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Abstract: Many previous works only focused on the cascading failure of global coupling of one-to-one
structures in interdependent networks, but the local coupling of dual coupling structures has rarely
been studied due to its complex structure. This will result in a serious consequence that many
conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not
apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into
a top-down coupling link and a bottom-up coupling link in order to study their influence on network
robustness by combining with different coupling modes. Additionally, the power flow of the power
grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new
round of load distribution when the load of these nodes exceeds their capacity. This means that the
robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling,
dual coupling link and coupling mode; however, the research on the influence of those factors on
the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer
network with a dual coupling link and divide the power grid and communication network into many
subnets based on the geographical location of their nodes. Secondly, we define node importance
(NI) as an evaluation index to access the impact of nodes on the cyber or physical network and
propose three types of coupling modes based on NI of nodes in the cyber and physical subnets,
i.e., Assortative Coupling in Subnets (ACIS), Disassortative Coupling in Subnets (DCIS), and Random
Coupling in Subnets (RCIS). Thirdly, a cascading failure model is proposed for studying the effect of
local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of
the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the
robustness of the smart grid. Finally, we use the IEEE 118-Bus System and the Italian High-Voltage
Electrical Transmission Network to verify our model and obtain the same conclusions: (I) DCIS
applied to the top-down coupling link is better able to enhance the robustness of the smart grid
against a targeted attack than RCIS or ACIS, (II) ACIS applied to a bottom-up coupling link is better
able to enhance the robustness of the smart grid against a targeted attack than RCIS or DCIS, and (III)
the robustness of the smart grid can be improved by increasing the tolerance α. This paper provides
some guidelines for slowing down the speed of the cascading failures in the design of architecture
and optimization of interdependent networks, such as a top-down link with DCIS, a bottom-up link
with ACIS, and an increased tolerance α.
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1. Introduction

As an application scenario of the Internet of Things (IoT), smart grids are developing rapidly with
a structure based on a two-layer network with dual coupling link. They are also facing many challenges
that attract a large number of researchers for increasing the profit attained, enhancing system reliability,
reducing electricity cost, improving the robustness, reducing the risk of being attacked, and developing
defense mechanisms against different attack strategies. From the perspective of energy management
optimization and energy efficiency improvements, Marzband et al. [1] proposed improved versions
of the popular optimization techniques that include particle swarm optimization (PSO), harmony
search (HS), differential evolution (DE) and the bat algorithm (BAT) to solve the non-linear and
non-convex Market Operator Transactive Energy (MO-TE) structure problem. From the perspective
of network security, He et al. [2] provided a comprehensive and systematic review of the critical
cyber-physical attack threats and defense strategies in the smart grid. Liu et al. [3] discussed security
threats and defensive techniques of machine learning from a data driven perspective. However,
this paper will study the effect of different coupling modes applied to dual coupling links on the
cascading failure of the smart grid from the perspective of improving network robustness.

Diverse critical infrastructures, usually represented as interdependent networks, are rarely
isolated; rather, they are interdependent [4]. Most recently, research on complex networks was
applied to interdependent networks by Buldyrev et al. [5]. This research revealed new perspectives
and research approaches to explain the principle of cascading failures. However, previous works have
mainly focused on network structure and have rarely considered real network load functions [6,7].
The dual coupling relationship and the load redistribution characteristic have a great influence on
the cascading failures of interdependent networks. On the one hand, failed nodes may trigger load
redistribution in the power grid, which can cause other nodes to overload and fail. On the other hand,
the nodes in the communication network fail, which will cause more the coupled physical nodes
in the power grid to fail. This, in turn, will result in the failure of the coupled cyber nodes in the
communication network.

Buldyrev et al. [7,8] were the first to establish a framework for the analysis of catastrophic failures
in interdependent networks [9]. This framework breaks through the frontier of complex networks
theory that still focuses on a single, non-interactive network [10–12]. Inspired by this pioneering
research, many works have used the critical size of the giant component to represent the functional
integrity of the composite network [6,13–15]. Liu et al. [16] used the percolation framework to study the
effect of weak node coupling strength across networks analytically and numerically on the robustness
of interdependent networks and they found that there is a crossover point at which a first-order
percolation transition changes to a second-order percolation transition. Kornbluth et al. [17] proposed
the concept of the distance to study the effect of the proximity of interdependent nodes on the
cascading failures against an initial attack and they found that there is a non-trivial relation between
the degree of nodes and the maximum distance between coupled nodes. Buldyrev and co-workers
proposed a perfect and complete theoretical system to analyze the percolation of different topologies
of interdependent networks and laid a theoretical foundation for subsequent studies, which highlights
the subtleties of this problem and clearly shows that systems made of interdependent networks, such as
interdependent networks can be intrinsically more fragile than each isolated network [9].

From the perspective of functional properties, the load of nodes was taken into account when
the authors established different models to study the cascading failure of interdependent networks
in recent research literatures [18–21]. Many works have adopted degree [22,23], betweenness [24–27],
or degree of degree [28] as the initial load of nodes. In addition, wim ∗ wjn was used as the initial
load of an edge eij, where wim = (ki ∗ km)α represents the coupled strength between two coupled
nodes i and m, and ki is the degree of node i [19]. Similarly, λsα

i was used as the initial load of
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node i, where si represents the total weights of all edges connected with node i [23]. When a node
fails due to a targeted attack, the balance of the load is broken to cause load redistribution that may
trigger more nodes to overload and fail. In the presence of over-load failure model, the studies
presented a load-induced failure mathematical model to study the mechanism of the cascading failure
of interdependent networks and explained why a few failed nodes can result in the breakdown of the
entire network. These models provide us with an effective strategy to reduce the effect of load on the
cascading failure of interdependent networks.

Wang et al. [29] focused on percolation-cascading process in BA-BA, ER-ER, and BA-ER coupled
networks and proposed a stochastic structural algorithm to form coupling edges between two layers,
and simulation shows that assortative network performs better in cascading failure process and BA
network is more robust than other types of networks. Zhang et al. [30] used the memetic algorithm
(MA) to optimize the coupling links of interdependent networks and compared MA optimized coupling
strategy and traditional assortative, disassortative and random coupling preferences. They found that
MA optimized coupling strategy with a moderate assortative value has an outstanding performance
against cascading failures on both synthetic scale-free interdependent networks and real-world
networks. Tan et al. [31] studied the influence of interconnections on traffic congestion in BA scale-free
networks, and they found that assortative coupling is more helpful to ease traffic congestion than
disassortative and random coupling when the node processing capacity is allocated according to
node usage probability. The influence of different coupling preferences on the network robustness
is investigated over interdependent networks based on a one-to-one structure. These works can be
useful to the design and optimization of robust interdependent networks.

Recently, an increasing number of the details of interdependent networks have been considered,
including coupling strength [15], support-dependence relations [32], coupling preferences [33],
clustered structures [34], and community structure [22]. Chen et al. [35] studied the effect of coupling
preference on systems’ robustness and used betweenness as node load that is used to connect
nodes between layers in order to generate assortative, disassortative and random coupling links,
and simulation shows that disassortative coupling is more robust for sparse coupling while assortative
coupling performs better for dense coupling. Babaei et al. [36] found that the robustness of modular
small-world networks is improved by increasing inter-community links in response to both random
and targeted attacks. Tian et al. [22] found that increasing the inter-community connection can enhance
the robustness of interdependent modular scale-free (SF) networks. Brummitt et al. [20] studied and
estimated the effect of the optimal level of interconnectivity on the cascading failure of interdependent
networks. They found that adding some connectivity between two isolated networks is beneficial
in preventing the largest cascades in each system, while it becomes detrimental when the number
of coupling link exceeds a certain value. The effect of different impact factors on the robustness of
interdependent networks is investigated and many effective methods are provided for constructing
a robust interdependent network.

The following deficiencies regarding research of the cascading failure in interdependent networks
based on load redistribution have been highlighted in this paper:

• The limitation of the application scenario for the giant component. The concept of the giant
component only applies to homogeneous networks, while it does not apply to heterogeneous
networks. For instance, when the power grid is divided into several fragments by a targeted attack,
the smaller components are still valid as long as the generation nodes and load nodes
coexist therein.

• Lack of a cascading failure for considering dual coupling between the communication network
and power grid. The one-to-one correspondence in the framework [37] cannot cover all the
dependency situations in the real world and in most cases, for instance, the smart grid has dual
coupling links [35] between the communication network and power grid.

• Lack of an algorithm to assess the importance of cyber or physical nodes according to node
load and network characteristics. This does not reflect reality because the properties of
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network structure cannot represent the functional characteristics and cannot reflect the actual
network situation.

• The unreasonableness of load definition. Network attributes (degree, betweenness, the degree of
degree etc.) cannot be treated as node load in power grids because the load is related to voltage,
active power, and reactive power.

• The limitation of increasing coupling strength. Increasing the coupling links will result in increased
cost and reduced revenue, which is impractical and not the best choice.

• Lack of a model to analyze the effect of local coupling between two subnets on the robustness of
smart grids. Global coupling increases the length of the coupling link, which increases costs and
is impractical.

This paper is an extended version of the previous conference paper [38] and the main purpose
of this study is to improve the robustness of interdependent networks by changing the coupling
mode without increasing the coupling links. Since long-distance coupling links also increase costs,
we divided the network into many small sub-networks based on the geographical distribution area of
substations and used local coupling between cyber and physical subnets to study the robustness of
interdependent networks. Local coupling only allows the nodes in cyber subnet A1 to couple with
nodes in physical subnet B1, which has the same geographical area as A1; therefore, it is crucial to
study the influence of the local coupling in subnets on the robustness of the smart grid. In addition,
the concept of “Giant Component” is not used in our cascading failure model in which only isolated
nodes are considered invalid and smaller components are still functioning when generation nodes
and load nodes coexist on the same component. As such, node survival rate is used to evaluate the
robustness of the smart grid after a fraction 1− p of nodes is removed.

The contributions of this study can be summarized as follows:

• Dual coupling link is constructed into the framework of the smart grid, which contains the
top-down coupling link and the bottom-up coupling link. Dual coupling network model reflects
the real coupling relationship of the smart grid. Dual coupling relationship may have a great
impact on cascading failure of the smart grid and may lead to completely different conclusions
compared to the one-to-one coupling model.

• Load redistribution characteristic, network attributes, and coupling relationship are used to design
an algorithm to assess the importance of nodes (NI). The nodes between physical and cyber
subnets are connected based on NI to form Assortative Coupling in Subnets (ACIS), Disassortative
Coupling in Subnets (DCIS), and Random Coupling in Subnets (RCIS).

• ACIS, DCIS, and RCIS are applied to the top-down coupling link and the bottom-up coupling
link in order to study how to enhance the robustness of the smart grid.

• The voltage of nodes is used as its load and the impedance of link is used to calculate and allocate
the load proportion of failed nodes to its neighboring nodes. The load redistribution algorithm is
more in line with the actual situation of the power grid.

• The effect of local coupling between two subnets on the robustness of the smart grid is considered.
The communication network and power grid can be divided into multiple subnets according to
the geographical distribution of nodes. The local coupling can reduce the length of coupling links
and reduce costs.

This paper is organized as follows. In Section 2, we introduce related research on the cascading
failures of interdependent networks. In Section 3, we propose three different coupling modes in order
to study their effect on the robustness of the smart grid. The cascading failure model is described,
and the survival rate of functional nodes is used as an evaluation index for assessing the robustness of
the smart grid in Section 4. Section 5 gives two case studies, two datasets, i.e., the IEEE 118-Bus System
and the Italian High-Voltage Electrical Transmission Network. Two experimental results draw the
same conclusion that top-down coupling links with DCIS and bottom-up coupling links with ACIS are
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more beneficial in enhancing the robustness of the smart grid than those with other coupling modes.
Section 6 summarizes the relevant conclusions and presents suggestions for future research in this area.

2. Related Work

Gao et al. [39] proposed a framework for studying the percolation of n interdependent networks.
Zhou et al. [40] found that the internal node correlations in each of the two interdependent networks
significantly change the critical density of failures and that the assortativity within a single network
decreases the robustness of the entire system. Han et al. [23] proposed a load-capacity model for
analyzing the cascading failure in both interdependent and isolated networks, and they found
that network robustness is positively related to the capacity and is negatively related to the load.
Qiu et al. [41] studied the optimal weighting scheme and the role of coupling strength against load
failures in symmetrically and asymmetrically coupled interdependent networks. They found that
the symmetrically and asymmetrically coupled interdependent networks achieve robustness and
better cost configuration against overload-induced failure, in which case coupling strength was found
to be weaker. Qiu et al. [42] studied load cascading dynamics in a system composed of coupled
interdependent networks while adopting a local weighted flow redistribution rule, and they found that
increasing the intra- or inter-connectivity is beneficial in enhancing the robustness of interdependent
networks. Liu et al. [16] used the percolation framework to study the effect of coupling strength of
nodes on the robustness of interdependent networks.

Shao et al. [32] studied the cascading failures in two coupled networks, wherein multiple
support–dependence relations are randomly built. Parshani et al. [15] studied a system composed of
two interdependent networks and found that reducing the coupling strength leads to a change from
a first-order percolation phase transition to a second-order percolation transition at a critical point.
Huang et al. [34] developed an analytical method for studying how clustering within the single network
of interdependent networks affects its robustness, and they found that clustering significantly increases
the vulnerability of interdependent networks. Tan et al. [27] proposed a global load redistribution
model to study the cascading failure in interconnected networks. They found that the sparsely
interconnected networks are fragile while densely interconnected ones are robust. They also discovered
that the interconnected networks using assortative coupling are more robust than those that use
the disassortative or random coupling. Tian et al. [43] investigated two clustered networks with
both interdependent and interconnected links. They found that clustering significantly changes the
robustness of networks with strong dependency coupling strength. Dong et al. [44] analyzed the
percolation behaviors of clustered networks with partial support-dependence relations and found that
the clustering coefficient has a significant impact on the robustness of interdependent networks in the
case of strong coupling strength, but that it has little influence in the case of weak coupling strength.

Cheng et.al. [45] developed a theoretical framework for studying the robustness of interdependent
networks coupled with different type networks under both targeted and random attacks.
Zhang et al. [25] analyzed the effect of network size on the robustness of interconnected networks
under a targeted attack. They found that the larger sized network is more robust for sparse coupling,
while it is more fragile for dense coupling. Shao et al. [46] applied a study on the clustering of
two fully coupled networks and applied it to partially interdependent networks with clustering.
Tian et al. [22] investigated cascading failures in interdependent modular scale-free networks under
inner attacks and hub attacks from the global and local perspectives. They found that the assortative
coupling in communities (ACIC) is more beneficial in resisting cascading failures than random
coupling in communities (RCIC) and assortative coupling with communities (ACWC). Chen et al. [18]
studied the cascading failure of interdependent networks with different coupling preferences under
a targeted attack. They found that disassortative coupling is more robust than assortative coupling
for sparse coupling while assortative coupling performs better for dense coupling than disassortative
coupling. Wang et al. [33] studied the effect of different coupling preferences on the cascading failure of
interdependent networks. They found that an assortative coupling network has a smaller proportion
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of the largest connected subgraph than other coupling networks and that the failure speed of the
iteration step of an assortative coupling network is slower than other coupling networks.

3. The Coupling Model of the Smart Grid

A smart grid is a two-layer network that is coupled by a power grid and a communication network.
Figure 1 shows two-layer network structure and dual-local coupling mode of a smart grid. The upper
layer is the communication network where the square node represents the control center and the
circular nodes represent sensors. The lower layer is the power grid where square nodes represent
generators and the circular nodes represent substations. Each layer can be divided into many subnets
in terms of geographical factors and each subnet can be treated as an autonomous system that is
represented by the same color network in Figure 1. The edge of interdependent networks is divided
into two types: internal edge and coupling edge. The internal edge connects any two nodes in
a single-layer network and is shown by solid lines in Figure 1. The coupling edge contains the
top-down coupling link (C → P) and the bottom-up coupling link (P → C). P and C represent the
physical layer and the cyber layer, respectively. C → P represents that the physical nodes depend on
the cyber nodes, which is shown by black dotted lines with arrows in Figure 1. P → C represents
that the cyber nodes depend on the physical nodes, which is shown as red dotted lines with arrows
in Figure 1.
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Figure 1. The framework of a smart grid divided into a communication network and a power grid.
Different colored nodes form different subnets. The top-down coupling link is coupling edge from
a cyber node to a physical node. The bottom-up coupling link is coupling edge form a physical node to
a cyber node.

Definition 1. The smart grid is defined as SG = {V, E, R}, where the node set V = {VP, VC} contains
node set VP of a power grid and the node set VC of a communication network. E = {EP, EC} represents
internal edge, which contains edge set EP of the power grid and the edge set EC of the communication network.
R = {rij|i ∈ VP, j ∈ VC or i ∈ VC, j ∈ VP} represents the coupling relationship matrix, which contains
the top-down and bottom-up coupling links. In the power grid, VP = {vG

1 , vG
2 ,. . . , vG

m, vL
1 , vL

2 ,. . . , vL
n}

represents the physical node set, where vG
i represents generation node i and vL

j represents load node j,
which contains transmission nodes and distribution nodes. In the communication network, VC =

{vC
1 , vC

2 ,. . . , vC
k , vS

1 , vS
2 ,. . . , vS

l } represents the cyber node set, where vC
i represents the control center node i

and vS
j represents sensor node j.
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The coupling relationship matrix R is used to describe the dependencies between nodes in the
power grid and the communication network. Formula (1) represents a bottom-up coupling relationship
matrix from the physical nodes to the cyber nodes, while Formula (2) represents a top-down coupling
relationship matrix from the cyber nodes to the physical nodes. RPC(i, j) = rpi→cj = 1 indicates that the
node j in the communication network depends on the node i in the power grid. RCP(j, i) = rcj→pi = 1
indicates that node i in the power grid depends on the node j in the communication network. RPC(i, j)
or RCP(j, i) = 0 indicates that there is no dependence. Here, special explanation (RPC(i, j) = 1) 6=
(RCP(j, i) = 1)

RPC =


rp1→c1 rp1→c2 ... rp1→cn

rp2→c1 rp2→c2 ... rp2→cn

... ... ... ...
rpn→c1 rpn→c2 ... rpn→cn

 (1)

RCP =


rc1→p1 rc1→p2 ... rc1→pn

rc2→p1 rc2→p2 ... rc2→pn

... ... ... ...
rcn→p1 rcn→p2 ... rcn→pn

 (2)

3.1. The Node Importance of the Physical Nodes

A power grid is a heterogeneous network and has many functional properties, for instance,
electric current, voltage, frequency, active power, and reactive power. The electric current flows from
the generation nodes to the load nodes like water, which causes the phenomenon of the load of a failed
node being redistributed to its neighbor nodes. The load used as the special feature of the power grid
affects the function of the whole network. The total number of most efficient paths passing through
node i is used as its initial load for establishing a model of cascading failure in the complex network.

Tian et al. [22] used the betweenness centrality as the initial load in order to study the influence
of different coupling preferences on the cascading failure of modular scale-free networks. Similarly,
the number of the shortest paths between pairs of nodes over the network passing through the node
i has been used as the initial load in [47,48]. Yan et al. [28] utilized the degree of degree as the
initial load for analyzing multi-contingency cascading of smart grid based on a self-organizing map.
Wang et al. [19] defined the coupled strength between two coupled nodes as the initial load of an edge
in order to study the cascading failure of interdependent networks. Hen et al. [23] used the total
weights of all edges connected with node i as its initial load to simulate load-induced cascading failure
in asymmetrical interdependent networks.

However, the above literatures all feature a certain irrationality in using network structure
attributes (e.g., degree, betweenness, the degree of degree, and coupled strength etc.) as functional
attributes (e.g., the load, plow flow, data flow, voltage, frequency etc.). A sufficiently sophisticated
attack could result in potentially hazardous below or above the voltage on a power node, which may
destroy consumer equipment [49]. In the actual situation, the voltage which is too high or low may
damage the transformer or trigger the automatic tripping of the transformer to cause a large-scale
blackout; therefore, the voltage is considered as the load of a node. The initial load of node i is
described as:

L(vi) = Voli (3)

Definition 2. The capacity of the node is defined as a kind of tolerance ability to withstand load changes,
which indicates that the power system can still operate normally after the load has increased or decreased within
a certain range. The capacity of node i can be expressed as

C(vi) = (1± α) ∗ L(vi) (4)
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where α represents the tolerance parameter and ± indicates the capacity of nodes that can withstand the range of
voltage variation rate. If the voltage variation rate of a node is over α or below α, it will fail. This means that
a high voltage or low voltage outside of the tolerance range can lead to the failure of a node.

Function ∆ fij denotes the proportion of load distribution from node i to node j. The load of a failed
node is distributed to the adjacent nodes by computing the impedance of the link between two nodes.
The new added load ∆L(xj) depends on the initial load and the proportion of load distribution ∆ fij.
If the sum of initial load of node j and the partial load from node i exceeds the capacity of node j,
node j fails. This leads to a new round of load redistribution. This process repeats until there is no
overloaded node or the entire network is paralyzed.

∆ fij = β ∗
1 + (IMax − Iij)

(∑k∈B(i) Iik)
(5)

∆L(vj) = (1 + ∆ fij) ∗ L(vi) = (1 + β ∗
1 + (IMax − Iij)

(∑k∈B(i) Iik)
) ∗ L(vi) (6)

where B(i) denotes the neighboring nodes set of node i, Iij denotes the impedance of the branch
between node i and j, β is a parameter that determines the increase or decrease of the neighboring
nodes and β = 1 denotes that the change ∆ fij of node i is added to neighboring node j, β = −1
denotes that the load of neighboring node j reduces the rate ∆ fij due to the lack of power-supply for

node i.
1+(IMax−Iij)

(∑k∈B(i) Iik)
) indicates that the impedance of the link eij has an impediment to the power flow

passing through it. The link eij with a greater impedance will be passed by a smaller proportion of the
power flow, which means that the load distributed by node i to its neighboring nodes j is also small.

Definition 3. Node importance NIP
i is used as a significant evaluation index to assess the impact of nodes

on the power grid; where f P
i represents the failure node set in which all nodes become invalid after a node i is

removed, n( f P
i ) denotes the number of failed nodes, RPC(i, j) = 1 denotes that there is a coupling link from

a physical node i to a cyber node j, and DoDi is the degree of degree of node i, which represents the sum of
the degree of its neighboring nodes. DoDMax is the maximum value of all degree of degrees (DoDs). NI is
written as:

NIP
i = n( f p

i ) + ∑
RPC(i,j)=1

DoDj

DoDMax
(7)

The size n( f p
i ) of FNS of node i can be obtained by calculating Algorithm 1 that can be expressed

as follows.
Step 1: (Initialization) Obtain the information of all nodes (e.g., physical node set VP, load L,

tolerance α) and the impedance Iij of all branches.
Step 2: (Node Failure) Remove a node from the physical node set VP and add it to failure node

set (FNS).
Step 3: (Load Redistribution) If the removed node is a load node, the load is distributed to the

neighboring node by applying Formula (6) and β = 1. If the removed node is a generation node,
the load of its neighboring nodes changes to zero instantly. Then, the load of its neighboring node j
reduces the rate ∆L(vj) due to the lack of power-supply of node i by applying Formula (6) and β = −1.

Step 4: (Judgment of failed nodes) If the load of a node exceeds the range of its capacity, it is
considered invalid and is added to FNS.

Step 5: (Iteration) A failed neighboring node will trigger a new round of load redistribution and
steps 2–4 are repeated until there is no overloaded node or the smart grid is paralyzed.

Step 6: (Identifying n(fp
i )) Computing the size of the FNS of the node. Repeat steps 2–5 until all

nodes are traversed.
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Algorithm 1 The Algorithm of Load Redistribution

Input: VP = {vG
1 , vG

2 , ..., vG
m, vL

1 , vL
2 , ..., vL

n}, α, L,Iij
Output: Failure Node Set: fns

1: function GETNUMBEROFFAILURENODE(VP)
2: fns = null
3: ∆ fij = β ∗ 1+(IMax−Iij)

∑k∈B(i) Iik
4: for i = 0; i < m + n− 1;i ++ do
5: fns.add(VP

i )
6: if VP

i ∈ G then
7: L(VP

j ) = L(VP
j )(1− |∆ fij|)

8: end if
9: if VP

i ∈ L then
10: L(VP

j ) = L(VP
j )(1 + |∆ fij|)

11: end if
12: end for
13: if L(Vp

j ) > C(Vp
j )||L(V

p
j ) < C(Vp

j ) then
14: fns.add(VP

j )
15: function GETNUMBEROFFAILURENODE(Vp

j )
16: end function
17: end if
18: return fns.size()
19: end function

3.2. The Node Importance of the Cyber Nodes

The communication network is an abstract overview of the SCADA systems/ Energy Management
Systems (EMS) in a smart grid. SCADA systems have been implemented to monitor and control
electrical power grids for decades [50]. Industrial experience has shown that the practical deployment
of SCADA based systems may be restricted to high-voltage transmission networks and is not suitable
for the larger-scale monitoring and control of an entire electrical grid [51]. A distributed monitoring
control system is named Information and Communication Technology (ICT) system, which is proposed
to manage the power grid [52]. The communication network also contains many subnets, each of
which has a control center and multiple sensors.

In fact, load redistribution also occurs in communication networks. When the data flow at a node
exceeds its capacity, the node will refuse to provide service and will fail, and its data flow will be
distributed to the neighboring nodes. If overload also occurs in these neighboring nodes, it will trigger
a new round of load redistribution until there is no overloaded node or the entire network is paralyzed.
As such, the node passed by the bigger data flow is considered an important node. However, we have
no way to simulate such an experimental environment because the real-time features of data flow will
bring uncertainty to the importance of cyber nodes. Therefore, we make reasonable assumptions as
follows: (I) a node with a big degree also has a big data flow because its neighboring nodes need it to
transmit data, and (II) isolated nodes are considered to be invalid, which may be caused by the failure
of a large-degree node.

Definition 4. The (NI) of a cyber node depends on the degree of its nodes and the NI of its coupled
physical nodes.

NIC
i = ki ∗ ∑

RCP(i,j)=1

NIP
j

NIP
Max

(8)
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where ki is the degree of node i and NIP
j denotes the importance of the physical node j, NIP

Max is the maximum
of NI of physical nodes, and RCP(i, j) = 1 denotes that there is a coupling link from a cyber node i to a physical
node j. This means that the importance of the cyber node depends on its degree and the physical nodes that
it controls.

3.3. Three Coupling Modes Based on NI

There are three types of coupling modes: assortative coupling in subnets, disassortative coupling
in subnets, and random coupling in subnets. There are two types of coupling edges: the top-down
coupling link and the bottom-up coupling link. The top-down coupling link represents a control
dependency that the cyber nodes provide the remote monitoring, measurement and controlling to
the physical nodes. The bottom-up coupling link represents a power support independence, where
the physical nodes provide power to the cyber nodes. We divide power grid A and communication
network B into N subnets A1, A2, ..., AN and B1,B2, ..., BN , respectively. We assume that networks with
the same subscript are in the same geographical area, such as A1 and B1, A2 and B2, ..., AN and BN .
Local coupling rules only allow nodes in A1 to couple with nodes in B1, similarly,nodes in A2 to couple
with nodes in B2, and so on.

Random Coupling in Subnets (RCIS): A node in A1 is randomly chosen to connect to a node in B1

with one-to-one correspondence until all nodes are handled. This process is repeated until all subnets
are handled.

Assortative Coupling in Subnets (ACIS): The subnets in the power grid and communication
network are chosen by the same geographical area, respectively. The node with the largest NI in the
selected subnet of the power grid is connected to the node with the largest NI in the communication
network by one-to-one correspondence. The node with the second largest NI in the selected subnet of
the power grid is connected to the node with the second largest NI in the communication network by
one-to-one correspondence. This process is repeated until all nodes are handled. For instance, we sort
nodes in A1, A2, ..., AN in descending order of NI, labeled as aA1

1 , aA1
2 , ..., aA1

n , aA2
1 , aA2

2 , ..., aA2
m , ..., aAN

1 ,
aAN

2 , ..., aAN
k . The nodes in B1, B2, ..., BN are sorted in the same way, labeled as bB1

1 , bB1
2 , ..., bB1

n , bB2
1 , bB2

2 ,
..., bB2

m , ..., bBN
1 , bBN

2 , ..., bBN
k . Then, connections are made between aA1

1 and bB1
1 , aA1

2 and bB1
2 , and so on.

This process is repeated until all interconnected links are added between A and B.
Disassortative Coupling in Subnets (DCIS): The subnets in the power grid and communication

network are chosen by the same geographical area. Then, the node with the largest NI in the selected
subnet of the power grid is connected to the node with the smallest NI in the communication network
by one-to-one correspondence. The node with the second largest NI in the selected subnet of the power
grid is connected to the node with the second smallest NI in the information network by one-to-one
correspondence. This process is repeated until all nodes are handled. For instance, we sort nodes in
A1, A2, ..., AN in descending order of NI, labeled as aA1

1 , aA1
2 , ..., aA1

n , aA2
1 , aA2

2 , ..., aA2
m , aAN

1 , aAN
2 , ..., aAN

k .
The nodes in B1, B2, ..., BN are sorted in ascending order of NI, labeled as bB1

1 , bB1
2 , ..., bB1

n , bB2
1 , bB2

2 , ...,
bB2

m , bBN
1 , bBN

2 , ..., bBN
k . Then, connections are made aA1

1 and bB1
1 , aA1

2 and bB1
2 , and so on. This process is

repeated until all interconnected links are added between A and B.

4. Cascading Failure Model

An overload-induced failure takes place in the power grid, and different coupling modes may
have different cascading failures. Figure 2 shows how an initial attack can damage an interdependent
network due to overload-induced failure. The yellow nodes represent the cyber nodes c1, c2, ..., c9,
while the blue nodes represent the physical nodes p1, p2, ..., p9. In the power grid, p1 and p8 are
generators, while the other nodes are load nodes. In the communication network, c3 and c7 are the
control centers, while the other nodes are sensors. The solid lines in the power grid and communication
network represent the internal edges, while the dashed lines connecting the two networks represent
the coupling edges. The link p1→c1 indicates that c1 depends on p1, while the link c1→p1 indicates
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that p1 is controlled by c1. Figure 2a shows that c2 has been attacked and fails. c2 is marked in red in
Figure 2b. A failed c2 can cause p2 to fail due to error control commands, shown in Figure 2c. A failed
p2 triggers load redistribution and the load of p2 is distributed to its neighbors. Because the load of
nodes p1, p3 and p4 exceeds their capacity after having received some amount of load from p2, they fail
due to overload. Similarly, failed p3 and p4 cause the failure of p5 and p6. However, p7, p8, and p9 are
still active in Figure 2d. Nodes c1, c3, c4, c5 and c7 fail due to lack of power supply from p1, p2, p4, p5,
and p6 in Figure 2e. Nodes c6, c8, and c9 fail due to becoming isolated nodes and the communication
network breaks down in Figure 2f. This means that first-order phase transformation has happened
in an interdependent network at this time and the smart grid has become a single network that is
comprised of p7, p8, and p9.
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Figure 2. The cascading failure of the smart grid based on load redistribution. (a) The cyber node
c2 is attacked. (b) c2 fails due to being attacked. (c) A failed c2 causes p2 to fail due to error control
command. (d) A failed p2 triggers load redistribution and leads to the failure of p1, p3, p4, p5, and p6
due to overload. (e) c1, c3, c4, c5, and c7 fail due to lack of power supply from p1, p2, p4, p5, and p6.
(f) c6, c8, and c9 fail due to becoming isolated nodes. The upper network is a communication network
and its functioning nodes are marked in yellow. The lower network is a power grid and its functioning
nodes are marked in blue. The failed nodes are marked in red.

Definition 5. The survival rate P of the functional nodes for assessing the robustness of an interdependent
network is defined as the proportion of functional nodes in the smart grid after a fraction 1− p of nodes is
removed and reflects the network robustness against a targeted attack. A smaller P indicates that cascading
failure of interdependent networks has a faster diffusion rate and vice versa.

P = 1− FP + FC

NP + NC (9)

where NP and NC denote the number of the physical and cyber nodes, respectively. FP and FC denote the
number of failed physical nodes and failed cyber nodes, respectively.

The progress of cascading failure based on load redistribution in the smart grid is as follows:
Step 1: A fraction 1− p of the cyber nodes experience a targeted attack and fail.
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Step 2: The failed cyber nodes can cause the coupled physical nodes to fail due to error control
commands according to the coupling relationship matrix RCP(i, j).

Step 3: The failed physical nodes can trigger load redistribution to other functioning nodes.
When the load change of those physical nodes exceeds the range of their capacity, they will fail and
again trigger load redistribution until the state of the power grid reaches an equilibrium.

Step 4: According to coupling relationship matrix RPC(i, j), those coupled cyber nodes also fail
due to a lack of power support.

Step 5: The isolated nodes are removed, and the number of failed cyber and physical nodes is
calculated. Finally, we obtain the survival rate P of the functioning nodes by calculating Formula (9).

5. Experiments and Analysis

5.1. Case Study 1: IEEE 118-Bus System

In this section, we first use the IEEE 118-Bus System to verify our approach. Figure 3a,b show
a power grid and a communication network, respectively. The power grid contains 19 generators,
99 load nodes and 117 links, which is divided into three subnets. Different colored nodes form
different subnets. Due to the geographic correlation between the physical nodes and the cyber nodes,
we construct a communication network that contains three control centers (i.e., nodes 12, 49 and 100)
and 115 sensors. The communication network also consists of three subnets, and different colored
nodes form different subnets. Each control center controls its own subnet and they cooperatively
control the entire power system. We assume that the coupling relationship between cyber nodes and
physical nodes is the one-to-one correspondence. By changing the coupling mode between cyber and
physical subnets, we are able to study the effect of different coupling modes between local coupled
subnets on network robustness.
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Figure 3. The network structure of the IEEE 118-Bus System. (a) The power grid. (b) The communication
network. Different colored nodes form different subnets.

Figure 4a,b show the NI of the physical nodes and cyber nodes, respectively. The NI in the power
grid represents the importance of a node, which relies on the size of its FNS and the DoD of coupled
cyber nodes. A large NI indicates that the failed node has an important influence on the network.
Tolerance α reflects the ability of a network to deals with load change caused by load redistribution.
When a node’s load exceeds its capacity, it will fail. Figure 4a shows the NI of each substation that
presents a downward trend as α increases. As NI of a cyber node depends on its degree and NI of the
physical nodes that it controls, the NI of the cyber nodes under different α is different in Figure 4b.

The original coupling mode is a strong one-to-one coupling relationship, for instance, p1 ↔ c1

indicates that physical node p1 provides power supply to cyber node c1, and c1 also provides control
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support to p1. Similarly, p2 ↔ c2, ..., pn ↔ cn. In order to study the influence of different coupling
modes on network robustness in detail, we divide the coupling edges into two types: the top-down
and bottom-up coupling links. The top-down coupling link is monitoring/controlling edges from
the cyber nodes to the physical nodes, and the bottom-up coupling link is responsible for providing
power support from the physical nodes to the cyber nodes. When RCIS, ACIS, and DCIS are applied
to the top-down coupling link, the bottom-up coupling link remains unchanged, for instance, p1 →
c1, ..., pn → cn, and vice versa.

0 20 40 60 80 100 120

0
5

10
15

20

(a)
Physical Nodes

N
od

e 
Im

po
rt

an
ce

●

●●●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●

●

a = 0.005
a = 0.01
a = 0.05

0 20 40 60 80 100 120

0
2

4
6

8
10

12

(b)
Cyber Nodes

N
od

e 
Im

po
rt

an
ce

●
●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●
●

●

●
●●●

●

●●
●●●

●●
●

●

a = 0.005
a = 0.01
a = 0.05

Figure 4. Node importance (NI) of IEEE 118-bus system according to different tolerance parameters.
(a) NI of the physical nodes. (b) NI of the cyber nodes.

In the situation that RCIS, ACIS, and DCIS are applied to the top-down coupling link, we study
the cascading failure of the smart grid with different tolerances under a targeted attack. Figure 5a–c
show the robustness curve in which the red, green and blue solid lines represent the node survival
rates of ACIS, DCIS, and RCIS, respectively. It is clear that the ranking of the survival rate curves
P is DCIS > RCIS > ACIS. This means that DCIS applied to the top-down coupling link is more
beneficial in enhancing the robustness of the smart grid than RCIS or ACIS. From the perspective of
network science, the top-down coupling link combined with ACIS makes cyber nodes with a larger NI
to couple with physical nodes with a larger NI. When these cyber nodes fail due to a targeted attack,
it can lead to the failure of important physical nodes and trigger a new round of load redistribution.
This causes more nodes to overload and fail. However, DCIS makes cyber nodes with a larger NI to
couple with physical nodes with a smaller NI, and the failed important cyber nodes can lead to the
failure of unimportant nodes that do not cause more physical nodes to fail. Therefore, DCIS applied
to the top-down coupling link has a greater effect on reducing the cross-layer diffusion of cascading
failures than ACIS or RCIS.

In terms of applying RCIS, ACIS, and DCIS to the bottom-up coupling link, we analyze and
research the cascading failure of the smart grid with different tolerances under a targeted attack.
In Figure 6a–c, the red, green, and blue curves represent the node survival rates of ACIS, DCIS,
and RCIS, respectively. It is clear that the ranking of curves P is ACIS > RCIS > DCIS. This means
that the ACIS can effectively enhance the robustness of interdependent networks. Furthermore,
ACIS can prevent the propagation of the cascading failures. From the perspective of network science,
bottom-up coupling links with DCIS make physical nodes with a smaller NI to couple with cyber
nodes with a larger NI, however, those insignificant physical nodes are vulnerable and easily affected
by other important physical nodes. If these important nodes fail, this may lead to the failure of
physical nodes with a smaller NI. Furthermore, it triggers the failure of cyber nodes with a larger NI
due to a lack of power supply, and these important cyber nodes will cause more cyber nodes to fail.
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Meanwhile, physical nodes with a larger NI to couple with cyber nodes with a larger NI in ACIS,
and these important physical nodes are highly robust and are not susceptible to failure unless they are
directly attacked. Therefore, ACIS applied to a bottom-up coupling link is more beneficial in enhancing
the robustness of the smart grid than RCIS or DCIS.
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Figure 5. The robustness curve P of the smart grid according to which different coupling modes are
applied to the top-down coupling link under targeted attack (a) Tolerance α = 0.005. (b) Tolerance
α = 0.01. (c) Tolerance α = 0.05. The red, green and blue solid curves represent ACIS, DCIS, and RCIS,
respectively. The rank of robustness curves P is DCIS > RCIS > ACIS. This indicates that DCIS
applied to the top-down coupling link is better able to enhance the robustness of the smart grid than
RCIS or ACIS.
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Figure 6. The robustness curve P of the smart grid according to which different coupling modes are
applied to the bottom-up coupling link under a targeted attack. (a) Tolerance parameter α = 0.005.
(b) Tolerance parameter α = 0.01. (c) Tolerance parameter α = 0.05. The red, green, and blue
solid curves represent ACIS, DCIS, and RCIS, respectively. The ranking of robustness curves P is
ACIS > RCIS > DCIS. This indicates that ACIS applied to the bottom-up coupling link is better able
to enhance the robustness of the smart grid than RCIS or DCIS.

Figure 7a–f show the situation of the cascading failure of the smart grid with the same
coupling mode. It is evident that the ranking of the robustness curves P is α = 0.05 > α = 0.01 >

α = 0.005 regardless of ACIS, DCIS, or RCIS. As α increases, the capacity of interdependent networks
to handle the changes of the load also increases. The tolerance α has a positive relationship with the
robustness of the smart grid. This means that the high capacity benefits the robustness of the smart
grid. When the tolerance α reaches 0.05, a failed physical node cannot trigger the failure of other nodes
or only induces a few nodes to fail. From Figures 5–7, three interesting conclusions can be drawn as
follows: (I) tolerance α is positively related to the robustness of the smart grid, (II) DCIS applied to
a top-down coupling link is more beneficial in enhancing the robustness of the smart grid against



Sensors 2018, 18, 1699 15 of 22

a targeted attack than ACIS or RCIS, and (III) ACIS applied to a bottom-up coupling link is more
beneficial in enhancing the robustness of the smart grid against a targeted attack than DCIS or RCIS.
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Figure 7. A comparison of the robustness curves P under different tolerances α. (a) Top-down
coupling link with ACIS. (b) Top-down coupling link with DCIS. (c) Top-down coupling link with
RCIS. (d) Bottom-up coupling link with ACIS. (e) Bottom-up coupling link with DCIS. (f) Bottom-up
coupling link with RCIS. The red, green,and blue solid curves represent α = 0.005, α = 0.01 and
α = 0.05, respectively. The ranking of the robustness curves P is (α = 0.05) > (α = 0.01) > (α = 0.005).
This indicates that the tolerance α is positively related to the robustness of the smart grid.

5.2. Case Study 2: Italian High-Voltage Electrical Transmission Network

In order to re-verify the correctness of our conclusions, we use real network data from the Italian
High-Voltage (380 kV) Electrical Transmission (HVIET) network. The network data has been taken
from an analysis of the public documentation [4,53]. The HVIET network can be represented by
an undirected graph of 310 substations and 361 transmission links. The topology of the HVIET
network is shown in Figure 8a, where square nodes represent the generators and circular nodes
represent transmission stations or distribution stations. Similarly, we construct its communication
network to contain three control centers (square nodes) and 307 sensors (circular nodes), shown in
Figure 8b. Different colored nodes form different subnets, and there are no coupling links between
different area subnets. Therefore, our research aims to study the effect of different coupling modes
applied to the dual coupling link on the robustness of interdependent networks.

Figure 9a,b show the NI of physical nodes and cyber nodes, respectively. The NI is used to assess
the impact of nodes on its network. A failed node with a larger NI may bring greater harm to the
network and has a positive effect on cascading failures. Since case study 2 uses real data but case
study 1 uses simulated data, this may lead to differences in tolerance between the two experiments.
However, it does not affect the local coupling between the nodes in the subnets. Since the tolerance α

can affect the capacity of the network to handle overloads, the NI of the physical nodes is different
according to different tolerances α. Figure 9a shows that the NI is negatively correlated with α. This is
mainly because as α increases, the capacity of the nodes to handle overloads also increases. A failed
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node cannot easily cause other nodes to fail when α reaches a certain value; therefore, the size n( f P
i ) of

the FNS decreases. Since the NI of the physical node i depends on n( f P
i ) and the degree of degree

(DoD) of coupled cyber nodes j and DoD of each cyber node is constant, the NI of the physical nodes
decreases according to the increasing α. However, the degree of the cyber node and NI of its coupled
physical node together determine its NI; therefore, there is no linear correlation between the NI of
the cyber nodes and α, Figure 9b shows that NI of the cyber nodes under different tolerances is also
different. When the NI of all physical and cyber nodes is obtained by Formulas (7) and (8), we can sort
the importance of the physical and cyber nodes according to NI and couple the physical nodes with
the cyber nodes in local subnets according to ACIS, DCIS, and RCIS.
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Figure 8. The network structure of the Italian high-voltage electrical transmission (HVIET) network.
(a) The power grid. (b) The communication network. Different colored nodes form different subnets.
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Figure 9. NI of the HVIET network according to different tolerance parameters. (a) NI of the
physical nodes. (b) NI of the cyber nodes.

In order to simplify the experimental complexity and study the effect of the local coupling with
ACIS, DCIS, and RCIS on the network in more detail, we only apply ACIS, DCIS, and RCIS to the
top-down coupling link when the bottom-up coupling link between the cyber and physical nodes in
subnets remains unchanged. Figure 10 shows the robustness curves of the HVIET network according
to which different coupling modes are applied to the top-down coupling link under a targeted attack.
Figure 10a–c show the situation in which the tolerance α of the HVIET network is equal to 0.1, 0.3,
and 0.5, respectively. The red, green, and blue solid lines represent the robustness curves of the HVIET
network with ACIS, DCIS, and RCIS, respectively. It is clear that the ranking of the robustness curves P
is DCIS > RCIS > ACIS regardless of α = 0.1, α = 0.3, and α = 0.5. This means that DCIS applied to
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the top-down coupling link is more beneficial in enhancing the robustness of the smart grid than RCIS
or ACIS. That is because ACIS makes the cyber nodes with a higher NI to couple with the physical
nodes with a higher NI. When those cyber nodes fail caused by a targeted attack, this will induce
more cyber nodes to fail. Furthermore, important physical nodes will fail and cause more physical
nodes to fail. In turn, those failed physical nodes trigger more cyber nodes to fail due to the coupling
relationship. ACIS is a combination of strong physical nodes and strong cyber nodes, which will
aggravate the speed of the cascading failure of interdependent networks.
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Figure 10. The robustness curve P of the HVIET network according to which different coupling
modes are applied to the top-down coupling link under a targeted attack (a) Tolerance parameter
α = 0.1. (b) Tolerance parameter α = 0.3. (c) Tolerance parameter α = 0.5. The red, green, and blue
solid lines represent ACIS, DCIS, and RCIS, respectively. The ranking of the robustness curves P is
DCIS > RCIS > ACIS. This indicates that DCIS applied to the top-down coupling link is better able
to enhance the robustness of the smart grid than RCIS or ACIS.
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Figure 11. The robustness curve P of the HVIET network according to which different coupling
modes are applied to the bottom-up coupling link under a targeted attack. (a) Tolerance parameter
α = 0.1. (b) Tolerance parameter α = 0.3. (c) Tolerance parameter α = 0.5. The red, green and blue
solid lines represent ACIS, DCIS,and RCIS, respectively.The ranking of the robustness curves P is
ACIS > RCIS > DCIS. This indicates that ACIS applied to the bottom-up coupling link is better able
to enhance the robustness of the smart grid than RCIS or DCIS.

Similarly, we only apply different coupling modes to the bottom-up coupling link, while the
top-down coupling link remains unchanged. Figure 11 shows the robustness curves of the HVIET
network according to which the different coupling modes are applied to the bottom-up coupling
link under a targeted attack. Figure 11a–c show the situation in which the tolerances α of the HVIET
network are equal to 0.1, 0.3, and 0.5, respectively. The red, green, and blue solid lines represent the
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robustness curves P of the HVIET network with ACIS, DCIS, and RCIS, respectively. However, we find
a counterintuitive conclusion that ACIS applied to the bottom-up coupling link is better able to enhance
the robustness of the smart grid than DCIS or RCIS. It is evident that the ranking of the robustness
curves P is ACIS > RCIS > DCIS regardless of α = 0.1,α = 0.3, and α = 0.5. This is because any
failed physical nodes may cause the physical nodes with a smaller NI to fail, which further leads to
the failure of the cyber nodes with a larger NI. If the important physical nodes are coupled with the
important cyber nodes, those cyber nodes fail only when the important physical nodes fail.
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Figure 12. A comparison of robustness curves P of the HVIET network under different tolerance α.
(a) Top-down coupling link with ACIS. (b) Top-down coupling line with DCIS. (c) Top-down coupling
link with RCIS. (d) Bottom-up coupling link with ACIS. (e) Bottom-up coupling link with DCIS.
(f) Bottom-up coupling link with RCIS. The red, green, and blue solid lines represent the robustness
curves under α = 0.1, α = 0.3, and α = 0.5, respectively. The ranking of robustness curves P is
(α = 0.5) > (α = 0.3) > (α = 0.1). This indicates that the tolerance α is positively related to the
robustness of the smart grid.

In addition to the coupling mode, the tolerance α is an important factor which affects the
robustness of interdependent networks. Figure 12a–f show that the ranking of the robustness curves P
is (α = 0.5) > (α = 0.3) > (α = 0.1) regardless of the coupling links (top-down and bottom-up) and
coupling modes (ACIS,DCIS,and RCIS). This means that a bigger α is also better able to enhance the
robustness of interdependent networks. The same conclusions are obtained from the case studies 1
and 2, which can be summarized as follows: (I) DCIS applied to the top-down coupling link is more
beneficial in enhancing the robustness of the smart grid against a targeted attack than RCIS or ACIS,
(II) ACIS applied to the bottom-up coupling link is better able to enhance the robustness of the smart
grid against a targeted attack than RCIS or DCIS, and (III) the robustness of the smart grid can be
improved by increasing the tolerance α against a targeted attack.
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6. Conclusions

This paper has proposed a strategy that combines different coupling modes with dual coupling
links in order to increase the robustness of smart grid. Load redistribution, local coupling in
subnets, different coupling modes, and dual coupling link have fully been considered in an improved
failure model. NI was used to assess the impact of nodes on its single network and is used
as an evaluation index to connect cyber node to physical node in order to generate assortative,
disassortative, and random couplings. There are two types of dual coupling links: the top-down
coupling link (C → P) and the bottom-up coupling link (P → C). ACIS, DCIS, and RCIS were
applied to the top-down coupling link and bottom-up coupling link for studying the robustness of
interdependent networks. In addition, we proposed a reasonable local coupling mechanism according
to which the cyber and physical networks are divided into small subnets, and the cyber nodes are
only allowed to be coupled with the physical nodes in the same geographical area. This avoids the
high cost and irrationality of global coupling between cyber and physical nodes due to long-distance.
We examined two case studies to research the effect of different coupling modes on the robustness
of interdependent networks and have got the same conclusions that a high tolerance α, a top-down
coupling link with DCIS, and a bottom-up coupling link with ACIS can enhance the robustness of the
smart grid.

Previously, many literatures have studied the failure mechanisms of symmetry networks and few
studies have been done on the cascading failure of asymmetric networks. In fact, there is an overload
failure problem in the communication network. When the data flow of a node exceeds its processing
capacity, it will refuse to provide the service and become invalid. Therefore, the load redistribution of
cyber nodes should also be fully taken into account in the failure model of interdependent networks.
This means that the data flow load that a failed cyber node is responsible for forwarding will be
distributed to its neighbor nodes. In addition, the influence of global coupling and local coupling on
interdependent networks is a very interesting research direction and different network types have
a significant impact on the robustness of interdependent networks. As such, the more complicated
models should be established to study the effect of different coupling modes, dual coupling link,
coupling strength, load redistribution of cyber and physical nodes, and asymmetric coupling between
the cyber and physical networks on the robustness of interdependent networks.

In the future, coordinated cyber-physical attack, dynamic cross-layer attack path identification,
a coordinated detection mechanism, and a network attack and defense confrontation on infrastructure
will be the areas of interest. In fact, the main factor affecting the safety of infrastructure is human
input; therefore, the three-layer social-cyber-physical coupling relationship should also be examined to
establish a framework to protect critical infrastructures.
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