fa and the seismic feature vector is denoted as fs. After
clustering variables with a distance less than 1, the variables with large differences in the feature
vectors are retained and the variables with small differences are aggregated into a cluster.
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Figure 5. Hierarchical clustering results of feature vectors of AAV3: (a) Result of acoustic feature vector;
(b) result of seismic feature vector.

The 16 variables in the acoustic feature vector, ( fa = [W 1, · · · , W16]), were reduced to 9 after
feature vector simplification. The variables, W1, W2, W3, and W4, were aggregated into a cluster and
replaced with the variable, W4. The variable, W12, was utilized instead of the variables, W9, W10,
W11, and W12, after they were aggregated into a cluster. Further, the variables, W15 and W16, were
aggregated into a cluster and the variable, W15, was subsequently utilized instead.

The 16 variables in the acoustic feature vector, ( fs = [W 1, · · · , W16])), were reduced to 7. The
variables, W1, W2, W3, and W4, were aggregated into a cluster and replaced with the variable, W4. The
variable, W14, was utilized instead of the variables, W9, W10, W11, W12, W13, and W14, after they were
aggregated into a cluster. Further, the variables, W15 and W16, were aggregated into a cluster and the
variable, W15, was subsequently utilized instead.
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The simplified acoustic and seismic feature vectors are denoted as fanew and fsnew, where
fanew = [W4, W5, W6, W7, W8, W12, W13, W14, W15], which corresponds to [WDcer(4), . . . , WDcer(8);
WAcer(4), . . . , WAcer(7)]. fsnew = [W4, W5, W6, W7, W8, W14, W15], which corresponds to [WDcer(4),
. . . , WDcer(8); WAcer(6), WAcer(7)].

The results of using simplified features for target classification will be discussed in Section 5.1.

4. Acoustic–Seismic Mixed Feature

After simplifying the features, we utilized the simplified acoustic and seismic features of the
signal to classify the target.

4.1. Support Vector Machine Classifier

The commonly used classification methods are k-nearest neighbor (KNN) [25], decision tree
(DT) [26], naive Bayes (NB) [27], and support vector machine (SVM). We used the acoustic feature data
of AAV3 and AAV4 to train the classifiers and classify the acoustic feature data of the other 15 runs
(AAV5–AAV11, DW5–DW12). Then, average classification accuracy and time needed were recorded to
compare the performance of these methods in vehicle classification.

Table 3 shows the average classification accuracy and average time needed for different
classification methods. The results indicate that KNN has the highest accuracy, but the classification
takes too much time. The time needed for the DT and NB methods is very short, but their classification
accuracy is lower than that of the KNN and SVM.

Table 3. Average classification accuracy and time needed for different classification methods using
acoustic features without simplification. KNN, k-nearest neighbor; DT, decision tree; NB, naïve Bayes;
SVM, support vector machine.

KNN DT NB SVM

Average classification accuracy 71.55% 65.77% 64.29% 67.54%
Average time needed for classification 6.6225 s 0.0029 s 0.0051 s 0.4282 s

In summary, the SVM method has satisfactory classification accuracy and acceptable time needs.
Therefore, the SVM algorithm was used as a classifier to validate the performance of the proposed
WCER feature extraction method before and after feature simplification.

The SVM classification algorithm was performed by using the C support vector classifier (C-SVC)
shared in LIBSVM [28], a commonly used SVM software library.

The principle of classification using SVM is to consider a multivariate feature as an independent
point in a multidimensional space and, thereafter, utilize the training data to determine an optimal
hyperplane to classify the independent points. Summarized mathematically, C-SVC is aimed at solving
the following optimization problem:

min(
1
2

zTz + R
Nt

∑
i=1

εi) (17)

under the following constraints:

1− εi − yi

(
zTφ(fi) + c

)
≤ 0, εi ≥ 0, i = 1, · · · , Nt (18)

where Nt is the number of training vectors, fi is the sample feature vector for training, and yi is
the class label corresponding to the feature vector. Function, φ(f i), maps the feature vector, fi, to a
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high-dimensional space and R is the regularization parameter, which is set to 1 in this study. Usually,
we solve the following dual problem:

min(
1
2

αTQα− eTα) (19)

under the following constraints:

yTα = 0, 0 ≤ αi ≤ R, i = 1, · · · , Nt (20)

where e = [1, . . . , 1]T is the unit vector. Q is an Nt by Nt positive semi-definite matrix. Qij= yiyjK(f ifj),
and K

(
fifj
)
= φ(fi)

Tφ(f j) is the kernel function. Moreover, the function for classifying a feature, f, is
as follows:

sgn
(

zTφ(f) + c
)
= sgn(

Nt

∑
i=1

yiαiK(fif) + c) (21)

The label of the class is 1 or −1 for representing different kinds of targets, which indicates that
yi ∈ {1,−1}. Furthermore, we utilized a radial basis function kernel [29], with the following format:

K
(
fi, fj

)
= exp(−γ‖fi − fj‖) (22)

where the parameter, γ, in the kernel function is set to 0.5.

4.2. Vehicle Classification Using SVM Classifier

We extracted features from the acoustic and seismic signal data collected from 18 sensor nodes in
runs AAV3, AAV4, DW3, and DW4. These extracted features were used to train the SVM classifier.
Subsequently, we used the trained classifier to classify the dataset of the other 15 runs (AAV5–AAV11,
DW5–DW12) before and after simplifying the acoustic and seismic WCER features.

The classification results, listed in Table 4, show that the classification accuracy of AAV is high,
but that of DW was unsatisfactory, when classifying the vehicles using simplified acoustic features.
By contrast, the classification accuracy of AAV was low and that of DW was satisfactory when the
simplified seismic features were used. Therefore, we mixed acoustic and seismic features of the target
signal to achieve satisfactory classification accuracy for both AAV and DW. The acoustic–seismic mixed
features of the target signal can be described by the vectors, fmix and fmix = [fanew; fsnew].

Table 4. Classification accuracy with different feature vectors.

Runname Using fanew Using fsnew Runname Using fanew Using fsnew

AAV5 91.3609% 43.9645% DW5 85.4323% 80.968%
AAV6 90.6977% 51.292% DW6 84.5255% 88.4185%
AAV7 90.0334% 48.8294% DW7 25.4846% 86.7161%
AAV8 91.7002% 49.4762% DW8 29.8495% 69.5652%
AAV9 99.9269% 51.462% DW9 6.6007% 72.7723%
AAV10 89.5207% 55.9371% DW10 35.2547% 91.1081%
AAV11 88.8577% 42.8371% DW11 51.8025% 94.4691%

DW12 43.695% 85.9726%

Figure 6 shows the acoustic–seismic mixed features of signals acquired from AAV3 (Figure 6a)
and DW3 (Figure 6b). The results of using acoustic–seismic mixed features for target classification are
discussed in Section 5.2.
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5. Performance of WCER Method

As there is no effective approach to directly evaluate the performance of the proposed WCER
feature extraction method, we evaluated the method indirectly by comparing the performance of an
SVM classifier using different features.

5.1. Effects of Feature Simplification and Mixed Features on Classification Accuracy

To study the performance when using simplified features for target classification, we compared
the classification accuracy obtained using the features before and after simplification. The features
extracted from runs AAV3, AAV4, DW3, and DW4 were utilized to train the SVM classifier before
and after simplification. Subsequently, the trained classifier was used to classify the target using
the features extracted from the dataset of the other 15 runs (AAV5–AAV11, DW5–DW12) before and
after simplification. The set of parameters of the classifier is described in detail in Section 4. The
classification accuracy obtained by using the acoustic–seismic mixed features was calculated similarly
for studying the effect of feature mixing on vehicle classification.

Table 5 shows the classification accuracy obtained by using different feature vectors based on
the WCER method. fa (fs) indicates that the targets were classified using the feature extracted from
the acoustic (seismic) signal of the target without simplification and fanew (fsnew) indicates that
the targets were classified using the feature extracted from the acoustic (seismic) signal of the target
after feature simplification. fmix represents the classification of vehicles using acoustic–seismic mixed
features of the target signal.

To further clarify the classification accuracy obtained by using different extracted features, Table 4
summarizes the average classification accuracy.

We also calculated the time consumption of target classification using these features to compare
the efficiency of using different features. Two types of time use were calculated to compare
the efficiency: Time consumption of the feature extraction procedure and the time needed for
subsequent target classification using the extracted features. To compare the time consumption
of the feature extraction step, we utilized the feature extraction methods to process the dataset of 15
runs (AAV5–AAV11, DW5–DW12) and calculated the average time consumed by feature extraction
in each run. Subsequently, the average time consumption of target classification using these feature
vectors was recorded to study the effect of using different feature vectors on the time consumption of
the target classification.
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Table 5. Comparison of classification accuracy using different feature vectors.

Runname Using fa Using fanew Using fs Using fsnew Using fmix

AAV5 91.6568% 91.3609% 44.9704% 43.9645% 90.5917%
AAV6 91.7313% 90.6977% 51.2489% 51.292% 89.4488%
AAV7 90.6355% 90.0334% 50.903% 48.8294% 89.4314%
AAV8 92.3449% 91.7002% 51.0073% 49.4762% 90.2498%
AAV9 99.8538% 99.9269% 53.655% 51.462% 97.2953%
AAV10 90.3076% 89.5207% 56.0086% 55.9371% 84.2275%
AAV11 89.5599% 88.8577% 43.4457% 42.8371% 86.0955%
DW5 85.1034% 85.4323% 80.9211% 80.968% 79.3703%
DW6 85.1582% 84.5255% 89.2457% 88.4185% 87.6399%
DW7 26.1688% 25.4846% 85.8609% 86.7161% 71.2657%
DW8 31.1037% 29.8495% 68.7291% 69.5652% 60.9532%
DW9 7.75578% 6.6007% 72.5248% 72.7723% 49.9175%

DW10 36.6399% 35.2547% 90.4379% 91.1081% 69.3923%
DW11 52.0988% 51.8025% 94.6173% 94.4691% 72.2469%
DW12 42.913% 43.695% 85.9726% 85.9726% 75.8065%

The average classification accuracy and average time consumption when using different feature
vectors are shown in Table 6. The results show that the WCER feature extraction method can
effectively extract the target features from the target signals. When using the target acoustic and
seismic features extracted using the WCER method to classify vehicles, the classification accuracy
reached approximately 67%. Feature simplification can reduce the time consumption of feature
extraction and classification, while having no effect on target classification accuracy. Compared with
the use of feature vectors before simplification, the time consumption after feature simplification
decreased slightly and the time consumption of target classification decreased by almost half. The
average classification accuracy obtained by using simplified WCER features of the acoustic signal
was 0.56% lower than that obtained by using unsimplified features, and the classification accuracy
decreased by 0.38% after the features extracted from the seismic signal were simplified. This is mainly
because the removed parts of the feature vectors in the simplification process were redundant and had
no effect on the overall characteristics of the target signal.

Table 6. Average classification accuracy and time consumption using different feature vectors.

Using fa Using
fanew Using fs Using

fsnew Using fmix

Average classification accuracy 67.54% 66.98% 67.97% 67.59% 79.60%

Average time consumption of
feature extraction) 4.1696 s 4.1543 s 7.3511 s 7.2377 s 15.3392 s

Average time consumption of
classification 0.4282 s 0.2761 s 0.6403 s 0.3734 s 0.3869 s

Using mixed features can effectively improve the target classification accuracy. Compared with
the use of acoustic or seismic features, classification accuracy was improved by approximately 12%
when the acoustic–seismic mixed feature of the target signal was used.

5.2. Comparison with FFT-Based Feature Extraction Method

The experimental results in Section 5.1 show that the WCER feature extraction method can
effectively extract the characteristics of the target signal and that the feature mixing approach can
improve classification accuracy. However, whether the performance of this feature extraction method
is better than that of the existing methods is yet to be determined.
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The FFT-based feature extraction method mentioned in Section 1 is a mature and commonly
used feature extraction method. To extract the features of the target signal, the FFT of the acoustic
signals is computed every 512 points. Subsequently, the averages of every two points of the first
100 FFT values that have been normalized are used as the extracted features of 50 dimensions for target
classification. We used this feature extraction method to compare with the proposed hybrid feature
extraction method.

The data of runs AAV3, AAV4, DW3, and DW4 were used for training and the features extracted
from the dataset of the other 15 runs (AAV5–AAV11, DW5–DW12) were classified by the trained
SVM classifier.

The average time consumptions of the FFT-based and the WCER feature extraction methods were
calculated to compare the efficiency of these methods.

As shown in Tables 7 and 8, the average classification accuracy of the WCER method was 2.88%
higher than that of the FFT-based method when the features extracted from the target acoustic signal
were used. This is mainly because only the energy of the low-frequency band of the target signal
is extracted by the FFT-based method and utilized for target classification. Compared with the
FFT-based method, the proposed WCER feature extraction method utilizes all the signal spectrum
energy characteristics to classify targets. We also observed that the time consumed by the proposed
WCER method to extract features from the target acoustic signal is less than that of the FFT-based
method because wavelet decomposition of the signal sequence takes less time than the FFT operation
of the same signal sequence. Moreover, the number of variables in the signal feature extracted by
the WCER method is less than the number of feature variables extracted by the FFT-based method,
resulting in less time spent on subsequent target classification when using the proposed WCER method.

Table 7. Comparison of classification accuracy of different feature extraction methods.

Runname Using fmix
Using

FFT-Based
Features

Runname Using fmix
Using

FFT-Based
Features

AAV5 90.5917% 93.8462% DW5 79.3703% 90.7895%
AAV6 89.4488% 97.7606% DW6 87.6399% 94.7445%
AAV7 89.4314% 52.5753% DW7 71.2657% 25.0855%
AAV8 90.2498% 74.0532% DW8 60.9532% 40.1338%
AAV9 97.2953% 62.7924% DW9 49.9175% 21.6172%
AAV10 84.2275% 88.7339% DW10 69.3923% 42.8061%
AAV11 86.0955% 90.2154% DW11 72.2469% 46.1728%

DW12 75.8065% 40.176%

Table 8. Average classification accuracy and time needed for different feature extraction methods.

Using fmix Using fanew Using FFT-Based
Features

Average classification accuracy 79.60% 66.98% 64.10%

Efficiency (time consumption of
feature extraction) 15.3392 s 4.1543 s 5.5515 s

Time consumption of classification 0.3869 s 0.2761 s 0.3749 s

Compared with the FFT-based feature extraction method, average classification accuracy is
improved by 15.5% when using acoustic–seismic mixed features. At the same time, the time
consumption of target feature extraction is increased significantly. This is because the increased
number of calculations leads to more time spent as the WCER method requires extraction of not only
the features of the target acoustic signal, but also of the seismic features of the same target when using
the acoustic–seismic mixed features.
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6. Conclusions

In this paper, we proposed a novel feature extraction method named WCER based on WT for
vehicle classification in WSNs. The acoustic-seismic mixed feature extraction method is presented after
the acoustic and seismic WCER features of the target signal were simplified using the hierarchical
clustering method. The flow of the proposed method for extracting acoustic–seismic mixed
features of the target is shown in Figure 7. Finally, we studied the target classification accuracy
and time consumption of the proposed feature extraction method. The experiment results show
that classification accuracy of the targets detected in WSN is effectively improved by using the
acoustic–seismic mixed feature of the target.
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Another advantage of using the wavelet-based feature extraction method is that the wavelet
coefficients can be processed using the thresholding method [30] for denoising before calculating the
WCER of the target signal. Thus, the combination of the denoising and feature extraction methods
can effectively reduce the time consumption of the entire signal processing of WSN from denoising to
target classification.
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Abbreviations

The following abbreviations are used in this manuscript

WCER Wavelet coefficient energy ratio
WSNs Wireless sensor networks
WT Wavelet transform
DWT Discrete wavelet transform
FFT Fast Fourier transform
AAV Assault amphibian vehicle
DW Dragon wagon
UPGMA Unweighted pair grouping method with arithmetic mean
PCA Principal component analysis
KNN K-nearest neighbor
DT Decision tree
NB Naive Bayes
SVM Support vector machine
C-SVC C support vector classifier
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