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Abstract: A new scheme based on Kalman filtering to optimize the waveforms of an adaptive
multi-antenna radar system for target impulse response (TIR) estimation is presented. This work
aims to improve the performance of TIR estimation by making use of the temporal correlation
between successive received signals, and minimize the mean square error (MSE) of TIR estimation.
The waveform design approach is based upon constant learning from the target feature at the receiver.
Under the multiple antennas scenario, a dynamic feedback loop control system is established to
real-time monitor the change in the target features extracted form received signals. The transmitter
adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation
results show that, as compared with the waveform design method based on the MAP criterion,
the proposed waveform design algorithm is able to improve the performance of TIR estimation for
extended targets with multiple iterations, and has a relatively lower level of complexity.

Keywords: cognitive radar system; Kalman filtering; temporal correlated target; multiple antennas;
waveform optimization

1. Introduction

Cognitive radars have received a lot of attention in recent years. Similar to brain-empowered
system architectures, cognitive radar employs adaptive feedback principle to facilitate adaptive
detection of the time-invariant target scene. Subsequently, the target feature information in the
backscatter signal is exploited to allocate the power or spectrum of the probing signal at the
transmitter [1,2]. Cognitive radar usually forms a closed feedback loop from the receiver to the
transmitter. It is able to adaptively adjust probing signals or the receiver to suit the time variant target
scene. The feedback loop has great potentials in improving the performance of target recognition and
detection, as shown in [3,4].

The transmitted waveforms of the cognitive radar are constantly adjusted in order to extract target
feature information in a time variant environment. Many methods to design the cognitive waveform
have been proposed, in several recent works. The literature [5] developed waveform design methods
that provide good performance for target resolution. Bell [6] discussed the waveform design problem
for extended target detection and parameter estimation. Since the received signals feature clutter and
noise interference, several waveform design algorithms are proposed which maximize signal to noise
ratio (SNR) and signal to interference plus noise ratio (SINR) of the output signal [7–10]. The cognitive
radar waveform is optimized by maximizing the probability of target detection, instead of the SINR of
the output signal [11,12]. The corresponding algorithm is also discussed in the literature [13]. Under
the condition of given transmitted power constraint, the water-filling method is presented to allocate
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the transmitted power, and maximize the mutual information [14–18]. Cognitive waveform design has
been studied as a means of improving the performance of target estimation and identification [19–23].
For instance, the literature [24] proposes that the mutual information (MI) between the echo waveform
and the estimate of TIR be minimized. The literature [25] proposes minimizing the mean square error
(MSE) of the estimate of TIR. Kalman filtering-based method is proposed by F. Z. Dai [26] to exploit
target temporal correlation. Compared with the algorithms in the literature, the proposed method
has good performance of target parameter estimation. However, the simulation results show that the
algorithm has low reliability and high complexity, due to the convolution operation in the time domain.
The Fourier transform of TIR is denoted by target scattering coefficients (TSC). The TSC estimation
was applied for the adaptive waveform optimization design, with the purpose of enhancing the target
detection performance [27–30]. However, TSC varies continuously with the relative movement of the
target scene [31]. From the perspective of cognitive radar, the TSC estimation should be updated at the
receiver, and sent to the transmitter through a feedback loop.

Recent researches have also indicated that multiple antennas radar can take full advantage of
spatial diversity gains by detecting the extended target in different directions [32–35]. The multiple
antennas radars are able to excite many separate scattering centers by emitting probing signals and
enriching the target feature information in the backscatter signal. Since radar echoes are strongly
correlated to target scattering in the line-of-sight (LOS) directions, the spatial diversity offered by
multiple antennas radar system improves the capacity of target feature extraction, as presented in
literature [36]. From the literature [37], one pulse optimization design scheme involves applying
the principle of information theory to radar signal processing. Following the pioneering work
of Bell [6], information-theoretic measures was applied for the adaptive waveforms design with
the purpose of enhancing the radar detection and classification performance. The spatial diversity,
which is provided by different paths and angles of echo waveforms, is utilized to improve radar
efficiency [38,39]. Yang and Blum [40,41] extended the Bell’s work by using mutual information (MI)
as the waveform optimization criterion, subject to limited transmission power in the multiple antennas
radar configuration.

In this paper, we analyze the performance of an adaptive multi-antenna radar system that contains
the idea of “Kalman Filtering” and “TIR estimation”. A novel method based on Kalman filtering
optimizing the waveforms of an adaptive multi-antenna radar system for TIR estimation is presented.
The receiver adopts the Kalman Filtering approach by updating the target parameters. The radar
system updates the TIR estimation and utilizes this information to choose the optimal waveform for
transmission. An adaptive feedback loop enables the delivery of the estimated value of TIR to the
transmitter. The transmitter adapts its transmitted waveform to suit the time-invariant environment.
The proposed waveform design algorithm is studied in order to improve the performance of TIR
estimation, which can be summarized as follows:

(1) We extract the target feature information derived from successive received signals at the
receiver. The TIR can be considered as a temporally-correlated function during pulse repetition
interval (PRI).

(2) By utilizing this temporal correlation of the TIR changes, the waveform design problem is
modeled by minimizing the MSE of TIR estimation. The MSE of TIR estimation can be obtained
during the Kalman Filtering-based iteration process.

The main contributions of this paper are summarized as follows:

(1) We present an adaptive multi-antenna radar system model, based on the idea of the MSE of
TIR minimization.

(2) We present a Kalman filtering-based waveform design approach by making use of temporal
correlation of the TIR derived from successive received signals.
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(3) We provide performance analysis of the adaptive multi-antenna system in terms of the TIR
estimation by the proposed iteration steps. The proposed algorithm has relatively lower
complexity, due to the product operation in the time domain.

The structure of this paper is as follows. In Section 2, an adaptive multiple antennas radar
system model for extended target is formulated. In Section 3, TIR estimation based on maximum a
posteriori (MAP) criterion is discussed. The Kalman Filtering-based approach is developed to make
use of the temporal correlation of the TIR. In Section 4, by utilizing the temporal correlation of the
TIR changes, a waveform design algorithm based on Kalman filtering-based approach is developed
by minimizing the MSE of TIR estimation. A method is proposed to find the optimal solutions for
the optimization problem. The simulation results illustrating the proposed methods are provided in
Section 5. The conclusions are given in Section 6.

Throughout this paper, the following notations will be used. Vectors are denoted by boldface
lowercase letters and matrices by boldface uppercase letters. (·)H and (·)T denote transpose conjugate
operation and the transpose, respectively. diag{.} denotes the diagonal matrix. Γ is the Fourier
transform. Tr{.} is the trace of a matrix. ∗ is linear convolution operator, E{ } is expectation operator
and Var{·} is variance operator. The symbol “◦” describes the Hadamard product.

2. The Model of the Multiple Antennas Radar System

We consider that an adaptive multi-antenna radar system is equipped with a transmit array
and a receive array comprising N antennas and Q antennas, respectively. To simplify our modeling,
we assume that N = Q. In this work, we assume that two different antennas in the multi-antenna
radar system are independent. The distance between the two antennas are sufficient and known.
The transmit array antennas send probing signals to the target environment, and the backscattered
signals are received at the receive array antennas. The characteristics of the scattering field are
examined for target information extraction and detection.

In the intelligent transportation scenario, we analyze the performance of an adaptive
multi-antenna radar system that contains the idea of “Kalman filtering” and “TIR estimation”.
The system architecture of the adaptive multi-antenna radar is presented in Figure 1. The system
consists of four modules: transceiver device; TIR estimation module; Kalman filtering module;
waveform optimization module. The Kalman filtering module is a novel scheme that distinguishes the
proposed adaptive system from a traditional feedback system.
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Figure 1. Adaptive multi-antenna radar architecture.

In this work, we assume that the target was contained in a single range cell, which consists of
M scattering centers located at θm = {xm, ym}, (m = 1, 2, . . . , M) with reflectivity a2

m. The target is
illuminated by N transmitters located at θT,n = {xn, yn}, (n = 1, 2, . . . , N). The backscattering signals
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are collected by Q receivers located at θR,q =
{

xq, yq
}

, (q = 1, 2, . . . , Q). Next, we utilize a set of
transmitted waveforms fn, n = 1, . . . , N for illumination, where

∫
Tp
|fn|2 = 1. Tp denotes the waveform

duration. The backscattering signal observed at the q-th receiver, due to the probing signal sent from
the n-th transmitter and reflected from the m-th scatterer (excluding noise), is denoted as:

rm
n,q = hm

n,qfn(t− τT,n(θm)− τR,q(θm)) (1)

where hm
n,q = a2

m exp
{
−j2π fc

[
τT,n(θm) + τR,q(θm)

]}
, hm

n,q is the TIR from the n-th transmitter to the
q-th receiver via the m-th scatterer. τT,n(θm) and τR,q(θm) are the path delays from the n-th transmitter
to the m-th scatterer, and from the m-th scatterer to the q-th receiver, respectively. It is worth noting
that the target moves with a constant velocity. As the radar carrier, Doppler is not useful for waveform
optimization design; this is ignored in this paper.

In order to simplify the discussion, we assume that the target has a center of gravity at
θ0 = {x0, y0}, that is, fn(t − τT,n(θm) − τR,q(θm) = fn(t − τT,n(θ0) − τR,q(θ0) for all m = 1, . . . , M.
Therefore, the above Equation (1) can be rewritten as:

rn,q = hn,qfn(t− τT,n(θ0)− τR,q(θ0)) (2)

where hn,q =
M
∑

m=1
hm

n,q. hn,q is the TIR from n-th transmitter to the q-th receiver via the target. The vector

version of the backscattering signal at q-th receiver can be expressed as:

rq =
N

∑
n=1

hn,q f̂n,q + nq (3)

The term f̂n,q ∈ RK×1, where K = Kn + Kd. Kn is the length of the transmitted
signal and Kd is the maximum delay with respect to the first arrival among all the links.

f̂n,q =
[

01×Ln,q fT
n 01×(Kd−Ln,q)

]T
, where fn ∈ RKn×1, 0 is a null vector, Ln,q is the delay from

the n-th transmitter to the q-th receiver via the target. nq denotes additive white Gaussian noise
(AWGN) at the q-th receiver. We further assume the scenario that Kn is much larger than Kd. As a
result, fn ≈ f̂n,q.

At time k, we consider Rk =
[

rk,1 rk,2 . . . rk,Q

]
and Fk =

[
fk,1 fk,2 . . . fk,N

]
are the matrices of received signals and transmitted signals, respectively; Hk =

[
h(k)n,q

]
N×Q

and

N =
[

n1 n2 . . . nN

]
are the TIR matrix and AWGN matrix, respectively. At the result, if the

target is present, the matrices version of the backscattering signals at time k disturbed by the AWGN
can be expressed as follows:

Rk = FkHk+N (4)

where k is the index of radar pulse sample. H ∼ CN(0, CT) and N ∼ CN(0, CN). CT is the covariance
matrix of TIR and CN is the covariance matrix of AWGN. We consider that H and N are independent

of each other. The total transmitted energy is denoted by 1
N

N
∑

n=1
|fn|2 = E f . The multiplication operation

in physical space for waveform design can be obtained, which facilitates the application of many
mathematical natures and principles. The complexity of the waveform design is decreased, and the
waveform optimization problem can be solved efficiently.

The relative angle between the multi-antenna radar and the target is time-invariant during the
PRI. Since we will consider the waveform design problem for target parameter estimation in the time
variant radar scene, the dynamic model of the TIR should be established. From the literature [8],
the TIR of different time in a short interval are correlated, and the correlation coefficient decreases
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with increasing time interval. During the k-th pulse, the time dynamic characteristic of the TIR can be
described as:

Hk=e−T/λHk−1 + U (5)

where T denotes the radar pulses interval, and λ denotes the temporal correlation of target impulse
during PRI, which is determined by the change rate of the target angle. We consider that TIR
is second-order stationary process. U is the noise matrix, which is complex Gaussian noise with
zero-mean and covariance matrix e−2T/λCT .

We aim to explore the waveform optimization for an adaptive multi-antenna radar system.
By employing the spatial diversity technology, the multi-antenna systems can improve the parameter
estimation capability and target detection capability. From the literature [25], the TIR estimation is the
precondition for the target detection and target classification. In this work, a novel waveform design
scheme is studied, in order to improve the performance of TIR estimation, which can be summarized
as follows.

In the first step, the received signals are used to extract the TIR via the Kalman filtering-based
approach. The MSE matrix of TIR estimation can be obtained during the Kalman filtering-based
iteration process.

In the second step, TIR is considered as a temporally-correlated function during pulse repetition
interval (PRI). By utilizing this temporal correlation of the TIR changes, the waveform design problem
is modeled by minimizing the MSE of TIR estimation.

The cognitive processing is summarized as follows: The receiver employs the Kalman filtering
approach update the target parameters. The radar system updates TIR estimation and utilizes this
information to choose the optimal waveform for transmission. An adaptive feedback loop enables
the delivery of estimated value of TIR to the transmitter. The transmitter adapts its probing signals to
suit the time-invariant environment. The process of waveform optimization for the target parameter
estimation is depicted in Figure 2.
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3. TIR Estimation Based on MAP Criterion

In this section, we intend to estimate TIR in order to improve the performance of target detection
in the adaptive multi-antenna radar system. During the k-th pulse sample, TIR estimation based on
maximum a posteriori (MAP) criterion can be written as:

Ĥk = argmax
Hk

p(Hk|Rk )

= argmax
Hk

p(Rk |Hk )p(Hk)
p(Rk)

= argmax
Hk

(Rk − FkHk)
HC−1

N (Rk − FkHk)−HkC−1
T Hk

= argmax
Hk

f (Hk)

(6)

where

p(Rk|Hk ) =
1

(2π)M/2|CN |1/2 exp
(
− 1

2 (Rk − FkHk)
HC−1

N (Rk − FkHk)
)

p(Hk) =
1

(2π)M/2|CT |1/2 exp
(
− 1

2 (Hk)
HC−1

T Hk

)
f (Hk) = (Rk)

HC−1
N FkHk + (FkHk)

HC−1
N Rk − (FkHk)

HC−1
N FkHk − (Hk)

HC−1
T Hk

(7)

The received waveform Rk follows complex Gaussian distribution and p(Hk|Rk ) is the probability
distribution of TIR. Then, the estimate of TIR can be obtained as follows:

∂ f (Hk)

∂Hk
= 0 (8)

We have [
(Fk)

HC−1
N Fk + C−1

T

]
Hk = (Fk)

HC−1
N Rk (9)

After the simplification, TIR estimation based on MAP criterion in AWGN channel can be
written as:

Ĥk = QkRk (10)

We have
Qk =

[
(Fk)

HC−1
N Fk + C−1

T

]−1
(Fk)

HC−1
N (11)

The MSE matrix of TIR estimation based on MAP criterion can be expressed as:

ek = E
{∥∥Ĥk −Hk

∥∥2
2

}
= Qk

(
FkCT(Fk)

H + CT

)
(Qk)

H −QkFkCT −CT(Fk)
H(Qk)

H + CT

(12)

The temporal correlation characteristic of TIR cannot be utilized by using MAP criterion in the
process of calculating estimation of parameters. In this work, we present a Kalman filtering-based
method for TIR estimation under multiple antennas scenario. This method has two steps: firstly,
we utilize the MAP criterion to initialize the estimated parameters, i.e., the observed state of TIR
Ĥ1 = Q1R1 and the MSE matrix of TIR estimation P1/1 = e1 = 0. The TIR state transition and the
observation processes are denoted by the above Equations (4) and (5), respectively. The MAP criterion
is utilized for mapping the received signals into the observed state of TIR. The observation model is
defined by QkRk. The Kalman filtering-based iteration process can be described in Algorithm 1.
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Algorithm 1. Kalman filtering for TIR estimation in cognitive radar system

Step 1: Initializing iteration index k = 1 and the MSE matrix of TIR estimation P1/1 = 0
Step 2: The predicted matrix of TIR can be expressed as

Ĥk|k−1 = e−T/λĤk−1|k−1

Step 3: The predicted MSE matrix of TIR can be obtained as

Pk|k−1 = e−2T/λPk−1|k−1 +
(

1− e−2T/λ
)

CT

Step 4: The Kalman gain matrix can be expressed as

Φk = Pk|k−1(QkFk)
H
[
(QkFk)Pk|k−1(QkFk)

H + QkCN(Qk)
H
]

Step 5: The estimated matrix of TIR can be expressed as

Ĥk|k = Ĥk|k−1 + ΦkĤk

Step 6: The MSE matrix of TIR is updated as

Pk|k = Pk|k−1 −ΦkQkFkPk|k−1

If k = Kmax, the process ends; otherwise, we need to go back to Step 2 and repeat.

4. Waveform Optimization for TIR Estimation

As extensively discussed in the existing literature [42,43], the adaptive multi-antenna radar
makes use of target information from the radar echoes to improve the performance of TIR estimation.
In this section, we intend to further improve the performance of TIR estimation for target detection.
We develop a waveform optimization algorithm by minimizing the MSE of TIR estimation under
multiple antennas scenario. During the k-th pulse, the MSE matrix of TIR estimation via Kalman
filtering-based approach is preliminary described as follows:

f (Fk) , Tr
{

Pk|k

}
(13)

Under transmitted power and detection probability constraints, the above waveform design
problem (13) can be described as:

min
Fk

f (Fk)

s.t. ‖Fk‖2
2 ≤ E f

Pd ≥ ε

(14)

where E f describes the power of transmitted waveform, Pd represents the probability of detection.
From the literature [44], we can utilize the Woodbury identity to simplify the objective function.
The objective function in (14) can be expressed by the trace of the MSE matrix of TIR estimation. Hence,
the above waveform design problem (14) is rewritten as the following expression:

Fk = min
Fk

Tr

{[(
Pk|k−1

)−1
+ C−1

T −
(

CT + CT(Fk)
HC−1

N FkCT

)−1
]−1

}
s.t. ‖Fk‖2

2 ≤ E f
Pd ≥ ε

(15)

As we can see from the above waveform design problem (15), the above waveform optimization
problem is a convex one under AWGN channel. However, the proposed scheme is a non-convex and
non-linear optimization problem, considering the clutter and jamming. It is impossible to find the
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theoretical solution by using an algorithm with polynomial complexity. The goal of this paper is to
obtain the optimal (or sub-optimal) solutions of the above waveform design problem (15).

We propose a two-step approach to solve the above problem (15), which is based on the methods
of semi-definite programming. Firstly, according to the literature [36], the above waveform design
problem (15) can be considered as a convex under AWGN channel. We can obtain the optimal solution
(optimization waveform) directly by using the MATLAB optimization toolbox, such as CVX [45].
Secondly, we denote the rank of the matrix Fk as rank(Fk). We can obtain the sub-optimal solution
by solving the rank of the matrix Fk. If rank(Fk) = 1, the initial waveform fk is the optimal solution.
If rank(Fk) > 1, according to the literature [32], the radar system employs the eigenvector wmax of
the matrix Fk, corresponding to its largest eigenvalue as the reference vector. Based on the gradient
method mixed by steepest decent method and Newton method, a local optimal solution (also called
sub-optimal solution) can be obtained. Hence, the objective function in above Equation (15) can be
rewritten as:

f (Fk) = Tr
(

Pk|k

)
= Tr

{
Pk|k−1 − Pk|k−1(Fk)

H
[
CN + FkPk|k−1(Fk)

H
]−1

FkPk|k−1

}
= Tr

[(
Pk|k−1

)−1
+ (Fk)

HC−1
N Fk

]−1
(16)

where (Fk)
HC−1

N Fk can be denoted by
(
FkFH

k
)H ◦N. We have:

f (Fk) = Tr
[(

Pk|k−1

)−1
+
(

FkFH
k

)H
◦N
]−1

(17)

The symbols “◦” describes the Hadamard product and N ,

 C−1
N,1,1 . . . C−1

N,1,Q
. . . . . . . . .

C−1
N,N,1 . . . C−1

N,N,Q

.

The problem of waveform design in this scheme is a non-convex non-linear optimization problem.
We can convert the above optimization problem into a convex quadratic programming problem by
using the method of SDP. We have:

Tk = argmin
Tk

{
Tr
[(

Pk|k−1

)−1
+ Tk ◦N

]−1
}

s.t. Tr{Tk} ≤ E f
Pd ≥ ε

(18)

where Tk ,
(
FkFH

k
)H . The above program (18) can be expressed as SDPs, and via hierarchies of SDPs

the solutions of polynomial optimization problems can be approximated. Then, we solve a convex
quadratic programming problem by the optimization theory and method constructing algorithms.
The likelihood estimation can be equivalently transformed into:

l(Rk) = RH
k C−1

N FkĤk

H1
≶
H2

T (19)

where T describes the detection threshold. The probability of target detection can be rewritten as:

Pd = Q
(

Q−1
(

Pf a

)
−
(
FkĤk

)HC−1
N FkĤk

)
(20)
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Q(.) represents the Q-function and Pf a describes the probability of false alarm, which can be
expressed as:

Pf a = P
(

RH
k C−1

N FkĤk ≥ T
)

(21)

As the number of Kalman filtering iterations increases, the estimated value of TIR is close to the
real measured value. Since Q-function describes a monotonic decreasing and continuous function,
the expression Pd ≥ ε can be rewritten as:

FH
k ĤH

k C−1
N ĤkFk ≥ ε′ (22)

From the literature [36], an algorithm with polynomial complexity was presented to solve the
convex quadratic programming problem. The eigenvector of the matrix T′k, corresponding to its largest
eigenvalue, is expressed by vmax. Then, the optimal solution T′k of the above convex quadratic
programming problem (18) can be obtained by the optimization toolbox. Therefore, the eigen-
decomposition of the matrix T′k can be utilized to obtain the optimization waveform, which can
be written as:

f̂n =

√
E f vmax

‖vmax‖2
, n = 1, . . . , N (23)

5. Simulation Results

We assume that the transmitted powers of all of N transmit antennas are the same for the initial
state. The process of waveform optimization for TIR estimation is depicted in Figure 2. In this section,
we analyze the performance gain of TIR estimation for optimization waveforms designed by the
proposed scheme. The simulation parameters are reported in Table 1.

Table 1. Simulation Parameters.

Simulation Parameters

E f Transmitted power 1
L Length of transmitted signal 60

SNR SNR 15 dB
λ Temporal correlation 0.1 s
T Pulse interval 1 ms

SINR SINR 15 dB
p f a False alarm probability 0.01
pd Detection probability 0.95

N ×Q The number of the antennas 2× 2

We use the normalized MSE to define the estimation performance:

MSEn =
‖Ĥ−H‖2

2

‖H‖2
2

(24)

where Ĥ and H denote estimated value and the true value of TIR, respectively. During the k-th pulse
sample, we assume that C =

[
cn,q
]

N×Q is clutter impulse response (CIR) matrix, cn,q represent the
CIR between n-th transmit antenna and the q-th receive antenna. C ∼ CN(0, Cc), Cc is the covariance
matrix of CIR.

We compare the performance gain of TIR estimation for optimization waveforms designed by
the proposed scheme to the gain for random waveform, and compare this result with the optimized
waveform based on MAP criterion. Firstly, we consider that the backscatter signals are subject
to interference from white Gaussian noise. Figure 3 presents the normalized MSE with regard to
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TIR estimation under the transmitted power and detection probability constraints. Eight hundred
simulations have been run for each, at a particular value of the received SNR.
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As the Kalman filtering approach utilizes the temporal correlation of the TIR during the pulse
interval, the proposed radar system adapts its probing signal better than waveforms based on MAP
criterion to the fluctuating target radar cross section (RCS). On the other hand, optimized waveforms
based on MAP criterion are unable to match the time-varying TIR after multiple iterations. Hence,
the TIR estimation performance is suboptimal in this case.

Secondly, we assume that the backscattering signals are disturbed by the clutter. We compare the
performance gain of TIR estimation for optimization waveforms designed by the proposed scheme to
the gain for random waveform, and compare this result with the optimized waveform designed by the
proposed scheme, without considering the clutter. Figure 4 shows the normalized MSE with regard to
TIR estimation.
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Similarly, as shown in Figure 4, the performance of TIR estimation for optimization waveforms
designed by the proposed scheme is improved, compared to the MAP criterion. Compared to the
proposed scheme considering the clutter, the performance gain offered by the proposed scheme is
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reduced, without considering the clutter. This result demonstrates that performance enhancement can
be obtained, while interference factor is disregarded during waveform design process.

Figures 5 and 6 indicate the normalized MSE with regard to TIR estimation achieved by Kalman
filtering approach under the transmitted power and detection probability constraints. Eight hundred
simulations have been run for each, at a particular value of the received SNR and SINR, respectively.
From the above figures, the performance gains in terms of TIR estimation achieved by the proposed
method become larger with an increase in the SNR and SINR of received signals. In addition,
the performance improvement in jammed environments is more efficient than that in the AWGN
channel. The target feature information derived from successive received signals can be extracted,
allowing the Kalman filtering approach to take full advantage of the temporal correlation of the TIR.
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6. Conclusions

In this paper, we have developed a novel waveform design algorithm for adaptive multiple
antennas radar system, which can improve the performance of TIR estimation. The receiver adopts
the Kalman filtering approach by updating the target parameters. An adaptive feedback loop enables
the delivery of the estimated value of TIR to the transmitter. The radar system updates the TIR
estimation and utilizes this information to choose the optimal waveform for transmission. Finally,
the simulation results show that the proposed scheme provides higher performance gains in terms of
TIR estimation for multiple antenna scenarios under the transmitted power and detection probability
constraints. As compared with the waveform design algorithm for TIR estimation based on MAP
criterion, the proposed approach has relatively lower computational complexity. The next step will
focus on the tradeoff between the complexity of computing and the performance improvement offered
by the scheme.
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