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Abstract: Our vision system has a combination of different sensor arrangements from hexagonal to
elliptical ones. Inspired from this variation in type of arrangements we propose a general framework
by which it becomes feasible to create virtual deformable sensor arrangements. In the framework
for a certain sensor arrangement a configuration of three optional variables are used which includes
the structure of arrangement, the pixel form and the gap factor. We show that the histogram of
gradient orientations of a certain sensor arrangement has a specific distribution (called ANCHOR)
which is obtained by using at least two generated images of the configuration. The results showed
that ANCHORs change their patterns by the change of arrangement structure. In this relation
pixel size changes have 10-fold more impact on ANCHORs than gap factor changes. A set of
23 images; randomly chosen from a database of 1805 images, are used in the evaluation where
each image generates twenty-five different images based on the sensor configuration. The robustness
of ANCHORs properties is verified by computing ANCHORs for totally 575 images with different
sensor configurations. We believe by using the framework and ANCHOR it becomes feasible to plan
a sensor arrangement in the relation to a specific application and its requirements where the sensor
arrangement can be planed even as combination of different ANCHORs.
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1. Introduction

The most dominant grid structure of the image sensor in a digital camera is the two-dimensional
square grid, where each pixel has a square as its basic form. The ease of its implementation in the
Cartesian coordinate system is the main reason for its popularity since the invention of the first digital
image camera. In recent years, the performance of digital cameras has improved drastically due
to increase of resolution of the image sensors achieved by reducing the pixel size. In some special
image sensors such as OV5675 from OmniVision [1], the pixel size is as small as 1.12 µm× 1.12 µm.
However, the smaller pixel size results to lower dynamic range (DR), lower signal-to-noise ratio
(SNR) and lower fill factor (FF) [2], indicating that by reducing the pixel size the image quality is
reduced. Moreover, the optical diffraction limit; which is a constraint by the aperture of optical
elements, makes it impossible to physically reduce the pixel size less than 1.22 λ f /D according to
Rayleigh criterion, where λ is the wavelength of light, f is the focal length of lens, and D is the
aperture diameter. The wavelengths of visible light range are between 390 nm to 780 nm for a typical
human eye. The Quanta Image Sensor (QIS) is proposed to overcome the sub-diffraction-limit [3–5],
where each pixel is partitioned into thousands of single photon sensitive sub-pixels (e.g., 200–1000 nm
pitch) referred to as “jots”. The sensor measures light intensity using oversampled binary observations
which is sensitive to single photon. Its architecture allows high spatial (>109/sensor) and temporal
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resolution (>102–103 Hz) of photon strikes on image planes. However, image reconstruction of the
sensor remains a challenging issue. Anatomical and physiological studies indicate that our visual
quality-related issues, such as high contrast sensitivity, high SNR, and optimal sampling are related
directly to the form and arrangement of the sensors in the visual system [6], which have a significant
role in optimizing the visual acuity [7]. Within the retina of our eye, the photoreceptor (the rods
and cones) mosaic determines the amount of information which is retained or lost by the sampling
process, including resolution acuity and detection acuity [8]. The photoreceptor layer specialized for
maximum visual acuity is in the center of the retina; i.e., the fovea. Figure 1 shows the distribution of
photoreceptors in the areas from the center to the periphery of the retina. The shape of cones in the
fovea is similar to a hexagonal structure, densely packed, with virtually no gap between neighboring
cones. However, in the periphery, the cones and rods are not packed closely, particularly the cones are
far apart from each other, and the form of each photoreceptor is closer to elliptical.
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Inspired by the visual system, the hexagonal grid structure has been proposed and implemented
on hardware, since many years ago, as an alternative grid structure for image representation instead of
the conventional grid, due to its advantages compared to the square grid [10–12]. Two examples of
such hardware implementations are the super CCD from Fujifilm which features an octagonal-formed
pixel in a hexagonal sensor grid [13], and color filters in hexagonal form for the image sensors to
improve the quality of the acquired information by the sensor [14]. The cost of transferring the popular
square grid and pixel form to the hexagonal ones in camera and display technologies has been one of
the issues in today’s unpopularity of the hardware hexagonal technique implementation. The other
issue is the difficulty of image processing of hexagonal images where unlike the square grid, the points
in a hexagonal grid do not easily lend themselves to be addressed by integer Cartesian coordinates;
due to that the points are not aligned in two orthogonal directions. Besides hardware implementation
of the hexagonal grid, several attempts at building artificial retinas with electronic hardware are
also achieved showing a development from implementations with discrete components [15] over
first integrated versions [16] to high-density arrays [17] with resolutions of up to 48,000 pixels [18].
However, when it is about flexibility, once one image sensor is manufactured, it is almost impossible
to change the sensor grid and pixel form physically on the hardware. To overcome the hardware
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limitation and deform the current image sensor closer to the retina, a software-based framework is
necessary to achieve an optimal spatial sampling process. Such a framework can offer flexibility in
design of pixel form and grid structure of the image sensor.

Numerous software solutions using image processing algorithms were developed to generate
a virtual image sensor. Based on the grid pattern, there are two types of the virtual sensor grids:
periodic tiling grid (i.e., the square or hexagonal grids) [7] and aperiodic tiling grid (i.e., Penrose or
log-spiral grids) [19,20]. Currently, generation of the hexagonal or Penrose sensor grid is generally
achieved by having larger pixels with linear and non-linear interpolation of intensity values of the
square pixel form in the Cartesian system, such as the nearest neighbor, bilinear, bicubic and the
spline based on least-squares [21–23]. In different tiling grids, there are various pixel forms which
can be fixed and regular, such as square, hexagonal and rhombus, or can be dynamic and irregular,
such as Voronoi [24,25]. To have a higher fill factor, all the pixel forms are used for removing the gap
between pixels. However, the achievement of the different pixel forms in different grids are still done
by interpolation.

In this paper, we propose a general framework towards a virtual deformable image sensor in
which grid, pixel and the gap (i.e., the empty space among pixels) can change their form and size.
This facilitates application-based configuration of grid, pixel, and gap on the image sensor. In the
core framework, we use the idea of modelling the incident photons onto the sensor surface which is
elaborated in our previous works [26,27]. Accordingly, each pixel of a captured image by a traditional
image sensor (i.e., having square grid and pixel form) is projected onto a grid of L × L square subpixels
in which the grid is arranged by the known fill factor or its estimation value as in [28]. Inspired by
Monte Carlo simulation, the intensity values of the subpixels are estimated by a statistical resampling
process; using a local learning model, a Bayesian inference method, and a maximum likelihood
estimator (of Gaussian distribution). Then the subpixels are projected onto the deformed pixel and
grid of image sensor; based on the grid and pixel configuration. Certain configurations are studied in
our previous works:

(a) The grid and pixel are square and there is no or fixed gap [26,27]. By virtual increase of the fill
factor to 100%, the gap between actual pixels in a CCD camera sensor is removed. The results
show the dynamic range is widened and tonal level is extended.

(b) The grid and pixel are hexagonal and square respectively and there is no or fixed gap in [29],
where the hexagonal grid is generated by a half-pixel shifting, its results show that the generated
hexagonal images are superior in detection of curvature edges to the square images.

(c) The grid and pixel are hexagonal and there is no gap [30]. In this work, the impact of the
three sensor properties, the grid structure, pixel form and fill factor, is examined by curviness
quantification using gradient computation. The results show that the grid structure and pixel
form are the first and second most important properties and the hexagonal image is the best
image type for distinguishing the contours in the images.

In this study we pay attention to two new configurations:

(d) The grid and pixel are hexagonal and there is a fixed gap;
(e) The grid and pixel are Penrose and there is no or fixed gap. In this paper, the feature descriptor,

histogram of oriented gradient (HoG), is used for examining the impact of the above two
configurations to obtain the characteristics of the sensor structure.

This paper is organized as follows: in Sections 2 and 3, periodic and aperiodic tiling on an image
sensor and the methodology are discussed in more detail. In Section 4 the implementation of HoG
in relation to the configurations of d and e is elaborated. Section 5 presents the experiment setup.
Then the results are shown and analyzed in Section 6. Finally, we summarized and discussed our work
in this paper in Section 7.
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2. Virtual Deformable Image Sensor

The enhanced and zoomed images of four segments of a human foveal photoreceptor mosaic from
the original image printed in [8] are shown in Figure 2. From left to right, the segment is chosen from
the center of the fovea, the slope of the fovea, and the peripheral areas that are 1.35 mm and 5 mm away
from the fovea center, respectively. In the fovea center, the photoreceptors are only cones and packed
densely, the form of each cone is close to hexagonal in shape. When the cones are farther far away from
the fovea center, the cone size is getting larger, and their form is changing from hexagonal to circular,
and then to elliptical. Figure 3 shows a simulated sensor structure according to the distribution of
cones in retina of the eye shown in Figure 2. The area in Figure 3 is separated into four areas a, b,
c and d, each of which corresponds to one segment in Figure 2. The red contours represent the active
pixels on the image sensor. From the left to right, the gaps between the pixels are getting larger as well
as the pixel size from dense to sparse, and the form of pixels is changing from the hexagon to round
and to ellipse. Although densely packed sensors without gaps between pixels have higher visual
resolution, the pixel size is smaller, which limits the visual detection, i.e., the presence of a spatial
contrast (tonal levels) [31]. To simulate a sensor structure close to the cones distribution in the retina,
a framework is necessarily for generating image sensors with different configurations based on grid
structure, pixel form and gap. In this paper, we mainly focus on the area a and b shown in Figure 3,
where the pixel forms and sensor grids are kept the same with no gap and fixed gap.
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Figure 2. The enhanced and zoomed images of four segments of a human foveal photoreceptor mosaic
from the original image printed in [8], From left to right, the segment is chosen from (a) the center of
fovea, (b) the slope of fovea, and (c,d) the peripheral areas that are 1.35 mm and 5 mm away from the
fovea center respectively.
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Figure 3. A simulated sensor structure according to the distribution of photoreceptors in retina of the
eye. Each area of (a–d) corresponds to each segment of (a–d) in Figure 2.

The design of the pixel arrangement and pixel form on an image sensor is dependent on tiling,
which is a way of covering a flat surface with smaller forms or tiles without gaps or overlaps. In an
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image sensor, each pixel is a tile. When the pixels are repeating themselves in regular and periodic
intervals, it will be called periodic tiling. On the contrary, when the pattern of pixels is not repeatable,
it will be aperiodic or non-periodic tiling. In conventional image sensor systems, the most familiar tiling
is periodic, e.g., by squares pixels, which form the basic building unit of a digital image. Due to the
difficulty of physical deformation on image sensors, various virtual sensor grids are generated based
on the two types of tiling techniques. Except the general square pixel tiling sensor, hexagonal tiling
and Penrose tiling are two most popular representatives for periodic and aperiodic tiling, respectively.

2.1. Hexagonal Tiling

In hexagonal tiling, the hexagonal pixels are arranged in a hexagonal grid. A hexagonal image
is generally generated from an original square image. The half pixel shifting method is a popular
method in generation of such hexagonal images, which is derived from delaying the sampling by
a half a pixel on the horizontal direction as it is shown in Figure 4 [32]. In Figure 4, the left and
right patterns are showing the conventional square lattice and the new pseudo-hexagonal sampling
structure, whose pixel form is still square; see the six connected pixels by the dashed lines. In such
sampling structure, the distance between the two sampling points, pixels, are not the same; they are
one or

√
5/2. Another well-known way of hexagonal image generation upsamples firstly the original

square lattice data to a much denser square sub-pixels by interpolation [33], and then cluster a group of
sub-pixels of the intermediate data together into an equivalent hexagonal pixel. By this way a pseudo
hexagonal pixel, known as a hyperpel, is generated from a cluster of square pixels [34], which is widely
used for displaying a hexagonal image on normal monitor. In Figure 5b, each area surrounding with
red boundary is a cluster of square subpixels represented by a hyperpel. In this method, the distance
between each two adjacent hexagonal pixels is almost the same, and the form of each pixel is close to
a hexagon. In both methods, the new pixel intensity in the hexagonal grid has the average intensity
value of a group of square pixels, as it is done in Figures 4 and 5.
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Figure 5. Illustration of the square to hexagonal lattice conversion by the hyperpel method (a) the
sub-pixels in each surrounded area by red boundary are clustered together for the corresponding
hexagonal pixel and (b) the value of each hexagonal pixel is the average intensity of the sub-pixels
within each cluster [35].
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2.2. Penrose Pixel Arrangment

Although the hexagonal structure is very close to the true structure of human vision system in the
fovea, however it is still far away from a perfect and real model of it. The truth is that photoreceptors
in the human fovea are arranged non-periodically, due to that each of photoreceptors as a tile is not
repeatable in the region of human retina. One way to construct the aperiodic pixel grid is to use
Penrose tiling, which was presented by Penrose in 1973 [36], and has been used for building the models
of the sensor pixel layout [24]. Figure 6 shows the rhombus Penrose tiling, which consists of two types
of rhombuses, each placed at five different orientations by specific rules [36]. The two types of Penrose
rhomb tiles can be divided into two groups of thin and thick rhombuses. The thin rhomb has four
corners with angles of 36, 144, 36, and 144 degrees, and the thick rhomb has angles of 72, 108, 72,
and 108 degrees. The ratio of the number of thick to thin rhombi is the Golden Number 1+

√
5

2 , which is
also the ratio of their area. Unlike the periodic tiling, Penrose tiling has no translational symmetry;
it never repeats itself exactly. This means that it is theoretically possible to integrate and sample
the infinite plane indefinitely without repeating the same pixel structure. In practice, this allows to
virtually sample a significantly larger number of different images than is possible with a regular, square
grid. In the method presented in [24], the Penrose tiling is achieved by the process of upsampling and
resampling. The upsampling is done by placing the regular pixel intensities over a new grid of square
subpixel and implementing the nearest neighbor interpolation. Then the new grid of subpixels is
projected onto the grid of Penrose pixels. Each of Penrose pixel, the thin or thick rhombus, is composed
by a cluster of subpixels. The Penrose pixel intensity is the average intensity value of the subpixel
intensities that belong to its cluster.

Although the virtual sensor can be generated with hexagonal or Penrose structures; i.e.,
by interpolation means as it was discussed above, however the problems related to the upsampling
process are remained in these arrangements. We believe by implementation of reconstruction instead
of interpolation process it is possible to solve this challenging problem. In a reconstruction process
new data (i.e., for the non-available subpixels intensities) is added to the current one (i.e., the available
subpixels intensities) using a resampling model; e.g., a model based on incidental photons onto sensor
surface. An interpolation process is using the current data to predict non-available subpixels intensities;
e.g., by using a local mean filter. Thus, it is reasonable to use the reconstruction process in a framework
of a deformable sensor grid which it is elaborated in Section 3.
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3. Image Generation on Deformable Grid

In this section, the process of generating an image using the virtual deformable sensor under
the framework is explained. According to the model of the incident photons onto the sensor surface
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presented in [26], the reconstruction process is divided into three steps of: (a) projecting each original
pixel intensity onto a new grid of subpixels based on the gap size and form in the configuration;
(b) estimating the values of subpixels based on a local learning model; and (c) estimating the new pixel
intensity by decision-making based on the grid structure and pixel form in the configuration. The three
steps are elaborated below:

(a) A grid of virtual image sensor pixels is constructed. Each original pixel, having square pixel form
and arranged in square grid is projected onto a grid of L × L square subpixels. According to the
configuration size of the gap G between the pixels, the size of the active pixel area is defined as
S× S, where S = L− G. The intensity value of every pixel in the image sensor array is assigned
to the virtual active pixel area in the new grid. The intensities of subpixels in the gap areas are
assigned to be zero. An example of such sensor rearrangement on sub-pixel level is presented in
Figure 6, where there is a 3 by 3 pixels’ grid, and the light and dark grey areas represent the active
pixel areas and the gap areas. Assuming L = 30 and S = 18, and thereby the gap size becomes
G = 12 according to the above equation.

(b) The second step is to estimate the values of subpixels in both pixel areas and gap areas.
Considering the statistical fluctuation of incident photons and their conversion to electrons
on the sensor is a random Gaussian process, from a certain neighborhood area of each pixel,
a local Gaussian model is generated by maximum likelihood method. Then a local noise source is
generated within each local model, and introduced to its certain neighborhood. Inspired by Monte
Carlo simulation, all subpixels in each certain neighborhood are estimated in an iteration process
using the known pixel values (for subpixels in the active pixel area) or by linear polynomial
reconstruction (for subpixels in gap area). In each iteration step the number of subpixels in the
pixel area is varied from zero to total number of subpixels in pixel area. After the iteration process,
a vector of intensity values for each subpixel is generated and the final subpixel value is predicted
using Bayesian inference method and maximum likelihood of Gaussian distribution.

(c) In the third step, the subpixels are projected onto the new deformable sensor grid with different
sensor grid, pixel form and gap size in respective configuration proposed in Section 2. In this
paper, three sets of configurations are considered: (1) square grid and pixel form with or without
gap; (2) pseudo-hexagonal grid by half-square-pixel shift and square pixel form with or without
gap; (3) hexagonal grid and pixel form with or without gap; and (4) Penrose grid and rhombus
pixel form with or without gap, where each of the configurations deformability is demonstrated.
For the image generation in the different grids, the subpixels are projected back onto the new
sensor grid. The intensity value of each pixel in different sets of configurations is the intensity
value which has the strongest contribution in the histogram of its belonging subpixels.

4. Implementing Histogram of Gradient in Different Configurations

In [30], the gradient is proved to be an effective parameter for examining the impact of different
sensor grids and pixel forms on curviness. In this paper, the histogram of gradient (HoG) is used
for evaluating the characteristic of the sensors having different configurations. The general process
of HoG on square images; i.e., from extracting features to object detection, is presented in Figure 7,
which is divided into four steps. The first step is gradient computation. In [37], it is proved that the
performance of feature detection is sensitive to the way in which gradients are computed, but the
simplest scheme turns out to be the best. The most common method is to apply the one dimensional
centered, point discrete derivative mask in both horizontal and vertical directions with the filter kernels
of [−1 0 1]T and [−1 0 1] . The second step in HoG process is spatial/orientation binning. In this step,
the image is divided into a group of cells, each of which is a local spatial region in the image. For pixels
within each cell a histogram of gradient directions is compiled where each pixel casts a weighted
vote (typically as the gradient magnitude itself), for an orientation-based histogram based on the
computed gradient values and then the votes are accumulated into orientation bins over the cell.
Cells can be either rectangular or radial in shape. The orientation bins are evenly spread over 0 to
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180 degrees (unsigned gradient) or 0 to 360 degrees (signed gradient). In the third step in HoG process
due to the local variations in illumination and foreground-background contrast, the gradient strengths
are normalized to reduce the variation. The effective local contrast normalization turns out to be
essential for good performance [37]. The current normalization methods mostly are based on grouping
cells into larger spatial blocks and contrast normalizing each block separately. The main geometries
of the blocks are rectangular R-HoG blocks [37], circular C-HoG blocks [38] and hexagonal H-HoG
blocks [39]. According to the result in [39], the hexagonal structure block is more effective and efficient
than conventional structure block. The fourth and final step in HoG process is generation of feature
descriptor which is a concatenated vector of all components of the normalized cell histograms from all
the blocks.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 

 

to be essential for good performance [37]. The current normalization methods mostly are based on 

grouping cells into larger spatial blocks and contrast normalizing each block separately. The main 

geometries of the blocks are rectangular R-HoG blocks [37], circular C-HoG blocks [38] and hexagonal 

H-HoG blocks [39]. According to the result in [39], the hexagonal structure block is more effective 

and efficient than conventional structure block. The fourth and final step in HoG process is generation 

of feature descriptor which is a concatenated vector of all components of the normalized cell 

histograms from all the blocks. 

Gradient 
computation

Spatial / 
Orientation 

Binning 

Descriptor 
Blocks and  

Normalization 

Input 
greylevel 

image

HoG feature 
Collection 

Classifier

 

Figure 7. An overview of the feature extraction and object detection chain. 

Due to the fact that the sensor arrangements of hexagonal and Penrose images are hexagonal 

and aperiodic, respectively, the gradient computations in these arrangements are different from the 

square arrangement where the HoG is generally implemented. The hexagonal grid is periodic tiling, 

and each of its pixel has six adjacent neighbor pixels within the same distance, which is unlike the 

pixel in the square grid which has four neighbors; i.e., the gradient computation in hexagonal grid is 

done in three directions with the same kernel of [−1 0 1]. 

The gradient computation in Penrose grid is more complex due to the fact the pixels are arranged 

by aperiodic tiling, which the kernel of [−1 0 1] cannot be implemented directly. In a Penrose grid, 

each pixel has four adjacent neighbor pixels. Each pixel has the form of a thin or thick rhombus with 

two pairs of 36 and 144 or 72 and 108 degrees, respectively. The slope of the line which connects two 

corners of such rhombi with a smaller pair of angles is used as pixel direction. The directions of each 

pixel and its adjacent pixel are used to obtain five virtual vectors with the respective direction from 

the same origin where the magnitude of vectors are the intensity values of the respective pixel. The 

gradient between an actual pixel and each of its neighboring ones is computed by vector subtraction 

of the respective vectors which allows us to find the orientation and amplitude of the gradient. 

5. Experimental Setup 

The dataset used in the experiment is ‘INRIA’ proposed in [37], which contains 1805 cropped 

images of humans taken from different sets of personal photos. This dataset was produced at 

beginning for the challenging task of pedestrian detection. The people are usually standing, but 

appear in any orientation and against a wide variety of background scenery, including crowds. Each 

of the cropped human images has a resolution of 64 × 128. For the experiment 23 images were 

randomly selected from this dataset. Each selected image is used to generate four sets of images by 

implementing the process described in Section 3. The four sets differ due to the type of grid structure 

which can be square, half pixel shift, hexagon, or Penrose type. We named the generated images in 

each set based on the type of grid structure, i.e., four sets of square enriched (SQ_E), half pixel shift 

enriched (HS_E), hexagonal enriched (Hex_E), and Penrose enriched (Pen_E) images. The “enriched 

(E)” in the name of images refers to tonal enrichment property of images which is obtained by the 

processing, in comparison to non-processed original type of images. The images of each four sets 

differ due to the configuration parameters of pixel form and gap size. Figure 8 shows one of the 

original images (SQ) from the database and one image of each four sets of images. From left to right, 

the types of images are SQ, SQ_E, HS_E, Hex_E, and Pen_E. The whole images are shown in the first 

row and the areas marked with red square in each image in the first row are zoomed out and shown 

in the second row. For visualization purposes each pixel in the hexagonal and Penrose grids is 

composed by a group of square pixels. The generated images show better dynamic range and higher 

contrast in comparison to the original images. All the processing is programmed and done by 

Matlab2017b on a stationary computer with an Intel i7-6850k CPU (Intel Corporation, Santa Clara, 

CA, USA) and a 32 GB RAM memory to keep the process stable and fast. 

Figure 7. An overview of the feature extraction and object detection chain.

Due to the fact that the sensor arrangements of hexagonal and Penrose images are hexagonal and
aperiodic, respectively, the gradient computations in these arrangements are different from the square
arrangement where the HoG is generally implemented. The hexagonal grid is periodic tiling, and each
of its pixel has six adjacent neighbor pixels within the same distance, which is unlike the pixel in the
square grid which has four neighbors; i.e., the gradient computation in hexagonal grid is done in three
directions with the same kernel of [−1 0 1].

The gradient computation in Penrose grid is more complex due to the fact the pixels are arranged
by aperiodic tiling, which the kernel of [−1 0 1] cannot be implemented directly. In a Penrose grid,
each pixel has four adjacent neighbor pixels. Each pixel has the form of a thin or thick rhombus with
two pairs of 36 and 144 or 72 and 108 degrees, respectively. The slope of the line which connects two
corners of such rhombi with a smaller pair of angles is used as pixel direction. The directions of each
pixel and its adjacent pixel are used to obtain five virtual vectors with the respective direction from the
same origin where the magnitude of vectors are the intensity values of the respective pixel. The gradient
between an actual pixel and each of its neighboring ones is computed by vector subtraction of the
respective vectors which allows us to find the orientation and amplitude of the gradient.

5. Experimental Setup

The dataset used in the experiment is ‘INRIA’ proposed in [37], which contains 1805 cropped
images of humans taken from different sets of personal photos. This dataset was produced at beginning
for the challenging task of pedestrian detection. The people are usually standing, but appear in any
orientation and against a wide variety of background scenery, including crowds. Each of the cropped
human images has a resolution of 64 × 128. For the experiment 23 images were randomly selected
from this dataset. Each selected image is used to generate four sets of images by implementing
the process described in Section 3. The four sets differ due to the type of grid structure which can
be square, half pixel shift, hexagon, or Penrose type. We named the generated images in each set
based on the type of grid structure, i.e., four sets of square enriched (SQ_E), half pixel shift enriched
(HS_E), hexagonal enriched (Hex_E), and Penrose enriched (Pen_E) images. The “enriched (E)” in the
name of images refers to tonal enrichment property of images which is obtained by the processing,
in comparison to non-processed original type of images. The images of each four sets differ due to the
configuration parameters of pixel form and gap size. Figure 8 shows one of the original images (SQ)
from the database and one image of each four sets of images. From left to right, the types of images
are SQ, SQ_E, HS_E, Hex_E, and Pen_E. The whole images are shown in the first row and the areas
marked with red square in each image in the first row are zoomed out and shown in the second row.
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For visualization purposes each pixel in the hexagonal and Penrose grids is composed by a group of
square pixels. The generated images show better dynamic range and higher contrast in comparison
to the original images. All the processing is programmed and done by Matlab2017b on a stationary
computer with an Intel i7-6850k CPU (Intel Corporation, Santa Clara, CA, USA) and a 32 GB RAM
memory to keep the process stable and fast.
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6. Results and Discussion

For each image of the four sets of images HoG is computed as explained in Section 4. As the
gradient indicates the directional change of intensities in an image, the gradient orientation is used to
show the difference among different image types. Figure 9 shows row-wise histogram of the gradient
orientation of five images of the database and column-wise image types of SQ, SQ_E, HS_E, Hex_E
and Pen_E. In the figure considering the results of SQ and SQ_E image types, the peaks of histogram
of the gradient orientation are close to 0, 90 and −90 degrees, indicating that square sensor structure is
more sensitive to the vertical and horizontal changes. When the sensor structure is hexagonal; having
HS_E and Hex_E image types, the result of the two types are very close to each other and for both
types there are more sensitive angles in comparison to the square arrangement; the peaks are at 60,
120 and 180 degrees. When Penrose structure images are considered, due to their having two types
of rhombus in the pixel form where the angle between each pixel is either around 72 or 144 degrees,
the peaks are also close to 72 or 144 degrees. The results related to the five images of Figure 8 are
verified for all images of the experimental dataset. Accordingly, the histogram of gradient orientation
shows a specific distribution related to each sensor structure with certain gap size. We call this specific
distribution as the ANgular CHaracteristic of a sensOR structure (ANCHOR). When the number of
bins for orientation of the gradient is 36, the envelope of a histogram becomes smooth as a curve.
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Figure 9. The angular characteristic of sensor grid structure. The five columns of figures are the
histograms of the gradient orientation from five images in the database. From the first to the fourth
row, the five image types are SQ, SQ_E, HS_E, Hex_E and Pen_E.
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In Figure 10, from top to bottom, the five ANCHOR curves show the normalized average values
of 23 histograms of the gradient orientation. The result is consistent to what we conclude from
Figure 9. The right Figure 10 shows the comparison between ANCHORs of Pen_E (black) and Hex_E
(green). These ANCHORs together, representing combination of two types of sensor arrangements,
compensate each other’s week sensitivity areas and become more sensitive to detect directional changes
of intensities. Part of the mosaic of photoreceptors in the human retina has such a combination of the
two types of arrangement.
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Figure 10. The histograms of the gradient orientation with 36 bins are shown in the (left). From top to
bottom, there are results related to SQ, SQ_E, HS_E, Hex_E and Pen_E respectively. The ANCHORs
show the average values of 23 histograms of the gradient orientation. The (right) shows the comparison
between ANCHORs of Pen_E (black) and Hex_E (green). These ANCHORs together, representing
combination of two types of sensor arrangements, compensate each other’s week sensitivity areas and
become more sensitive to detect directional changes of intensities.

The characteristic robustness of ANCHORs is examined by computing averaging of n number of
histograms of orientation, where n is varied from two to twenty-three; i.e., the computations result to
obtain n number of candidates for each ANCHOR. Then the Mean Square Error (MSE) between each
two candidates of certain ANCHOR is computed by:

MSE =
1
n

n

∑
i=2

(
Yi −Y

)2

where i and n represent the number of orientation degree index and the number of the averaged
histograms respectively. Yi and Y represent the average value from i histograms and 23 histograms.
The results for different sensor structure are shown in Figure 11, where the five color lines from top to
bottom represent five image types, SQ, SQ_E, HS_E, Hex_E and Pen_E. The figure shows that each
of MSE result decreases close to zero after ten combinations; indicating no further changes on the
respective ANCHOR has occurred. Thus, ten images are enough to obtain a robust ANCHOR for
each type of arrangement. As the results in the figure show, the MSE values reduce to small values
after having just two images which indicate that the robustness of ANCHORs is strong and almost
independent of the number of images. Among ANCHORs, the one of Pen_E has the lowest MSE
values, indicating the strongest robustness of the corresponding ANCHOR. The variance of ANCHORS
computed from 23 images is shown in Figure 12. It shows that the variance of the arrangement type
of Pen_E has the lowest variance values in different orientation angles between 0 to 360 degrees.
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However, and the ones of the arrangement types of SQ and SQ_E have the highest variance values.
The results are consistent with the result in Figure 10, that the Penrose sensor structure has the most
robust ANCHOR.Sensors 2018, 18, x FOR PEER REVIEW  11 of 16 
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Figure 12. The variance of ANCHORs is demonstrated. The histograms of the gradient orientation
with 36 bins are used and from top to bottom, there are results related to SQ, SQ_E, HS_E, Hex_E
and Pen_E respectively. The ANCHOR of Pen_E (black) has the lowest variance and the SQ (deep
blue) have the highest, indicate the Penrose arrangement has more robust ANCHOR in comparison to
the others.
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The gap factor is defined in relation to the gap size and pixel size by:

gap f actor =
gap size

pixel size
× 100%

Assuming the pixel size is 100 and the gap size between the active areas in two pixels is 20, the gap
factor becomes 20%. In the following experiment, the gap size is set at 0, 20, 40 and 60, which is
corresponding to gap factor of 0%, 20%, 40% and 60%. Figure 13 shows one example of the hexagonal
sensor having the gap factor of 0%, 20% and 60% from left to right where the pixel size is kept the same.
Figure 14 shows the results of gradient orientation; i.e., the ANCHORs, of four types of images, SQ_E,
HS_E, Hex_E and Pen_E with different configurations of gap factor. In the figure due to that the effect
of the gap factors on the SQ image, i.e., the original image, cannot be implemented its ANCHOR is the
same for different gap factors. Each column represents one type of images, and the rows represent the
effect of different gap factors on the respective ANCHOR. The effect of ANCHOR changes in relation
to gap factor is investigated by MSE computation between a reference ANCHOR (having the same
pixel size as the original image and gap factor of 0%) and an ANCHOR with the same pixel size but
different gap factor in relation to the reference one. The mean of MSEs from 23 images for different
types of arrangement are shown in Table 1. In the table the values of average MSEs increase with
increase of the gap factor, however the rate of increase is lowest in the SQ_E arrangement type and
highest in HS_E and Hex_E ones.
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Table 1. The average MSE of orientation of four image types with different configurations of gap factor
referred to the 0% gap factor.

Referred to 0% Gap Factor

Gap Factor SQ_E HS_E Hex_E Pen_E

60% 0.0052 0.0059 0.0078 0.0004
40% 0.0049 0.0029 0.0053 0.00035
20% 0.0050 0.0028 0.0034 0.0003

Figure 15 shows the ANCHORs of five types of images (as in Figure 15) when the pixel size is
increased by 20% and having gap factor of 0%. All the results show that the images of the same sensor
structure follow the same specific pattern. Table 2 shows the MSEs between the reference ANCHOR
and ANCHORs of different types of arrangements with increased pixel size of 20% (in comparison
to as original image) and gap factor of 0%. The table shows that pixel size increase results in 10-fold
impact on ANCHOR of SQ arrangement in comparison to the other types. The Tables 1 and 2
show that the impact of pixel size changes is greater that gap factor changes on ANCHORs of all
involved arrangements.
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factor is 0%.

Table 2. The average MSE of orientation of four image types with pixel size increase of 20% and 0%
gap factor.

Referred to 0% Gap Factor

Gap factor SQ_E HS_E Hex_E Pen_E

0% 0.0039 0.0308 0.0271 0.0036

The HoG is computed for the four set of images in the experiment as explained in Section 4,
where each HoG result is represented as a vector. In our experiment, the block size is set to 4, 8 and 16.
The correlation between the results of HoG for SQ images and the other four types of images (having
the same block size of either 4, 8, or 16) are computed for the similarity comparison which are shown
in Table 3. The HoG in SQ_E image has the highest correlation to SQ image because they have the
same sensor structure and pixel form. When the block size is increased from 4 to 16, the correlation
values increase as well. In Table 3, the three block sizes are marked with three colors of blue, green
and red for block size of 4, 8 and 16. In each row, there are four correlation values in relation to each
block size, for which the lowest ones are marked blue, green, and red. For example, the lowest value
in relation to block size 16 is marked red.

As Table 3 shows, the lowest correlation values related to block sizes are related to the Pen_E
and Hex_E arrangements. Such results indicate that one should expect most different results of
HoG having Pen_E in first place and then Hex_E arrangements. The differences among the four
types of arrangements are measured by using their correlation to the same reference SQ image type.
The cause of such differences between each two arrangements is related to the differences between
their ANCHORs.
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Table 3. The correlation between the results of HoG for SQ images and the other four types of images
in respect to block size.

Correlation to SQ

SQ_E HS_E Hex_E Pen_E

No. Size 4 Size 8 Size 16 Size 4 Size 8 Size 16 Size 4 Size 8 Size 16 Size 4 Size 8 Size 16

1 0.593 0.799 0.9 0.123 0.097 0.071 0.096 0.072 0.04 0.064 0.072 0.163
2 0.679 0.818 0.907 0.258 0.289 0.341 0.27 0.309 0.369 0.064 0.074 0.106
3 0.627 0.819 0.911 0.155 0.164 0.239 0.149 0.18 0.267 0.001 0.035 0.081
4 0.672 0.809 0.886 0.066 0.131 0.167 0.053 0.12 0.132 0.081 0.114 0.173
5 0.648 0.817 0.929 0.101 0.156 0.097 0.108 0.145 0.107 0.029 0.062 0.072
6 0.676 0.862 0.947 0.074 0.124 0.15 0.066 0.128 0.15 0.042 0.14 0.232
7 0.623 0.822 0.903 0.022 0.111 0.229 0.056 0.126 0.204 0.012 0.015 0.067
8 0.634 0.824 0.912 0.082 0.138 0.107 0.087 0.133 0.113 0.05 0.089 0.121
9 0.65 0.834 0.918 0.01 0.019 0.075 0.018 0.007 0.084 0.018 0.076 0.171
10 0.652 0.858 0.951 0.008 0.006 0.14 0.004 0.002 0.158 0.164 0.243 0.368
11 0.633 0.802 0.907 0.026 0.042 0.045 0.032 0.059 0.058 0.012 0.054 0.126
12 0.604 0.828 0.912 0.039 0.086 0.078 0.053 0.096 0.045 0.026 0.027 0.105
13 0.634 0.815 0.893 0.146 0.216 0.143 0.145 0.217 0.171 0.037 0.08 0.047
14 0.613 0.789 0.88 0.122 0.19 0.154 0.129 0.189 0.165 0.006 0.007 0.01
15 0.629 0.821 0.877 0.053 0.051 0.001 0.065 0.038 0.006 0.013 0.038 0.111
16 0.644 0.81 0.896 0.098 0.111 0.002 0.094 0.093 0.012 0.039 0.063 0.179
17 0.587 0.79 0.889 0.118 0.171 0.072 0.141 0.176 0.122 0.01 0.045 0.017
18 0.612 0.766 0.882 0.063 0.083 0.108 0.036 0.064 0.06 0.096 0.166 0.256
19 0.647 0.809 0.902 0.063 0.133 0.112 0.07 0.124 0.117 0.036 0.026 0.027
20 0.602 0.796 0.885 0.186 0.26 0.275 0.187 0.268 0.284 0.009 0.013 0.001
21 0.636 0.789 0.912 0.027 0.037 0.002 0.029 0.037 0.039 0.09 0.175 0.234
22 0.596 0.795 0.885 0.024 0.055 0.079 0.034 0.045 0.042 0.008 0.018 0.066
23 0.642 0.819 0.894 0.074 0.113 0.17 0.072 0.115 0.132 0.058 0.038 0.015

7. Conclusions

In this paper, we have presented a framework by which it becomes feasible to create virtual
deformable sensor arrangements. In the framework the structure of the arrangement, the pixel form
and the gap factor (related to the distance between pixels) are the three optional variables in creation
of a sensor arrangement. We showed that the histogram of gradient orientations is a useful tool in
measuring an arrangement structure. The envelope of such a histogram is defined as an ordination
distribution function. In our experiments we observed that for each image type; having different
arrangement structure, the distribution function is unique. Additionally, we showed that a change of
pixel size or gap size; i.e., a different sensor configuration, generates a specific distribution related to
the changes. We called these specific orientation distributions ANCHORs. We showed that by using at
least two generated images of a certain configuration it is possible to obtain the ANCHOR of the sensor.
The results showed pixel size changes have more impact on ANCHORs than gap factor changes. By
using 575 different configuration images we verified the robustness of ANCHORs and feasibility of
the framework, which encourages us to think about the possibility of tailored sensor arrangements in
relation to a specific application and its requirements; our results inspire this idea as well. On the right
of Figure 10 the ANCHORs of two different sensor arrangements are shown which can be combined
to a new sensor arrangement in case of an application requirement for having both the properties of
hexagon and Penrose. We believe this idea may result in being able to have a sensor arrangement in
the future very alike that of the biological vision sensory system.
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