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Abstract: The ultrasonic phased array total focusing method (TFM) has the advantages of full-range
dynamic focusing and high imaging resolution, but the problem of long imaging time limits its
practically industrial applications. To reduce the imaging calculation demand of TFM, the locations
of active array elements in the sparse array are optimized by combining almost different sets with
the genetic algorithm (ADSGA), and corrected based on the consistency of the effective aperture
with the equivalent point diffusion function. At the same time, to further increase the imaging
efficiency, a sparse-TFM image with lower resolution is obtained by reducing the number of focus
points and then interpolated by the new edge-directed interpolation algorithm (NEDI) to obtain
a high quality sparse-TFM image. Compared with TFM, the experimental results show that the
quantitative accuracy of the proposed method is only decreased by 1.09% when the number of sparse
transmitting elements reaches 8 for a 32-element transducer, and the imaging speed is improved by
about 16 times with the same final pixel resolution.

Keywords: ultrasonic phased array; sparse-TFM imaging; sparse array optimization; new
edge-directed interpolation

1. Introduction

Ultrasonic phased array testing has the advantages of high sensitivity and favorable adaptability
to complex components, and has been widely used in nondestructive testing for key equipment [1–3].
Holmes et al. [4] firstly proposed the concepts of full matrix capture (FMC) and the full matrix data
model, and established the total focusing method (TFM) algorithm using FMC. Compared with
conventional ultrasonic phased array testing, TFM can realize the focus of any points within the
measured area by post-processing the full matrix data of the transducer array [5–7]. This method has
therefore been increasingly used in the fields of aviation, nuclear power, composite materials and so
on [8–10].

However, due to the large amount of full matrix data involved, TFM imaging calculations are
time-consuming, which limits its applications in some industrial fields, especially those with real-time
requirements. To solve this problem, the computing time can be reduced by improving the hardware
architecture using a GPU [11] or parallel computing with multiple Field-Programmable Gate Arrays
(multi-FPGA) [12], but then the cost will increase significantly. Another important research topic is
how to improve the computational efficiency of the imaging algorithm while maintaining the image
quality. Since the full matrix data are redundant [13], the sparse array design technology can be used to
reduce the computing data for post-processing. In order to reduce the artifacts (caused by the physical
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properties of the ultrasonic wave such as direction, reflection, refraction and penetration) in phased
array imaging and to improve the imaging efficiency, the element layout of the sparse array can be
optimized using the genetic algorithm (GA) [14] or the simulated annealing algorithm [15]; these are
random optimization algorithms, but both are effective only for the optimization of a small sparse array.
Moreover, the optimized array has poor consistency in sound field characteristics, the calculated value
of the peak of side-lobe (PSL) and main-lobe width (MLW) are different in each time. Oliveri et al. [16]
firstly applied almost different sets (ADS) to the design of a sparse array, in which the element layout
can be determined analytically and where the computational complexity is much lower than that of
the random optimization algorithms; however, it is difficult to obtain a sparse array with an arbitrary
array aperture and thinning factors. Based on the above studies, a method called ADSGA, which
combines ADS and GA, is applied in the design of the radar sparse array [17]. Compared with the ADS
method, the ADSGA method can obtain the sparse array with better side lobe performance using fewer
iteration times, and can obtain an arbitrary array aperture and sparseness. However, this method
ignores the variation of the emitted sound field of the array after sparsing, which leads to significantly
different effective apertures between the sparse array and the full array and can affect the imaging
performance of the sparse array.

In order to further improve the computational efficiency, fewer imaging points can be
chosen for imaging. To improve the resolution, an image with fewer imaging points should be
interpolated. Traditional interpolation algorithms include nearest neighbor interpolation [18], bilinear
interpolation [19] and cubic convolution interpolation [20]. In most cases, these interpolation methods
use the same interpolation functions and do not take into account the influence of gray value mutation
of the edge pixel in image interpolation; hence, they produce interpolated images with blurred edges
and blocking effects [21]. Wei [22] proposed a contrast-guided image interpolation (CGI) algorithm
which not only protected the pixels on the edge, but also the non-edge pixels within a certain range
from the edge. The image quality was significantly improved, but had a higher computational
complexity. A new edge-directed interpolation algorithm (NEDI) was proposed by Li [23], based
on the geometric duality between the low-resolution covariance and the high-resolution covariance.
Adaptive interpolation of the image was conducted, and was shown to have a lower computational
complexity than current methods; hence, it is fairly attractive for real-time image applications and
offers improved visual quality of the interpolated images.

In this paper, a sparse-TFM imaging method based on sparse array optimization and NEDI is
developed to improve inspection efficiency. The sparse array is first optimized by combining ADS
with the GA in an ADSGA. The sound field characteristics of the sparse array are modified under the
conditions of the same effective aperture with the full matrix, and a modified sparse-TFM imaging
model based on the ADSGA method is established. Secondly, fewer imaging points are selected to
further improve the computational efficiency and the low resolution sparse-TFM image is interpolated
using the NEDI method to improve the imaging quality. Finally, the proposed sparse-TFM is applied
to the testing of a steel specimen with some circular arc distributed side drilled holes (SDHs), and the
imaging quality and computational efficiency are analyzed quantitatively.

2. Materials and Methods

According to the principle of the TFM algorithm, each element in the phased array transducer
with N elements is excited in turn, and all elements in the transducer receive echo signals
until the Nth element is excited. Saving each received data as e11(t), e12(t),. . ., e1N(t), e21(t),
e22(t),. . .e2N(t). . .eNN(t), the FMC is obtained. TFM is the post-processing imaging method using all
the information of this full matrix data.

A one-dimensional linear phased array transducer is placed on the surface of the specimen,
and the established coordinate system OXZ is shown in Figure 1. The origin O is located in the array
center of the phased array transducers, the X axis is directed to the right along the array direction,
and the Z axis is perpendicular to the array direction and points to the measured area. For each focus
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point (x, z), the ultrasonic echo signals of all transmit-receive pairs are superimposed at that point,
and the intensity of the image (that is the grayscale value of the pixels) I(x, z) is obtained and expressed
as [4]:

I(x, z) =
N

∑
i=1

N

∑
j=1

eij


√
(xtx − x)2 + (ztx − z)2 +

√
(xrx − x)2 + (zrx − z)2

c

 (1)

where (xtx, ztx) is the coordinate of the transmitting element, (xrx, zrx) is the coordinate of the receiving
element, N is the number of elements in the transducer, eij() is the signal that transmitting from
element i and receiving in element j, c is the speed of sound in the specimen.
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Figure 1. Schematic diagram of TFM imaging.

From Equation (1), it can be seen that the post-processing of TFM requires a large number of
calculations, especially for a large element array. This problem can be solved by reducing the number
of active transmitting or receiving elements and the amount of data collected by the FMC [24].

Moreover, in order to make the sound field characteristics of the sparse array consistent with those
of the full array, the sparse transmit/receive elements should be weighted to make the sparse array
coincide with the effective aperture of the full array by selecting the appropriate weight functions [24].
Figure 2a–c show the effective aperture and the point spread functions (PSF) in the far field [24] of
TFM, the uncorrected sparse-TFM and the corrected sparse-TFM, respectively. It can be seen that the
corrected sparse array has the same effective aperture with the full array, and the intensity of each
point in the corrected sparse-TFM image can be expressed as [25]:

IC(x, z) =
NT

∑
i=1

NR

∑
j=1

ωi
Tω

j
Rei,j


√
(xtx − x)2 + (ztx − z)2 +

√
(xrx − x)2 + (zrx − z)2

c

 (2)

where NT and NR are the number of transmitting and receiving elements in the sparse array respectively,
ωT and ωR are the weight functions of the transmitting and receiving array respectively.
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Figure 2. The array effective aperture and point spread function under different methods: (a) TFM; 
(b) sparse-TFM; and (c) corrected sparse-TFM. 

3. ADSGA-Based Sparse Array Optimization 

The location of active elements in the sparse array is very important for imaging performance. 
To improve the image quality with sparse array, the location of each active element in the sparse 
array is optimized using ADSGA. N is the total number of elements of the target sparse array, K is 
the number of active elements, a is the width of each element, and d is the pitch of the elements. The 
optimization aims to minimize PSL and MLW of the sparse array. For the linear array shown in 
Figure 3, the sound pressure of the single element i can be defined as follows [25]: 
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Figure 2. The array effective aperture and point spread function under different methods: (a) TFM;
(b) sparse-TFM; and (c) corrected sparse-TFM.

3. ADSGA-Based Sparse Array Optimization

The location of active elements in the sparse array is very important for imaging performance.
To improve the image quality with sparse array, the location of each active element in the sparse array
is optimized using ADSGA. N is the total number of elements of the target sparse array, K is the number
of active elements, a is the width of each element, and d is the pitch of the elements. The optimization
aims to minimize PSL and MLW of the sparse array. For the linear array shown in Figure 3, the sound
pressure of the single element i can be defined as follows [25]:

ξi(r, θ, t) = (
ξ0

r
)

1/2 sin(ka sin θ/2)
k sin θ/2

exp(− jka sin θ

2
) exp[j(ωt− kr)] (3)

where r and θ are the distance and the direction angle between the imaging point and the array element
respectively, k is the wave number, and ω is the angular frequency.
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The synthesized sound pressure ξ(r, θ, t) and the beam directivity function H(θ) can be defined
as follows:

ξ(r, θ, t) =
N

∑
i=1

giξi(r, θ, t) (4)

H(θ) =

∣∣∣∣ ξ(r, θ, t)
ξ(r, θs, t)

∣∣∣∣ (5)

where gi is the binary coefficient, gi is 1 when the element i is active, and gi is 0 when it is inactive,
θs is the steering angle of the phased array, which is set to 0 here. According the figure of the beam
directivity obtained by the H(θ) in Equation (5), the PSL and MLW can be obtained.

The key steps in sparse array design using the ADSGA method are shown as follows:

Step 1. Population initialization. According to the parameters N and K of the sparse array,
the almost differential sets of relevant parameters (N, K, Λ, t)-ADS and the corresponding binary
sequences are selected from the ADS library [26,27], where Λ and t are the characteristic parameters
of the ADS, and are the number of non-zero elements in the N order Abelian group and the number
of non-zero elements appearing in the compound set, respectively. The N-1 shift types of the binary
sequence are obtained by cyclic shift and ranked based on the PSL values of corresponding binary
sequences in these N ADS [28]. The top-ranked P/2 individuals are chosen as the initial population
(P is the total number of individuals in each generation during the iteration):

ρp =
{

bp(n) = w(p)(n); n = 0, . . . , N − 1
}

1 ≤ p ≤ P/2
(6)

where p is the serial number of the individual in each generation, ρp is the binary sequence of the p-th
individual, n is the digits of the binary sequence, w(p)(n) is the value of the n-th digit in the binary
sequence of the p-th ADS. If n ∈ D(σ), which means that the number of cyclic shift is σ and n is the
element of the ADS shift types D(σ), w(p)(n) = 1; otherwise, w(p)(n) = 0. bP(n) is the gene values of
the nth individual in the p-th population. bP(n) = 1 when the element n is active, bP(n) = 0 when the
element n is inactive. The remaining P/2 initial individuals are generated randomly:

ρp =
{

bp(n) = rp(n); n = 0, . . . , N − 1
}

, P/2 ≤ p ≤ P (7)

where rp(n) is 0 or 1 randomly.

Step 2. Fitness evaluation. The fitness function used here is expressed as: Fit = ψ1*PSL + ψ2*MSL,
where ψ1 and ψ2 are the coefficient values selected according to different optimization targets.
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The characteristics of the main lobe and the side lobe are needed to be optimized simultaneously,
so both ψ1 and ψ2 are set to 1.

Step 3. Selection, crossover and mutation. The initial group G(n) is ranked according to the fitness
function value, and the inferior half chromosomes are discarded. Presetting a crossover probability
and pairing the remaining M/2 individuals, some genes in each combination are replaced according to
this probability, and then the new M/2 individuals are generated. The number of individuals in the
group will still be M after this processing. Moreover, according to the mutation probability, the genes
of the individuals in the population are replaced by the corresponding alleles, which means that the
gene values change from 0 to 1 or from 1 to 0. v is the thinning factors, b(U) and b(V) are the gene
values of the Uth and Vth individual in the population respectively, then the bit mutation probability
is defined as follows [17]:

HBM(n) =

[
N × v−

n−1
∑

U=0
b(U)

]
N −V

× [1− 2b(V)] + b(V) (8)

Step 4. Steps 2 and 3 are repeated until the preset number of iterations is reached. The optimal
chromosomes in each circulation are recorded and transferred to the corresponding array structure,
then the optimal sparse array can be obtained.

Taking a 32-element array transducer as an example, the ADSGA optimization of sparse arrays
is carried out. The thinning factors v is set to 0.25, which means the number of active elements K
is 8. The number of the initial population group is set to 40, the number of iterations is set to 400,
the crossover probability is set to 0.8, and the mutation probability can be calculated by Equation (8).
Figure 4a is the directivity diagram of the 8-element uniform sparse array, and Figure 4b,c are the
directivity diagrams of 8-element sparse array optimized using GA and ADSGA respectively. Table 1
lists the performance of the main lobe and the side lobe, one can see that the sparse array optimized
using ADSGA has better imaging characteristics with a narrower MLW and smaller PSL in comparison
with the uniform sparse array and sparse array optimized using GA.

Sensors 2018, 18, x 6 of 15 

 

mutation probability, the genes of the individuals in the population are replaced by the 
corresponding alleles, which means that the gene values change from 0 to 1 or from 1 to 0. v is the 
thinning factors, b(U) and b(V) are the gene values of the Uth and Vth individual in the population 
respectively, then the bit mutation probability is defined as follows [17]: 

 
 

   

1

0 1 2

n

U
BM

N v b U
H n b V b V

N V





 
        


 

(8) 

Step 4. Steps 2 and 3 are repeated until the preset number of iterations is reached. The optimal 
chromosomes in each circulation are recorded and transferred to the corresponding array structure, 
then the optimal sparse array can be obtained. 

Taking a 32-element array transducer as an example, the ADSGA optimization of sparse arrays 
is carried out. The thinning factors v is set to 0.25, which means the number of active elements K is 
8. The number of the initial population group is set to 40, the number of iterations is set to 400, the 
crossover probability is set to 0.8, and the mutation probability can be calculated by Equation (8). 
Figure 4a is the directivity diagram of the 8-element uniform sparse array, and Figure 4b,c are the 
directivity diagrams of 8-element sparse array optimized using GA and ADSGA respectively. Table 
1 lists the performance of the main lobe and the side lobe, one can see that the sparse array 
optimized using ADSGA has better imaging characteristics with a narrower MLW and smaller PSL 
in comparison with the uniform sparse array and sparse array optimized using GA. 

   
(a) (b) (c) 

Figure 4. Directivity diagrams of the 8-element sparse arrays: (a) uniform; (b) GA; and (c) ADSGA. 

Table 1. Performance of the 8-element sparse arrays. 

Sparse Type Array Layout MLW (°) PSL (dB) 
Uniform 10001000100010001000100010001000 10.23 −12.27 

GA 00000110000100001001100000011000 8.0 −16.13 
ADSGA 10000000000110011100010000000001 6.3 −17.55 

4. Sparse-TFM Based on NEDI 

To further improve the imaging efficiency, a low resolution (LR) image LR ( , )I x z  can be 
obtained in advance by increasing the pixel distance in the measured area according to Equation 
(2). Then the obtained image LR ( , )I x z  is interpolated using the NEDI method. The basic idea of 
NEDI is that the value of each pixel point in the high resolution (HR) image is obtained by 
calculating the local covariance coefficient of each pixel point in the LR image according to the 
geometric duality of the covariance in the HR and LR image. 

If the number of pixels in the sparse-TFM image LR ( , )I l s  is L × S (l and s respectively are the 
serial numbers of the row and column of the imaging point, L and S are the number of rows and 
columns of image respectively), the number of pixels of the corresponding HR image HR (2 ,2 )I l s  

-50 0 50
-50

-40

-30

-20

-10

0

steering  angle /degree

pu
ls

e-
ec

ho
 re

sp
on

se
 /d

B

-50 0 50
-50

-40

-30

-20

-10

0

steering  angle /degree

pu
lse

-e
ch

o 
re

sp
on

se
 /d

B

-50 0 50
-50

-40

-30

-20

-10

0

steering  angle /degree

pu
lse

-e
ch

o 
re

sp
on

se
 /d

B

Figure 4. Directivity diagrams of the 8-element sparse arrays: (a) uniform; (b) GA; and (c) ADSGA.

Table 1. Performance of the 8-element sparse arrays.

Sparse Type Array Layout MLW (◦) PSL (dB)

Uniform 10001000100010001000100010001000 10.23 −12.27
GA 00000110000100001001100000011000 8.0 −16.13

ADSGA 10000000000110011100010000000001 6.3 −17.55
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4. Sparse-TFM Based on NEDI

To further improve the imaging efficiency, a low resolution (LR) image ILR(x, z) can be obtained
in advance by increasing the pixel distance in the measured area according to Equation (2). Then
the obtained image ILR(x, z) is interpolated using the NEDI method. The basic idea of NEDI is that
the value of each pixel point in the high resolution (HR) image is obtained by calculating the local
covariance coefficient of each pixel point in the LR image according to the geometric duality of the
covariance in the HR and LR image.

If the number of pixels in the sparse-TFM image ILR(l, s) is L× S (l and s respectively are the serial
numbers of the row and column of the imaging point, L and S are the number of rows and columns
of image respectively), the number of pixels of the corresponding HR image IHR(2l, 2s) is 2L × 2S.
The original imaging points remain the same during the interpolation, namely IHR(2l, 2s) = ILR(l, s).
The interpolation is divided into two steps. In the first step, the intensity of the central point is
obtained according to the interpolation of four original imaging points. As shown in Figure 5, the black
dots represent the known imaging points, and the white dots represent the points to be interpolated.
The intensity of the interpolation point (2l + 1, 2s + 1) is obtained as [29]:

I(2l + 1, 2s + 1) =
1

∑
γ=0

1

∑
q=0

α2γ+q I(2(l + γ), 2(s + q)) (9)

where I(2(l +γ), 2(s+ q)) is the intensity of four imaging points nearest to the points to be interpolated;
γ and q respectively are the lateral and longitudinal offset points of the interpolation point from the
center point (l,s); α2γ+q is the interpolation weight coefficient. Imaging intensity I(2(l + γ), 2(s + q)) is
known, so I(2l + 1, 2s + 1) can be obtained after calculating the interpolation weight coefficient α2γ+q.

Sensors 2018, 18, x 7 of 15 

 

is 2L × 2S. The original imaging points remain the same during the interpolation, namely 

HR LR (2 ,2 )= , ( )I l s I l s . The interpolation is divided into two steps. In the first step, the intensity of 
the central point is obtained according to the interpolation of four original imaging points. As 
shown in Figure 5, the black dots represent the known imaging points, and the white dots represent 
the points to be interpolated. The intensity of the interpolation point (2l + 1, 2s + 1) is obtained as [29]: 

1 1

2
0 0

(2 1,2 1)= (2( ), 2( ))q
q

I l s I l s q


 
 

     (9) 

where (2( ), 2( ))I l s q   is the intensity of four imaging points nearest to the points to be 
interpolated;   and q respectively are the lateral and longitudinal offset points of the interpolation 
point from the center point (l,s); 2 q   is the interpolation weight coefficient. Imaging intensity 

(2( ), 2( ))I l s q   is known, so (2 1, 2 1)I l s   can be obtained after calculating the 
interpolation weight coefficient 2 q  . 

2l-2

2l-1

2l

2l+1

2l+2

2s-2 2s-1 2s 2s+1 2s+2

 
03R̂

 03R

0̂r 3̂r

1̂r 2̂r
0r

1r 2r

3r
α0

α2

α1

α3

 
Figure 5. The first stage of interpolation. 

According to the classical Wiener filtering theory, the optimal linear interpolation coefficient of 
minimum mean squared error (MMSE) can be expressed as [30]: 

1= α R r  (10) 

where =[ ]R R and =[ ]r r are the local covariance coefficients in the HR image,

   0,1,2,3 , 0,1,2,3   . It can be seen from Figure 5 that the covariance coefficients R  

and r in HR image and ˆ
R  and ̂r in LR image have geometric duality. R  and ˆ

R  

respectively connect the same pair of imaging point in the same direction at different resolutions, as 

well as r  and ̂r . Thus, R  and r  can be obtained by calculating ˆ
R  and ̂r . The 

standard covariance method can be used to calculate the value of ˆ
R  and ̂r  in a local window 

of M × M: 

T
2 2

1 1ˆ ˆ= ,CC r Cy
M M

R  (11) 

Figure 5. The first stage of interpolation.

According to the classical Wiener filtering theory, the optimal linear interpolation coefficient of
minimum mean squared error (MMSE) can be expressed as [30]:

α = R−1r (10)

where R =
[
Rβφ

]
and r =

[
rβ

]
are the local covariance coefficients in the HR image, β ∈ {0, 1, 2, 3},

φ ∈ {0, 1, 2, 3}. It can be seen from Figure 5 that the covariance coefficients Rβφ and rβ in HR image
and R̂βφ and r̂β in LR image have geometric duality. Rβφ and R̂βφ respectively connect the same pair
of imaging point in the same direction at different resolutions, as well as rβ and r̂β. Thus, Rβφ and rβ
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can be obtained by calculating R̂βφ and r̂β. The standard covariance method can be used to calculate
the value of R̂βφ and r̂β in a local window of M ×M:

R̂ =
1

M2 CCT, r̂ =
1

M2 Cy (11)

where y = [y1, y2 · · · yµ, · · · yM2 ]
T is a vector composed of M ×M pixel points in local window W, C is

a numerical matrix of 4 ×M2, and the µth column vector is the intensity of the nearest four points in
the diagonal direction of yµ. According to Equations (10) and (11), it can be derived that:

α = (CCT)− Cy (12)

Based on Equation (12), the optimal interpolation weight coefficient α of I(2l + 1, 2s + 1) is
calculated, and the intensity I(2l + 1, 2s + 1) can then be obtained by substituting α into Equation (9).

In the second step, the interpolation is conducted between the known pixel points and the pixel
points obtained in the first step. As shown in Figure 6, the white dots represent the known pixel
points and the black dots represent the interpolation points. Since the four points in the diagonal
direction nearest to the black dots are not points on the LR image, Equation (9) does not work for the
interpolation here. However, the interpolation of the points can be obtained using the points on the LR
image and the estimated pixel points [29]:

I(2l + 1, 2s) = α0 I(2l, 2s) + α1 I(2l + 1, 2s− 1) + α2 I(2l + 2, 2s) + α3 I(2l + 1, 2s + 1) (13)
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In the same way, the interpolation weight coefficient α can be obtained and the intensity of the
interpolation points is finally obtained.

5. Experiments

As shown in Figure 7, a steel specimen including SDHs is used for the experiments. There are
18 SDHs with diameter of 2 mm in the detection area; these are numbered 1–18 from top to bottom,
and their geometric sizes are shown in Figure 7b. The detection area is 60 mm × 60 mm. The 5L32-0.6
× 10-type ultrasonic phased array transducer (Guangzhou Doppler Electronic Technology Co., Ltd.,
Guangzhou, China) was used, with a total number of elements of 32, a pitch between each element
of 0.6 mm, an element width of 0.5 mm and a center frequency of 5 MHz. The sound velocity in the
specimen was measured as 5900 m/s. The full matrix data is collected and stored using the FMC
method at the sampling frequency of 100 MHz. The experimental calculation was carried out on a
computer with a Core i5 CPU and a 4 GB RAM.
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Figure 7. (a) Diagram of the experiment; (b) specimen in the ultrasonic phased array
detection experiment.

The lateral and longitudinal pixel distances were both set as 0.4 mm and the imaging area was
divided into a grid of 151 × 151 pixels. First, the sparse array obtained by ADSGA method was used
for the sparse-TFM and corrected using the effective aperture method. The imaging results are shown
in Figure 8a. Then the 2 × 2 bilinear interpolation [19] and NEDI interpolation are performed on the
Figure 8a, and the results of the interpolation are shown in Figure 8b,c, respectively. As shown in
Figure 8, the edge of defect holes is blurred in the image without interpolation, and a certain amount
of key pixel information is missing due to the large pixel distance, which is harmful to the quantitative
analysis of defect holes. In contrast, in the image with interpolation, the edge of the defect holes
is smooth.
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Figure 8. The sparse total focus imaging (a) No interpolation; (b) Bilinear interpolation; (c) NEDI
interpolation with 8-element.

Then the lateral and longitudinal pixel distances are set as 0.2 mm and the imaging pixel is divided
into 301 × 301. The collected full matrix data are used for the TFM imaging and sparse-TFM imaging.
The sparse-TFM imaging based on ADSGA (ADSGA sparse-TFM), the corrected sparse-TFM imaging
based on ADSGA-NEDI method (ADSGA-NEDI sparse-TFM) and the TFM imaging are shown in
Figure 9. Compared with the 8-element sparse-TFM imaging based on ADSGA method, one can see
that the artifacts and noise in the corrected sparse-TFM imaging based on ADSGA-NEDI method
proposed in this paper are greatly reduced, which is almost the same with the TFM imaging.
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6. Discussion

Pixel error (PE) and mean pixel error (MPE) are introduced here as evaluation indices for a
quantitative comparison of the images with and without interpolation, and can be expressed as follows:

PE(i) = |I(i)− ITFM(i)|, (i = 1, 2, · · · , m) (14)

MPE(i) =
1
M

M

∑
i=1
|I(i)− ITFM(i)|, (i = 1, 2, · · · , m) (15)

where m is the total number of pixel points in the imaging area, ITFM(i) is the intensity of each point
in the TFM image, I(i) is the intensity of each point after interpolation. The central grid of 10 × 10
pixels including defect holes 5, 7, 9 and 11 is selected as the detection area, and the error values of
the interpolated images around this four defect holes with respect to the TFM images are compared.
The results are shown in Figure 10.

As Figure 10 shows, the PE values in sparse-TFM imaging based on the NEDI method (NEDI
sparse-TFM) regarding the TFM imaging are within 5.5 dB, except for a few points. Moreover, the PE
values of most points are within 2 dB, and these areas can be reconstructed well using interpolation.
In addition, the MPE values of the points around this four defect holes are 1.11 dB, 1.34 dB, 1.54 dB
and 1.62 dB respectively; these are reduced by 1.28–2.13 dB in comparison with traditional bilinear
interpolation. It can be seen that the imaging results for the proposed NEDI sparse-TFM imaging are
closer to those from TFM.

In order to further analyze the absolute precision error of the image, we take the defect hole 9 as
an example. The imaging intensity of the defect hole along the lateral and longitudinal center axes in
Figure 9b is extracted and normalized. Then the normalized image intensity is expressed in decibels
as shown in Figure 11, and the lateral and longitudinal size of the defect holes are measured using
the 6-dB-drop method. The evaluated lateral and longitudinal sizes of hole 9 are both 2.2 mm and
the error value is only one pixel distance, which is mainly caused by the influence of the number of
transducers, the sound speed error and the pixel distance.
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Figure 10. Pixel error analysis of centergrid of different holes (a) hole 5; (b) hole 7; (c) hole 9; (d) hole 11. 
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sparse-TFM, and which is only 1.09% lower than the average measurement accuracy of TFM. 
Furthermore, the imaging time of TFM, ADSGA sparse-TFM and ADSGA-NEDI sparse-TFM are 
respectively 17.2 min, 4.3 min and 1.08 min. Compared with TFM, the imaging speed of 
ADSGA-NEDI sparse-TFM is improved by about 16 times. 

Figure 10. Pixel error analysis of centergrid of different holes (a) hole 5; (b) hole 7; (c) hole 9; (d) hole 11.

Sensors 2018, 18, x 12 of 15 

 

0 20 40 60 80 100

0

2

4

6

8

10

12

14

16

 

PE
/d

B

pixel points

 Bilinear
NEDI

 
0 20 40 60 80 100

0

2

4

6

8

10

12

14

16

pixel points

PE
/d

B

 Bilinear
NEDI

 

 

0 20 40 60 80 100

0

2

4

6

8

10

12

14

16  Bilinear
NEDI

pixel points

PE
/d

B  

 
0 20 40 60 80 100

0

2

4

6

8

10

12

14

16  Bilinear
NEDI

pixel points

PE
/d

B  

 
Figure 10. Pixel error analysis of centergrid of different holes (a) hole 5; (b) hole 7; (c) hole 9; (d) hole 11. 

(a)

Lateral points
0 50 100 150 200 250 300

-80

-60

-40

-20

0

X:83
Y:-6.3667

X:72
Y:-5.9236

 

 

(b)

Longitudinal points
0 50 100 150 200 250 300

-80

-60

-40

-20

0

X:196
Y:-6.0728

 

  

X:185
Y:-6.0569

 
Figure 11. (a) Lateral and (b) longitudinal sound pressure distribution of defect hole 9. 
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Figure 11. (a) Lateral and (b) longitudinal sound pressure distribution of defect hole 9.

Similarly, to compare the quality of images in different methods in Figure 9, the area of each defect
hole is measured using the 6-dB-drop method. In view of the large angular deflection effect on the
imaging of hole 1, only holes 2–18 are analyzed. The evaluated area and quantitative error of these
defect holes are shown in Table 2. As can be seen from Table 2, the average errors of the TFM image,
the ADSGA sparse-TFM image and the ADSGA-NEDI sparse-TFM image proposed in this paper
are 4.98%, 9.84% and 6.07%, respectively. It can be seen that the average measurement accuracy of
ADSGA-NEDI sparse-TFM is improved by 3.77% in comparison with ADSGA sparse-TFM, and which
is only 1.09% lower than the average measurement accuracy of TFM. Furthermore, the imaging time
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of TFM, ADSGA sparse-TFM and ADSGA-NEDI sparse-TFM are respectively 17.2 min, 4.3 min and
1.08 min. Compared with TFM, the imaging speed of ADSGA-NEDI sparse-TFM is improved by about
16 times.

Table 2. Measurement results of the defect holes using different methods.

No. of SDH
Evaluated Area/mm2 Deviation Relative to the Actual Value (%)

ADSGA
Sparse-TFM

ADSGA-NEDI
Sparse-TFM TFM ADSGA

Sparse-TFM
ADSGA-NEDI

Sparse-TFM TFM

2 2.9 2.86 2.83 7.64 8.92 9.87
3 2.9 2.95 2.93 7.64 6.05 6.69
4 2.99 3 3.05 4.78 4.46 2.87
5 2.97 3.06 3.12 5.41 2.54 0.64
6 3 3.09 3.09 4.46 1.59 1.59
7 2.9 2.97 3.11 7.64 5.41 0.96
8 3.31 3.19 3.2 5.41 1.60 1.91
9 3.55 3.43 3.31 13.06 9.24 5.41

10 3.49 3.37 3.35 11.15 7.32 6.69
11 3.61 3.42 3.38 14.97 8.91 7.64
12 3.57 3.39 3.27 13.70 7.96 4.14
13 3.51 3.3 3.34 11.78 5.10 6.37
14 3.48 3.29 3.38 10.83 4.78 7.64
15 3.44 3.37 3.29 9.55 7.32 4.78
16 3.54 3.29 3.25 12.74 4.78 3.50
17 3.58 3.31 3.31 14.01 5.41 5.41
18 3.53 3.51 3.41 12.42 11.78 8.60

7. Conclusions

A corrected sparse-TFM imaging method based on sparse array optimization and NEDI
is proposed in this paper, and the imaging quality and computational efficiency are analyzed
quantitatively. The following conclusions can be drawn:

(1) Compared with the uniform sparse array and sparse array optimized using GA, the sparse array
optimized by ADSGA has a narrower MLW and a smaller PSL. In this study, the acoustic field
of the sparse array is modified, and the modified sparse total focusing imaging model based on
ADSGA method is developed.

(2) The low resolution sparse TFM image is interpolated using the NEDI method to improve the
imaging resolution. The PE of each pixel point between the image in this method and TFM is
within 5.5 dB, and the MPE of each imaging area is within 1.62 dB, which has an advantage of
1.28–2.13 dB over the traditional bilinear interpolation method.

(3) Compared with the ADSGA sparse-TFM, the average measurement accuracy of ADSGA-NEDI
sparse-TFM is improved by 3.77%. In addition, compared with TFM, the average error of
ADSGA-NEDI sparse-TFM is increased by only 1.09% when the sparse transmitting elements
number reaches 8 for a 32-element transducer, while the imaging speed is improved by about
16 times.

The proposed method can greatly improve the computational efficiency of TFM imaging method
with good imaging quality and provide an important reference for the industrial application of
ultrasonic phased array TFM imaging. With the development of image interpolation technology and
the application of parallel computing in the TFM, the higher-quality images will be obtained in a
shorter time. Our future work will focus on the sparse-TFM imaging for curved components.
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