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Abstract: This paper presents a new image focusing algorithm for sparsity-driven radar imaging of
rotating targets. In the general formulation of off-grid scatterers, the sparse reconstruction algorithms
may result in blurred and low-contrast images due to dictionary mismatch. Motivated by the natural
clustering of atoms in the sparsity-based reconstructed images, the proposed algorithm first partitions
the atoms into separate clusters, and then the true off-grid scatterers associated with each cluster are
estimated. Being a post-processing technique, the proposed algorithm is computationally simple,
while at the same time being capable of producing a sharp and correct-contrast image, and attaining
a scatterer parameter estimation performance close to the Cramér–Rao lower bound. Numerical
simulations are presented to corroborate the effectiveness of the proposed algorithm.

Keywords: radar imaging; rotating target; sparsity; image focusing; high-resolution ISAR; sparse
reconstruction; compressive sensing; micro-motion; micro-Doppler

1. Introduction

Radar imaging of a rotating target, or more generally of targets with micro-motion, has recently
received considerable interest thanks to its important applications in both civilian and military
domains [1–3]. Micro-motion refers to the ‘in-place’ motion, as distinct from the bulk translational
motion, which may include a target’s own rotation, or rotation (or vibration) of certain structural
components of the target. Micro-motions and the resulting micro-Doppler modulations may be
undesirable as they can interfere with other processing for the bulk target; or they may be exploited as
an extra target signature for target recognition. The main focus of this paper is on a rigid-body rotational
type of micro-motion, typical examples of which include helicopter rotor blades and propellers of
fixed-wing aircraft. We are particularly interested in imaging such a rotating object with a narrowband
microwave radar.

Sparse reconstruction and compressive sensing, a powerful framework for solving ill-posed linear
inverse problems [4–10], has been applied to imaging of rotating targets [11–16]. A micro-Doppler
parameter estimation technique based on parametric sparse representation and pruned orthogonal
matching pursuit was presented in [11]. A sparsity-driven radar imaging technique for rotating blades
was developed in [13,14] based on the orthogonal matching pursuit algorithm, while other greedy
pursuit algorithms were considered in [15]. The use of various convex relaxation algorithms for radar
imaging of rotating targets was studied in [16]. The work in [13–15] focuses on blade-like targets where
the tilted-wire scatterer model is applicable. On the other hand, the point-scatterer model is considered
in [11,16]. Compared to the tilted-wire scatterer model, which is particularly relevant for blade-like
targets, the point-scatterer model can be applied to more general target shapes and thus is widely used
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in the literature. In the last few years, the point-scatterer model has been studied in the context of
sparsity-driven inverse synthetic aperture radar (ISAR) imaging [17–19]. The framework of sparse
reconstruction and compressive sensing has also been applied to various applications in the broader
context of radar imaging (see, e.g., [20–27]).

Much of the current literature on sparsity-based radar imaging of rotating micro-motion targets
assumes that the true scatterers that constitute the target are located on a grid of uniformly-spaced
spatial points (i.e., “on-grid”) that make up the dictionary. However, in real-life applications,
true scatterers are always off-grid. Off-grid problems have been known to cause significant degradation
in the sparse reconstruction performance due to dictionary mismatch (see, e.g., [28–30]). As will be
demonstrated in this paper, the mismatch between the scatterer positions and the dictionary grid can
severely defocus the reconstructed image of a rotating target. In particular, a dictionary that is too
coarse may lead to a completely distorted image, while a fine dictionary may cause image blurring.

One intuitive solution to counter off-grid effects is to increase the grid density. However,
using denser grids not only increases the computational complexity, but also undesirably results
in higher mutual coherence in the dictionary. Another solution to the off-grid problem is to consider
the sparse reconstruction problem in continuous parameter space as in [31,32]. In particular, continuous
basis pursuit was developed in [31] for the sparse decomposition problem of translation-invariant
signals by using an alternative discrete basis that accounts explicitly for the continuous time-shifts in
the signal. The work in [32] proposed an atomic norm minimization approach to estimate frequency
components of a mixture of complex sinusoids from partially-observed time samples. However,
these gridless methods are computationally expensive due to the requirement of having to solve
semidefinite programs [33]. In addition, the gridless methods [31,32] are application-specific solutions
and their extension to general parameter estimation problems is still an open research problem [33].

In contrast to [31,32], several other works have addressed the off-grid problem directly on
the conventional discrete parameter space including dictionary perturbation [34–37], parameter
perturbation [38,39], joint-sparse recovery [40] and sparse Bayesian learning [41–43]. In [35,36],
total least-squares based solutions were proposed by perturbing the dictionary atoms. In [37],
l1 minimization based algorithms were developed to tackle a linear structured perturbation in the
dictionary. A perturbed orthogonal matching pursuit algorithm was proposed in [34] by applying
a controlled perturbation mechanism on the atoms selected by the algorithm. Different to [34–37],
which perturb the dictionary matrix, the works in [38,39] aimed to perturb the grid parameters
used to construct the dictionary atoms, resulting in the parameter perturbed orthogonal matching
pursuit [38] and the adaptive matching pursuit with constrained total least-squares [39]. A joint-sparse
recovery method was developed in [40] to overcome structured dictionary mismatches. On the other
hand, sparse Bayesian learning-based algorithms [41–43] tackle the off-grid problems by exploiting
the structure of the dictionary atoms. By jointly estimating the grid offset and performing sparse
reconstruction, these techniques are capable of dealing with the off-grid problem. However, this, at
the same time, introduces more unknown variables to be estimated and complicates the algorithm
development [33].

In this paper, we propose a novel image focusing algorithm to focus the blurred sparsity-driven
reconstructed images of rotating targets in the general case of off-grid scatterers. The proposed
algorithm takes the defocused image given by any sparse reconstruction algorithm as the input and
produces a focused image as the output. Being a post-processing technique, the main advantage of the
proposed approach lies in its simplicity and low complexity while at the same time being capable of
achieving scatterer parameter estimation performance close to the Cramér–Rao lower bound (CRLB).
The proposed algorithm consists of two stages: (I) cluster analysis, and (II) joint estimation of scatterer
position and coefficient. In Stage I, the dictionary atoms in the input image are partitioned into a
number of clusters. The idea behind Stage I is motivated by the fact that each off-grid scatterer typically
induces a group of dictionary atoms located in its vicinity as a result of dictionary mismatch. In Stage II,
each of the clusters obtained from Stage I is replaced by an equivalent estimated scatterer. Since the
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scatterer positions and reflection coefficients are jointly estimated in a continuous parameter domain,
more accurate estimates for the positions and reflectivities of true off-grid scatterers are obtained
rather than using the dictionary grid. Consequently, the proposed algorithm can produce a sharp
image of the target with a correct image contrast. The effectiveness of the proposed algorithm is
demonstrated via numerical simulations. Moreover, the mean-squared errors of the estimates of the
locations and reflection coefficients of the true scatterers obtained by the proposed algorithm are shown
to be comparable to the CRLB derived from estimation theory.

The paper is organized as follows. Section 2 presents an overview of the problem of
sparsity-driven radar imaging of a rotating micro-motion target. Section 3 analyzes the technical
challenges associated with off-grid scatterers. The proposed focusing algorithm is presented in
Section 4. Section 5 derives the CRLB for the estimates of the positions and reflection coefficients of
true scatterers. Comparative simulation studies are presented in Section 6 and conclusions are drawn
in Section 7.

2. Overview of Sparsity-Driven Radar Imaging of a Rotating Target

We consider a two-dimensional (2D) radar imaging problem with a monostatic single-frequency
continuous-wave radar located in the far field of a rotating micro-motion target as depicted in Figure 1.
The target is modelled as a turnable object rotating around the rotation center O. Here, the origin
of the coordinate system is placed in the rotation center of the target while the radar is located in
the far field of the positive y-direction. In this paper, the target is modelled as a rigid ensemble of
non-interacting point scatterers (the Born approximation), where the reflection coefficient of each
scatterer is complex-valued with generally unknown amplitude and phase.

O

Ω

"

#

Illuminated	scene	of	interest

Rotating	Target

Radar

Figure 1. The radar-target geometry of the considered radar imaging problem of a rotating target.

After translational motion compensation, the complex-valued energy-normalized baseband signal
returned from a rotating point scatterer at the initial location p = [x, y]T is given by [1,2]

ϑ(p, t) = A exp {ibr sin(Ωt + ψ)} , (1)

where A is a normalization constant such that the signal energy over the coherent processing interval
(CPI) is normalized to unity, b = 4π/λ with λ denoting the radar wavelength, r =

√
x2 + y2 and

ψ = tan−1{y/x} are the radius and angle of the scatterer, respectively, and Ω is the rotational
velocity of the scatterer. Note that tan−1{·} denotes the 4-quadrant arctangent and i2 = −1. Here,
the rotational velocity Ω is assumed to be constant over the CPI and known a priori. In many practical
applications, Ω can be accurately estimated via relatively simple autocorrelation methods. In addition,
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we assume that translational motion compensation has been performed in a pre-processing step with
negligible errors.

Assume that the illuminated target consists of scatterers located at cross-range position x and
down-range position y, and with the complex reflection coefficient ρ(x, y). The continuous form of the
total backscattered baseband signal is given by

s(t) =
∫∫

ρ(p)ϑ(p, t)dx dy. (2)

In radar imaging, it is common practice to discretize the reflection function ρ(p) over cross-range
and down-range directions on a grid of points pG,n =

[
xG,n , yG,n

]T to form the reflection vector ρG =[
. . . , ρG,n , . . .

]T
n=1,...,N and to sample the backscattered baseband signal at discrete time tm as sm = s(tm)

to form s = [. . . , sm, . . . ]Tm=1,...,M. This results in the discrete version of s(t) in Equation (2) given by

s =
N

∑
n=1

ρG,n ϑ
(

pG,n

)
= ΦG ρG , (3)

where

ΦG =
[

. . . , ϑ
(

pG,n

)
, . . .

]
n=1,...,N , (4a)

ϑ(p) =
[

. . . , ϑ
(

p, tm
)
, . . .

]T
m=1,...,M. (4b)

Note that ϑ(p) is the discrete version of ϑ(p, t) in Equation (1) with A = 1/
√

M. In the context of
sparsity and compressive sensing, ΦG is commonly referred to as the overcomplete dictionary matrix
and its columns ϑ

(
pG,n

)
are referred to as atoms, each corresponding to the energy-normalized signal

returned from a hypothetical scatterer located at a grid point on the reflectivity map.
In practice with the presence of noise, the noisy backscattered radar signal is given by

s̃ = s(ρG ) + e = ΦG ρG + e, (5)

where e =
[

. . . , e(tm), . . .
]T

m=1,...,M. In this paper, e(t) is assumed to be circularly-symmetric complex
Gaussian noise arising from the thermal noise in the radar hardware with variance σ2 = E{|e(t)|2}.

The objective of radar imaging is to reconstruct a spatial map of complex-valued reflection
coefficient ρG from the noisy backscattered signal s̃. This is an ill-posed linear inverse problem because
the number of received signal samples is often much smaller than the number of pixels in the reflectivity
map (i.e., M� N). However, since the illuminated target typically only consists of a limited number
of dominant scatterers, the reflection vector ρG is sparse, i.e., containing a small number of nonzero
entries. As a result, sparse reconstruction algorithms can be exploited to solve the underdetermined
linear inverse problem (5).

The main principle of sparsity and compressive sensing is to find the sparsest solution of ρG [4–9]:

min
ρG

‖ρG‖0 subject to ‖ΦG ρG − s̃‖2 ≤ ε, (6)

where ‖ · ‖0 denotes the l0 norm, which returns the number of nonzero components of the argument,
and ε ≥ 0 is an error tolerance. However, this l0-norm minimization formulation is NP-hard involving
enumerative search and thus computationally intractable for practical applications. Extensive research
studies have been conducted over the last two decades to seek more computationally tractable methods
for solving sparse representation problems. Sparse reconstruction techniques in the literature can
be categorized into five main groups [6]: (i) convex relaxation, (ii) greedy pursuit, (iii) Bayesian
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framework, (iv) nonconvex optimization, and (v) brute force. Interested readers are referred to [4–7]
for comprehensive reviews on the state of the art of sparsity and compressive sensing.

3. The Blurring Problem in Conventional Sparsity-Driven Image Reconstruction

The linear signal model (5) is only strictly valid for the case of on-grid scatterers for which the
true scatterers constituting the target are located exactly on the grid of the dictionary. Scatterers in real
targets are however almost always off-grid; the imaging problem under consideration is no longer a
linear inverse problem given in Equation (5) in the strict sense due to dictionary mismatch.

To formulate the problem, we consider a rotating target with L dominant scatterers with reflection
coefficients ρO,l and off-grid positions pO,l =

[
xO,l , yO,l

]T for l = 1, . . . , L. The noise-free signal
backscattered from the target is given by

s =
L

∑
l=1

ρO,l ϑ
(

pO,l

)
= ΦO ρO , (7)

where

ΦO =
[

. . . , ϑ
(

pO,l

)
, . . .

]
l=1,...,L, (8a)

ρO =
[

. . . , ρO,l , . . .
]T

l=1,...,L. (8b)

Since the true scatterers do not coincide with the dictionary grid nodes, we have
{

pO,l

}
/∈
{

pG,n

}
and thus ΦO is not a submatrix of ΦG . As a result, ΦO ρO 6= ΦG ρG and thus the strict equality
in Equation (5) does not generally hold. Instead, we only have the approximation of s ≈ ΦG ρG for a
sufficiently dense dictionary grid, thus leading to a sparse approximation problem:

s̃ ≈ ΦG ρG + e. (9)

As each true off-grid scatterer induces several on-grid atoms around its vicinity due to dictionary
mismatch, the number of non-zero elements of ρG is usually much larger than the number of true
scatterers. In addition, the coefficient values of these on-grid atoms may vary depending on their
distances to the corresponding true scatterers. Therefore, the coefficient vector ρG is compressible
rather than sparse, and its elements decay rapidly when sorted in order of decreasing magnitude.
In practice, the sparse approximation problem is usually more challenging to solve than the sparse
representation problem [6].

More importantly, the objective of the radar imaging problem under consideration does not
directly align with the objective of the sparse approximation problem conventionally studied in the
literature. Conventional sparse approximation algorithms generally aim to approximate a given signal
with the lowest sparsity (least number of atoms), emphasising the approximation accuracy of the
reconstructed signal ŝ with respect to the original signal s in the time domain, while the solution for ρG

(i.e., which atoms in the dictionary are used to construct ŝ) is not the main focus. On the other hand,
the objective of the considered radar imaging problem is to reconstruct a spatial map of ρG of the target
and thus the accuracy of the solution for ρG is paramount. Therefore, solving for ρG accurately using
sparse approximation becomes a challenge in off-grid scatterers.

To illustrate the challenges associated with off-grid scatterers, we now present some simulation
results for reconstructing the image of a rotating target consisting of 12 off-grid scatterers using sparse
reconstruction. For demonstration purposes, we only show the reconstructed images obtained by
Orthogonal Matching Pursuit (OMP) [44], a greedy pursuit technique, and least absolute shrinkage and
selection operator (LASSO) [45], a convex relaxation technique. Similar observations were obtained by
using other sparse reconstruction techniques whose results are omitted here for brevity.
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Figure 2 shows the OMP and LASSO images when the dictionary is constructed from a
regularly-spaced grid with a grid step of λ/2. We observe that the reconstructed images are
unsatisfactorily noisy and completely distorted with numerous spurious scatterers. This example
demonstrates that a large mismatch between the locations of true scatterers and the hypothetical
scatterers in the dictionary grid can significantly affect the imaging performance. Figure 3 shows the
simulation results for the same simulation setup as in Figure 2 but with the grid step reduced to λ/7.
More satisfactory images are obtained since the dictionary mismatch is reduced. However, since the
true scatterers are not located on the dictionary grid, each true scatterer is approximated by a group of
hypothetical scatterers of the dictionary grid (i.e., on-grid atoms) located in the surrounding vicinity of
the true scatterer. For this reason, the signal energy of each true scatterer is spread over these on-grid
atoms and thus the estimated reflection coefficients corresponding to these on-grid atoms are much
lower than the reflection coefficient of the true scatterer. Consequently, the reconstructed images are
blurred and scattered compared with the true image as illustrated in Figure 3.
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Figure 2. Problems with imaging off-grid scatterers: simulations with OMP and LASSO for a rotating
target with 12 off-grid scatterers. The dictionary ΦG is constructed from a regularly-spaced grid with
xG,n ∈ {−25λ : λ/2 : 25λ} and yG,n ∈ {−25λ : λ/2 : 25λ}. LASSO is halted when it achieves the same
error residual as OMP.
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Figure 3. Reconstructed images obtained by OMP and LASSO for the same simulation setup as in
Figure 2 but with the grid step reduced to λ/7, i.e., xG,n ∈ {−25λ : λ/7 : 25λ} and yG,n ∈ {−25λ :
λ/7 : 25λ}. The zoomed-in images show the locations of the solution atoms relative to a true scatterer
(ground truth); here, dictionary grid points are located at intersections of dotted lines.

4. Proposed Image Focusing Algorithm

In this section, we propose a new image focusing method to focus blurred sparsity-driven
reconstructed images of rotating targets. It should be noted that the proposed method is applicable
to images that are produced by any sparse reconstruction algorithms (not just limited to the OMP
and LASSO images used for demonstration purposes in Section 3). The proposed image focusing
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method is composed of two stages: (I) atom clustering and (II) joint estimation of scatterer parameters.
The details of each stage are presented as follows.

4.1. Stage I—Atom Clustering

In the reconstructed image obtained by a sparse reconstruction algorithm, each true off-grid
scatterer typically induces a group of on-grid atoms in the surrounding vicinity of the scatterer as a
result of the dictionary mismatch as discussed in Section 3. In other words, the reconstructed image
effectively contains several clusters of on-grid atoms corresponding to the true scatterers. Motivated by
such a clustering behavior of the atoms obtained by the sparse reconstruction algorithm, we perform
a cluster analysis to partition the atoms into a number of clusters as depicted in Figure 4. They can
be either multiple-point clusters (which are formed by two or more atoms) or single-point clusters
(which are formed by a single atom). A multiple-point cluster is likely to be a genuine cluster that
corresponds to a true scatterer, while a single-point cluster is likely to be a spurious cluster associated
with a spurious atom. However, there is still a possibility that some multiple-point clusters can be
spurious clusters while some single-point clusters can be genuine. A discussion on how to handle the
spurious atoms/clusters will be given at the end of Section 4.2.

Clusters	of	atoms

Individual-located	spurious	atoms

Individually-located	spurious	atoms

(a)

Multiple-point	clusters

Single-point	clusters

Single-point	clusters

(b)

Figure 4. Example illustration of input and output for Stage I: (a) input of Stage I (before performing
cluster analysis); (b) output of Stage I (after performing cluster analysis).

Data clustering, also known as cluster analysis, has a long and rich history in a wide range
of scientific fields. Interested readers are referred to [46–48] and the reference therein for detailed
discussion and literature review on cluster analysis. Although various clustering techniques can be
applied to perform atom clustering, we employ the K-means algorithm in this paper because of its
simplicity and ease of implementation as well as its efficiency and empirical success as demonstrated
in the literature.

Given H atoms obtained by the sparse reconstruction algorithm at locations ph, h = 1, . . . , H,
we aim to cluster them into a set of K clusters Ck, k = 1, . . . , K. The objective of the K-means algorithm
is to determine a partition so that it minimizes the sum of squares of distances between the atoms
and the corresponding cluster centroids. Specifically, with µk denoting the centroid coordinate of the
cluster Ck, the objective function of the K-means algorithm to be minimized is given by

f (C1, . . . , CK) =
K

∑
k=1

∑
ph∈Ck

‖ph − µk‖2, (10)

which is known to be an NP-hard problem [47]. The K-means algorithm minimizes this objective
function by starting with a random partition, and iteratively reassigning each atom to its closest
centroid and recomputing new cluster centroids. The common convergence criteria for K-means
clustering include (i) no or minimal reassignment of data points to new cluster centroids, and (ii) no
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or minimal decrease in the objective function. K-means clustering is a greedy algorithm that may
converge to a local minimum, although it has been shown in [48] that K-means clustering will converge
to the global optimum with a high probability if clusters are well-separated. Therefore, different initial
partitions may lead to different clustering results. To overcome this problem, the K-means algorithm
is usually performed repeatedly using different initializations and the clustering result yielding the
smallest value of the objective function is selected.

The K-means algorithm requires the number of clusters K as its input parameter. However,
this information is unknown for our radar imaging application. Therefore, K has to be estimated.
To this end, we perform the K-means algorithm for various values of K starting with K = 1 and
increasing K until the radius of the largest cluster reduces and falls below a preset threshold. Here,
the radius of a cluster is defined as the distance from the centroids to the farthest point in the cluster.
The preset threshold for cluster radius should be large enough to include all appropriate atoms
clustered around the true scatterers to form the genuine clusters associated with the true scatterers
while being small enough to exclude spurious atoms from these genuine clusters. Choosing suitable
threshold values depends on the density (i.e., the grid step size) of the dictionary, as well as the
noise level.

4.2. Stage II—Joint Estimation of Scatterer Parameters

Consider a cluster Ck obtained from Stage I consisting of Uk atom members with pk,u = [xk,u , yk,u ]
T

and ρ̂k,u (u ∈ {1, 2, . . . , Uk}) denoting the position and reflection coefficient of the u-th atom member.
We assume that the cluster Ck is genuine and corresponds to a true scatterer with unknown
position pO,k = [xO,k , yO,k ]

T and reflection coefficient ρO,k . The summed reconstructed backscattered
signal s̃k calculated from all the atom members in the cluster is an estimate of the actual backscattered
signal sO,k of the true scatterer (as depicted in Figure 5):

s̃k ≈ sO,k , (11)

where

s̃k =

Uk

∑
u=1

ρ̂k,u ϑ
(

pk,u

)
, (12a)

sO,k = ρO,k ϑ
(

pO,k

)
. (12b)

True	scatterer Cluster	of	atoms

Sparse
Reconstruction

Original	signal	!",$ Summed	reconstructed	signal	!%$

≈

59.57 60 60.43 60.86

59.57

60

60.43

60.86

59.57 60 60.43 60.86

59.57

60

60.43

60.86

Figure 5. Approximate equivalence between the backscattered signal of a true scatterer and the
summed reconstructed signal of the corresponding cluster of atoms.
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Motivated by this, we now consider an inverse problem aimed at jointly estimating the
location pO,k and reflection coefficient ρO,k of the true scatterer from the summed reconstructed
backscattered signal s̃k via the least-squares criterion:

minimize
{ρO,k ,pO,k }

∥∥∥s̃k − ρO,k ϑ
(

pO,k

)∥∥∥
2

. (13)

This least-squares minimization is equivalent to

minimize
{ρO,k ,pO,k }

∥∥∥∥∥
[

Real{s̃k}
Imag{s̃k}

]
−
[

Real
{

ρO,k ϑ
(

pO,k

)}
Imag

{
ρO,k ϑ

(
pO,k

)}]∥∥∥∥∥
2

, (14)

where

Real
{

ρO,k ϑ
(

pO,k

)}
=
[

. . . , A
(

Real{ρO,k} cos ΦO,k,m − Imag{ρO,k} sin ΦO,k,m

)
, . . .

]T
m=1,...,M, (15a)

Imag
{

ρO,k ϑ
(

pO,k

)}
=
[

. . . , A
(

Real{ρO,k} sin ΦO,k,m + Imag{ρO,k} cos ΦO,k,m

)
, . . .

]T
m=1,...,M, (15b)

ΦO,k,m = b (xO,k sin(Ωtm) + yO,k cos(Ωtm)). (15c)

We now let

z̃k =
[

Real{s̃k}
T , Imag{s̃k}

T]T , (16)

zO,k =
[

Real
{

ρO,k ϑ
(

pO,k

)}T , Imag
{

ρO,k ϑ
(

pO,k

)}T]T , (17)

and write zO,k

(
ξO,k

)
as an explicit function of

ξO,k =
[
ρR

O,k
, ρI

O,k
, xO,k , yO,k

]T , (18)

with ρR
O,k

= Real{ρO,k} and ρI
O,k

= Imag{ρO,k}. As a result, Equation (14) becomes

minimize
ξO,k

∥∥∥z̃O,k − zO,k

(
ξO,k

)∥∥∥
2

, (19)

which is a least-squares estimation problem in the real-valued domain. This least-squares minimization
is nonlinear and does not admit a closed-form solution. A numerical search algorithm can be obtained
via iterative search approaches such as the steepest descent algorithm, the Nelder–Mead simplex
algorithm, and the Gauss–Newton (GN) algorithm. The GN algorithm for solving Equation (19) is
given by the following iteration [49]:

ξ̂O,k (j + 1) = ξ̂O,k (j) +
(

JT
k
(j)Jk (j)

)−1 JT
k
(j)
(
z̃k − zO,k

(
ξ̂O,k (j)

))
(20)

for j = 0, 1, . . . . Here, Jk (j) = Jk

(
ξ̂k (j)

)
is the Jacobian matrix of zO,k with respect to ξO,k evaluated at

ξO,k = ξ̂O,k (j). The Jacobian matrix Jk is given by

Jk (ξO,k ) = [JT
R,k

(ξO,k ), JT
I,k
(ξO,k )]

T , (21)

where

J
R,k (ξO,k ) = [. . . , JT

R,k,m
(ξO,k ), . . . ]Tm=1,...,M, (22a)

J
I,k (ξO,k ) = [. . . , JT

I,k,m
(ξO,k ), . . . ]Tm=1,...,M. (22b)
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The expressions of J
R,k,m(ξO,k ) and J

I,k,m(ξO,k ) are

J
R,k,m(ξO,k ) =

[
J(1)
R,k,m

, J(2)
R,k,m

, J(3)
R,k,m

, J(4)
R,k,m

]
, (23a)

J
I,k,m(ξO,k ) =

[
J(1)
I,k,m

, J(2)
I,k,m

, J(3)
I,k,m

, J(4)
I,k,m

]
, (23b)

where

J(1)
R,k,m

= A cos ΦO,k,m , J(2)
R,k,m

= −A sin ΦO,k,m , (24a)

J(3)
R,k,m

= −Ab sin(Ωtm)
(
ρR

O,k
sin ΦO,k,m +ρI

O,k
cos ΦO,k,m

)
, (24b)

J(4)
R,k,m

= −Ab cos(Ωtm)
(
ρR

O,k
sin ΦO,k,m +ρI

O,k
cos ΦO,k,m

)
, (24c)

and

J(1)
I,k,m

= A sin ΦO,k,m , J(2)
I,k,m

= A cos ΦO,k,m , (25a)

J(3)
I,k,m

= Ab sin(Ωtm)
(

ρR
O,k

cos ΦO,k,m − ρI
O,k

sin ΦO,k,m

)
, (25b)

J(4)
I,k,m

= Ab cos(Ωtm)
(

ρR
O,k

cos ΦO,k,m − ρI
O,k

sin ΦO,k,m

)
. (25c)

To initialize the GN iteration (20), we use the energy-weighted center of the cluster Ck as the
initial position estimate:

x̂O,k (0) =
∑

Uk
u=1 |ρ̂k,u |2xk,u

∑
Uk
u=1 |ρ̂k,u |2

, ŷO,k (0) =
∑

Uk
u=1 |ρ̂k,u |2yk,u

∑
Uk
u=1 |ρ̂k,u |2

(26)

and the least-squares solution for ρO,k based on the initial position estimate p̂O,k (0) = [x̂O,k (0), ŷO,k (0)]
T

is used as the initial reflection estimate:

ρ̂O,k (0) = (gH
O,k

gO,k )
−1gH

O,k
z̃k , (27)

where gO,k = ϑ(p̂O,k (0)). Here, the subscript H stands for the Hermitian transpose operation. The
initial estimate of ξ for the GN iteration is

ξ̂O,k (0)=[Real{ρ̂O,k (0)}, Imag{ρ̂O,k (0)}, x̂O,k (0), ŷO,k (0)]
T , (28)

which is sufficiently close to the true solution of ξO,k , thus ensuring the convergence of the GN
algorithm. For the radar imaging problem under consideration, we observe that the convergence of the
GN algorithm can be achieved using 10–20 iterations. In general, the number of iterations for which
the GN algorithm converges can be determined by examining the l2 norm of the relative change of the
estimate ξ̂O,k over two consecutive iterations.

From the GN solution ξ̂GN
O,k

= ξ̂O,k (jfinal), we can extract the scatterer position estimate p̂GN
O,k

=

[ξ̂GN
O,k

(3), ξ̂GN
O,k

(4)]T and the scatterer reflection estimate ρ̂GN
O,k

= ξ̂GN
O,k

(1) + i ξ̂GN
O,k

(2). The cluster Ck can now
be replaced by an estimated scatterer with position p̂GN

O,k
and reflection coefficient ρ̂GN

O,k
. In terms of

imaging, this estimated scatterer produces a more physically meaningful and accurate representation
of the true scatterer than a cluster of on-grid atoms in the surrounding vicinity of the scatterer.

The procedure for Stage II is summarized in Table 1. In the first step, each multiple-point cluster is
replaced by an equivalent scatterer with the estimated location and reflection coefficient obtained by the
GN algorithm. If the multiple-point cluster is a genuine cluster, the location and reflection coefficient
of the equivalent scatterer is the estimate of the true location and coefficient of the corresponding true
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scatterer. In contrast, if the multiple-point cluster is a spurious cluster, it is replaced by an equivalent
spurious scatterer. Note that, if a single-point cluster is a genuine cluster, the corresponding true
scatterer must be located very close to a grid point in the dictionary. In this case, the true scatterer is
readily estimated by the sole atom within the cluster, and we simply set the GN solutions to p̂GN

O,k
= pk,1

and ρ̂GN
O,k

= ρ̂k,1 , where pk,1 and ρ̂k,1 are the position and reflection coefficient of the atom. At the end of
first step, we have a collection of K estimated scatterers. In the second step, a least-squares estimation
is performed over these K atoms to re-calculate their reflection values to further improve the accuracy
of reflection estimates.

Table 1. Computational steps of stage II.

Step 1: Replace clusters obtained in Stage I by equivalent scatterers

• for cluster k = 1; k := k + 1; k ≤ K do

if Uk > 1

- compute the summed reconstructed backscattered signal z̃k as in Equation (12a)
- estimate p̂GN

O,k
and ρ̂GN

O,k
via the GN iteration (20)

else (i.e., single-point cluster)

- set the GN solution to p̂GN
O,k

= pk,1 and ρ̂GN
O,k

= ρ̂k,1

end if
end for

Step 2: Re-estimate the reflection coefficients of obtained equivalent scatterers

• Construct new sub-dictionary matrix based on p̂GN
O,k

Ψ =
[

. . . , ϑ
(

p̂GN
O,k

)
, . . .

]
k=1,...,K

• Compute new reflection coefficients in least-squares sense:

[ ˆ̂ρO,1 , . . . , ˆ̂ρO,K ]
T =

(
ΨHΨ

)−1
ΨH s̃

5. Cramér–Rao Lower Bound for Scatterer Parameter Estimation

The radar imaging problem can be viewed as a parameter estimation problem for the locations and
reflection coefficients of the scatterers constituting the target. Recall from Equation (7) that the noise-free
backscattered signal s = ∑L

l=1 ρO,l ϑ
(

pO,l

)
is a function of the scatterer positions pO,l =

[
xO,l , yO,l

]T and
the scatterer coefficients ρO,l (l = 1, . . . , L). By decoupling the complex-valued coefficients into their
real and imaginary parts (i.e., ρO,l → {ρR

O,l
, ρI

O,l
}) and converting the complex-valued signal model in

Equation (7) into a real-valued model as

s̃→ h̃ = [Real{s̃}T , Imag{s̃}T ]T , (29a)

s→ h = [Real{s}T , Imag{s}T ]T , (29b)

e→ ε = [Real{e}T , Imag{e}T ]T , (29c)

we obtain
h̃ = h + ε. (30)

The parameter estimation problem is stated as estimating Ξ = [. . . , ξT
O,l

, . . . ]Tl=1,...,L (where ξO,l =

[ρR
O,l

, ρI
O,l

, xO,l , yO,l ]
T) from the noisy nonlinear observation h̃ = h(Ξ) + ε. In this context, we can derive

the CRLB (i.e., the theoretical bound on the error variance) for the estimate of Ξ. For the purpose of
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computing the CRLB, we assume that the number of scatterers L is known. Noting that ε is an i.i.d.
Gaussian noise vector, the CRLB for the estimate of Ξ is given by

CΞ = (JT
ΞΣ−1

ε JΞ)
−1, (31)

where Σε =
σ2

2 I2M×2M (I2M×2M is the 2M× 2M identity matrix) and JΞ is the Jacobian matrix of h(Ξ)

with respect to Ξ evaluated at the true parameter value. The expression of JΞ is given by

JΞ = [JT
R,Ξ

, JT
I,Ξ

]T , (32a)

J
R,Ξ = [. . . , JT

R,Ξ,m
, . . . ]Tm=1,...,M, (32b)

J
I,Ξ = [. . . , JT

I,Ξ,m
, . . . ]Tm=1,...,M, (32c)

J
R,Ξ,m = [. . . , J

R,Ξ,m,l (ξO,l ), . . . ]l=1,...,L, (32d)

J
I,Ξ,m = [. . . , J

I,Ξ,m,l (ξO,l ), . . . ]l=1,...,L, (32e)

where J
R,Ξ,m,l (ξO,l ) and J

I,Ξ,m,l (ξO,l ) have the same expressions as J
R,k,m(ξO,k ) and J

I,k,m(ξO,k ) in
Equation (23), respectively, except replacing ξO,k with ξO,l .

6. Simulations

6.1. Simulation Setup

We consider a synthetic 2D radar imaging scenario where a monostatic single-frequency
continuous-wave radar operating at a frequency of 10 GHz (λ = 0.03 m) illuminates a far-field
target rotating around the origin of its local coordinates at Ω = 31.4159 rad/s. The continuous-time
backscattered signal is sampled at the rate of 6 kHz. The signal-to-noise ratio (SNR) is set to 10 dB.
The total number of data samples is M = 1200. The dictionary ΦG is constructed from a regularly
spaced grid with xG,n ∈ {−25λ : λ/7 : 25λ} and yG,n ∈ {−25λ : λ/7 : 25λ}. For demonstration
purposes, images obtained by OMP, LASSO and Subspace Pursuit (SP) [50] are post-processed by the
proposed algorithm, and a comparison of focused images is provided. In the simulations, OMP, LASSO
and SP are stopped when the relative change in the norm of the signal residual is less than δ = 0.005.
Since the sparsity level of the true coefficient vector is unknown, we use the sparsity level of the OMP
solution as the sparsity input for the SP algorithm. The radius threshold for cluster analysis in Stage I
of the proposed algorithm is λ/2, and 20 GN iterations are used in Stage II.

Two target models are considered as shown in Figures 6 and 7. Target 1 consists of 12 scatterers
located at the bearing angles of −70◦, 50◦ and 170◦ with respect to the x-axis and the radial
distances of 0.15, 0.30, 0.45 and 0.60 meters from the center of rotation [0, 0]T . Target 2 is made
up of 12 scatterers, where six scatterers are located at [0.165, 0.015]T , [0.315, 0.015]T , [0.465, 0.015]T ,
[0.615, 0.015]T , [0.015, 0.165]T and [0.015, 0.315]T meters while the remaining six scatterers are the
reflections of the first six scatterers over the origin. Target 2 represents a worst-case target model
because each scatterer is midway between the dictionary grid points (i.e., offset from the grid points
by one-half of the grid step size in both x- and y-axes). The true reflection coefficient of each scatterer
is set to (5 + 5i).
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Figure 6. Comparison of the original OMP, LASSO and SP images and the corresponding focused
images obtained by the proposed algorithm for Target 1. In the zoomed-in images, dictionary grid
points are located at intersections of dotted lines.

6.2. Proposed Algorithm versus Conventional Algorithms

Figures 6 and 7 compare the original OMP, LASSO and SP images and the corresponding focused
images obtained by the proposed algorithm for two simulated target models. We observe that OMP,
LASSO and SP result in blurred and low-contrast reconstructed images due to the dictionary mismatch
problem as explained in Section 3, where each true scatterer is represented by a cluster of atoms.
The proposed algorithm is capable of effectively focusing the blurred OMP, LASSO and SP images
by producing sharper images with each true scatterer accurately represented by a single estimated
scatterer. Since only one estimated scatterer is used to represent a true scatterer, we not only avoid the
image blurring problem associated with OMP, LASSO and SP, but also obtain a more accurate image
intensity as a result of not spreading scatterer signal energy over multiple atoms. Moreover, the GN
algorithm accurately estimates the locations and reflection coefficients of the true scatterers, producing
a highly accurate image of the true target.
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We also observed from Figures 6 and 7 that, although the proposed focusing algorithm does not
directly eliminate the spurious atoms given by the sparse reconstruction algorithm, the spurious atoms
are weakened (i.e., their reflection coefficients are reduced) since the signal energy is now concentrated
into the highly-accurate estimated scatterers. Given the distinction in the reflection coefficients between
the genuine and spurious scatterers in the focused image, the spurious scatterers may be discarded
using an additional thresholding step.
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Figure 7. Comparison of the original OMP, LASSO and SP images and the corresponding focused
images obtained by the proposed algorithm for Target 2. In the zoomed-in images, dictionary grid
points are located at intersections of dotted lines.

6.3. RMSE versus CRLB

We now compare the root-mean-squared-error (RMSE) of the location and reflection estimates
obtained by the proposed algorithm with the square root of CRLB (RCRLB) derived in Section 5.
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The RMSEs for the position estimate and the reflection estimate, averaged over JMC = 500 Monte
Carlo (MC) runs and averaged across over all the scatterers of the target, are defined as

RMSEposition =
( 1

LJMC

L

∑
l=1

JMC

∑
j=1
‖p̂(j)

O,l
− pO,l‖

2
2

)1/2
,

RMSEreflection =
( 1

LJMC

L

∑
l=1

JMC

∑
j=1
|ρ̂(j)

O,l
− ρO,l |

2
)1/2

,

where p̂(j)
O,l and ρ̂

(j)
O,l are the estimates of the position and reflection coefficient for the l-th scatterer at the

j-th MC run. The theoretical lower bound for RMSEposition and RMSEreflection are given by

RCRLBposition =
( 1

L

L

∑
l=1

(
CΞ(4l − 1) + CΞ(4l)

))1/2
,

RCRLBreflection =
( 1

L

L

∑
l=1

(
CΞ(4l − 3) + CΞ(4l − 2)

))1/2
,

where CΞ(i) is the i-th diagonal element of CΞ.
Table 2 reports the RMSE performance versus RCRLB for Targets 1 and 2. We observe that the

RMSE of the reflection estimate is very close to the theoretical RCRLB, especially for high SNR values,
while the RMSE of the position estimate (i.e., about 7 to 14 times smaller than the dictionary grid step)
is comparable to the theoretical RCRLB. This confirms the capability of the proposed algorithm to
produce high-accuracy radar images for rotating targets.

Table 2. RMSE performance.

Target 1 Target 2

Position (mm) Reflection Position (mm) Reflection

SNR (dB) RMSE RCRLB RMSE RCRLB RMSE RCRLB RMSE RCRLB

5 0.604 0.210 0.490 0.435 0.526 0.232 0.567 0.479
6 0.556 0.187 0.438 0.387 0.366 0.206 0.463 0.427
7 0.506 0.167 0.389 0.345 0.407 0.184 0.425 0.381
8 0.444 0.149 0.345 0.308 0.294 0.164 0.357 0.339
9 0.397 0.132 0.313 0.274 0.298 0.146 0.346 0.302
10 0.352 0.118 0.283 0.244 0.254 0.130 0.286 0.269

6.4. Non-Centrosymmetric Target

The proposed algorithm is applicable to non-centrosymmetric targets. Figure 8 shows the original
OMP, LASSO and SP images, as well as their corresponding focused images obtained by the proposed
algorithm for a non-centrosymmetric target with 12 randomly-located scatterers. Consistent with
Figures 6 and 7, the results in Figure 8 clearly confirm the effectiveness of the proposed image
focusing algorithm.
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Figure 8. Comparison of the original OMP, LASSO and SP images and the corresponding focused
images obtained by the proposed algorithm for a non-centrosymmetric target with 12 randomly-located
scatterers. In the zoomed-in images, dictionary grid points are located at intersections of dotted lines.

6.5. Runtime Performance

For complexity comparison purposes, Table 3 compares the sparse-reconstruction runtimes of
OMP, LASSO and SP with the corresponding post-processing runtimes of the proposed imaging
focusing algorithm (implemented in MATLAB (R2017a, The MathWorks, Natick, MA, USA)) and
executed on the same hardware platform). We observe that the proposed image focusing algorithm
consumes much less runtime than the main sparse-reconstruction algorithms (only 4.65%, 1.82% and
18.54% of the total runtime for OMP, LASSO and SP, respectively). Therefore, the proposed algorithm
only requires a relatively small computational overhead.
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Table 3. Average runtime performance.

OMP LASSO SP

Sparse-reconstruction runtime (s) 7.369 23.771 0.827
Post-processing runtime † (s) 0.359 0.440 0.188

Total runtime (s) 7.728 24.211 1.015
† Runtime for performing the proposed image focusing algorithm.

6.6. Scatterer Separation Test

In this simulation, we consider two closely-spaced scatterers and numerically examine the
probability of successful separation for various spacings between them. The first scatterer is fixed at a
location while the location of the second scatterer is varied. Here, the SNR is set to 5 dB. For each tested
location of the second scatterer, we perform a simulation for 500 MC runs. In each run, the two scatterers
are considered to be successfully separated if the error norms of the scatterer position estimates are
less than twice the grid step size and the error norms of the scatterer reflection estimates are less
than 14.14% of the norms of the true coefficient values (roughly twice the reflection RCRLB value for
SNR = 5 dB in Table 2). Overall, the scatterers are considered to be separable if a separation success
rate of more than 85% is achieved. In this simulation, OMP is used for initial sparse reconstruction,
and the proposed algorithm is then executed to focus the OMP image.

For a fair result, we consider a worst-case scenario where both the scatterers are located midway
between the dictionary grids points (i.e., off-set from the grid points by a half of the grid step size in
both the x- and y-axes). Figure 9 shows the result of the separation test. We observe that the minimum
distance between the two scatterers for them to be separable is about λ. This is consistent with the
fact that the value of λ/2 is used as the radius threshold for cluster analysis in Stage I. Note that the
separation capability may be improved further by using a denser dictionary grid and thus a smaller
value for the cluster radius threshold. However, this improvement comes at the expense of higher
computational cost.
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Figure 9. Result of the separation test: �—the fixed location of the first scatterer, ×—the tested location
of the second scatterer for which the two scatterers are not separable, ◦—the tested location of the
second scatterer for which the two scatterers are separable. Dictionary grid points are located at
intersections of dotted lines. Note that the coordinate origin in this plot is shifted to the location of the
first scatterer. Identical results are obtained when the first scatterer is placed at the radial distance of
0.3 m or 0.6 m from the rotation center.
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7. Conclusions

In this paper, we have developed a new image focusing algorithm to focus blurred
sparse-reconstructed images of rotating targets in the general case of off-grid scatterers. The main
reason for the blurring problem of the reconstructed images obtained by sparse reconstruction
algorithms was shown to be the mismatch between the true off-grid scatterers constituting the target
and the grid of the dictionary. To overcome such a problem, the proposed algorithm exploits cluster
analysis and joint scatterer parameter estimation to focus the blurred sparsity-driven reconstructed
images. Comparative simulation studies were carried out to demonstrate the effectiveness of the
proposed algorithm in terms of image focusing at low computational overheads. In addition,
the proposed algorithm was empirically shown to attain a mean-squared error performance comparable
to the theoretical CRLB in terms of estimating the unknown parameters (i.e., locations and coefficients)
of the true scatterers.

The proposed algorithm can be extended to other off-grid sparse estimation problems for which
the atoms in the solution obtained by sparse reconstruction algorithms exhibit a clustering behavior
around the true scatterers due to dictionary mismatch. Such a smearing effect (i.e., the clustering of
atoms around the true scatterers) occurs in various sparsity-driven radar imaging problems, such as
radar coincidence imaging [43] and synthetic aperture radar (SAR) imaging [51]. For different problems,
a new derivation of the Jacobian matrix of the Gauss–Newton iteration in Stage II is required, while the
overall structure of the proposed algorithm remains unchanged.
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