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Abstract: We propose utilizing a rigorous registration model and a skyline-based method for
automatic registration of LiDAR points and a sequence of panoramic/fish-eye images in a mobile
mapping system (MMS). This method can automatically optimize original registration parameters and
avoid the use of manual interventions in control point-based registration methods. First, the rigorous
registration model between the LiDAR points and the panoramic/fish-eye image was built. Second,
skyline pixels from panoramic/fish-eye images and skyline points from the MMS’s LiDAR points
were extracted, relying on the difference in the pixel values and the registration model, respectively.
Third, a brute force optimization method was used to search for optimal matching parameters
between skyline pixels and skyline points. In the experiments, the original registration method
and the control point registration method were used to compare the accuracy of our method with
a sequence of panoramic/fish-eye images. The result showed: (1) the panoramic/fish-eye image
registration model is effective and can achieve high-precision registration of the image and the
MMS’s LiDAR points; (2) the skyline-based registration method can automatically optimize the initial
attitude parameters, realizing a high-precision registration of a panoramic/fish-eye image and the
MMS’s LiDAR points; and (3) the attitude correction values of the sequences of panoramic/fish-eye
images are different, and the values must be solved one by one.

Keywords: MMS LiDAR points; sequence of panorama/fish-eye images; skyline-based registration;
brute force optimization

1. Introduction

Motivated by applications of vehicle navigation, urban planning and autonomous driving,
the need for 3D information on urban areas has dramatically increased in recent years. Mobile mapping
systems (MMS) technology has been widely used for efficient data acquisition. Information obtained by
an MMS mainly includes a sequence of optical images captured by a camera and point clouds obtained
by LiDAR. Optical images have rich texture information, and point clouds mainly reflect the spatial
characteristics. Registering images and point clouds has important theoretical and practical value.

Optical image (2D) and point cloud (3D) data are two types of data. The imaging model of an
optical image is a collinear equation. The point cloud reflects the position of an object by transmitting
a laser pulse. Thus, the geometric reference frame of LiDAR points and an optical image is different.
There are 3 key problems that must be solved before registration: the primitive pairs, the registration
model and parameter optimization. To capture large scenes in a single image, a panoramic camera
could be used on an MMS. The most common type of panoramic camera, such as Ladybug, consists
of a multiple fish-eye camera rig. Images with a narrow field are first obtained by fish-eye lenses,
and then projected and resampled to stitch together a panoramic image. The acquisition efficiency of
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an MMS camera can reach 10 fps/s; assuming the speed of the vehicle is 72 km/h, the image density is
up to 2 m. As a result, the registration method of the panorama/fish-eye image and the LiDAR points
should be automated and efficient.

The existing algorithms for registering panoramic/fish-eye images and LiDAR points mostly
rely on control points (control point-based registration method) or GPS/IMU information
(original registration method) [1,2]. LiDAR points and panoramic/fish-eye images can be registered
well by control points; however, automatic extraction of the control point is a difficult task at present.
Furthermore, it is impossible to extract the control point from the LiDAR points and the sequence of
images manually. Original registration method uses the position and attitude parameters obtained by
GPS/IMU directly, however, the accuracy of GPS/IMU is affected by interference, such as dropouts.
This error accumulates over time and may cause unreliable registration for long sequence images; thus,
the precision of original registration method is low. Wang et al. [3] proposed an automatic registration
of mobile LiDAR and spherical panoramas; however, only part of the panoramic image was used,
and the registration was based on a conventional frame camera model. Li et al. [2] proposed an
automatic registration method based on semantic features extracted from panoramic images and point
clouds, but the accuracy of this method relies on the extraction of primitive pairs (parked vehicles)
and is only suitable for urban scenes.

A linear feature exceeds a point feature regarding registration accuracy; linear features are more
reliably, accurately, and automatically extracted from images and LiDAR points [1,4]. The skyline
is easily extracted from LiDAR points and optical images. The skyline registration method aims
at retrieving the camera’s pose via skyline points/pixels matching. Hofmann et al. [5] extracted
the building skyline from real and synthetic images; both skylines are then merged using the
ICP method. However, their approach did not analyze special conditions of the skyline, such as
missing data, jagged skylines, or even too much vegetation; moreover, it uses a frame camera rather
than a panoramic/fish-eye image in an MMS. At present, registration methods of point clouds and
optical images can be divided into 3 categories: 2D-2D-based methods, 2D-3D-based methods and
3D-3D-based methods.

2D-2D-based methods. 2D-2D-based methods cast the problem of image to point cloud
registration as an iterative process of image to image registration. The point cloud should be turned into
a synthetic image on which the real image can be registered, and then, initial registration parameters
can be estimated using both images. The synthetic image is regenerated using the new parameters,
and then, this process is iterated. 2D-2D-based methods can be divided into feature-based and
statistical analysis.

Feature-based registration methods rely on feature points/lines obtained by SIFT [6], SURF [7],
and ASIFT [8] on real and synthetic images, followed by establishment of the correspondences
through common features to realize registration [9–14]. Statistical analysis-based registration
methods are widespread for aligning an image to another image [15]; mutual information (MI)
proposed by Viola [16] is the most commonly used statistical method. MI measures the similarity
between two images based on the dependency of the intensity distribution [17–20]. Taylor and
Nieto [21] proposed a modified form of MI using particle swarm optimization; Pascoe et al. [22]
introduced a normalized information distance metric based on MI and entropy variation to retrieve
the camera position.

2D-3D-based methods. 2D-3D-based methods rely on identifying the same point/line from the
image and the LiDAR points and then constructing a strict geometric model to achieve high-precision
registration. This method uses the correspondence between 2D and 3D points/line; the camera pose
is finally obtained by solving a perspective-n-point (PnP) problem using the EPnP algorithm [23,24].
The principle and concept of line-based registration, especially straight lines, were regarded as an
extension of traditional point features. Zhang [25] proposed the concept of “generalized points”,
which is a series of connected points representing a linear feature. According to this concept,
the traditional collinearity model can accommodate more complicated features, such as circles and
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rectangles, rather than only straight lines. Stamos et al. [26] and Schenk [27] laid a solid foundation in
line feature-based registration, and Liu et al. [28,29] utilized linear features to determine the camera
orientation and position relative to the 3D model.

3D-3D-based methods. 3D-3D-based methods require a sequence of images for 3D reconstruction
and then 3D matching to achieve registration. Structure from motion (SFM) is a widely used method
that reconstructs 3D points using a set of images [30,31]. A 3D matching algorithm, such as iterative
closest point (ICP) [32] and normal distributions transform (NDT) [33], is often used for point
registration. Zheng et al. [34] used bundle adjustment for a sequence of images; the points obtained
by adjustment were matched with the laser point cloud by ICP. Zhao et al. [35] used stereo vision
technology to process 3D reconstruction and used the ICP algorithm to achieve 3D point cloud
registration. Abayowa et al. [36] presented a coarse to fine strategy in the estimation of the registration
parameters without initial alignment.

We propose utilizing a rigorous imaging model and skyline-based method for automatic
registration of LiDAR points and a sequence of panoramic/fish-eye images. This method improves
the accuracy of registration automatically through optimizing attitude parameters. Figure 1 shows the
flow chart of this method. This paper is organized as follows. Section 2 provides the rigorous
panoramic/fish-eye image registration model and the skyline matching method. In Section 3,
conducted experiments that verify the effectiveness of the skyline-based method are described.
Section 4 discusses the parameters in skyline pixels/points matching and the precision/automation of
our method. Finally, conclusions are presented in Section 5.

Figure 1. Flow chart of the skyline-based registration method.

2. Materials and Methods

2.1. Materials

The MMS used in this paper was jointly developed by Wuhan University and Leador Spatial
Information Technology Corporation, configured with a panoramic camera, three low-cost SICK laser
scanners (one for ground and two for facades) and a GPS/IMU [1], they are connected by a precision
mechanical device with accurate calibration. The panoramic camera is a Ladybug5 (FLIR Integrated
Imaging Solutions Inc., Richmond, BC, Canada), which includes 6 high-definition Sony ICX655 CCDs,
with 5 in the side (horizontal) and 1 at the top (vertical). The camera can perform image acquisition,
processing, correction and stitching of a panoramic image in real-time.

Figures 2 and 3 show the point data and the optical image of the MMS, respectively. The image
data include a fish-eye image (6000 × 4000) along the road direction and a panoramic image
(4000 × 8000) stitched by 6 fish-eye images. The point data of the MMS corresponds to the image at
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the same place; this road has a length that is approximately 220 m, the data of which includes 3 million
points. In addition, the initial values of the imaging position and attitude, as well as the calibration
information of the MMS sensors, are known. Based on the current panoramic/fish-eye image (N),
4 panoramic/fish-eye images were selected on both sides of N, which constituted 5 consecutive images
(N − 2, N − 1, N, N + 1, and N + 2). This sequence of panoramic/fish-eye images is shown in Figure 4.

Figure 2. LiDAR points data. (a) Main view of LiDAR points. (b) Plane map of LiDAR points.

Figure 3. Panoramic/fish-eye image and control points distribution. (a) Panoramic image (4000 ×
8000). (b) Fish-eye image (6000 × 4000).

Figure 4. Cont.
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Figure 4. Sequence of panoramic/fish-eye images. (a) N − 2; (b) N − 1; (c) N + 1; (d) N + 2.

To compare the accuracy of different registration methods, 38 control points are selected manually;
these points are mainly distributed on the corners of buildings and billboards, the tops of lamps, etc.
As shown in Figures 1 and 3, the panoramic and fish-eye images contains 38 and 19 control points,
respectively; an exception is that only 17 control points are in the fish-eye image (N + 2). In Appendix A,
Table A1 lists the 3D coordinates of the 38 control points obtained from the LiDAR points; Table A2
lists the 2D image coordinates of the 38 control points in the panoramic image; and Table A3 lists the
2D image coordinates of control points in the fish-eye image.

2.2. Panoramic/Fish-Eye Image Registration Model

The imaging mode of a panoramic/fish-eye image must be known before registration.
The panoramic camera used in an MMS is composed of multiple fish-eye lenses at present; the fish-eye
images can be stitched together to form a panoramic image according to a fixed model. As shown
in Equation (1), the collinear equation is a classic imaging model. The Y axis is perpendicular to the
image plane (XOZ) in this model, and the panoramic/fish-eye imaging model can be transformed by
a collinear equation. {

r = − f · Z/Y
c = − f · X/Y

(1)

where
[
X Y Z

]T
= R · [x y z]T , R = RX · RY · RZ, [x y z] = [x− XS y−YS z− ZS],

RX =

 1 0 0
0 cos(rx) − sin(rx)

0 sin(rx) cos(rx)

RY =

 cos
(
ry
)

0 − sin
(
ry
)

0 1 0
sin
(
ry
)

0 cos
(
ry
)

RZ =

 cos(rz) − sin(rz) 0
sin(rz) cos(rz) 0

0 0 1


(x y z) is the coordinate of an object, f is the imaging lens focal length, (XS YS ZS) is the imaging
position, (rx ry rz) is the imaging attitude, and (r c) is the perspective projection coordinate.

2.2.1. Panoramic/Fish-Eye Imaging Model

There are 4 types of fish-eye lens projections: equidistant projection, orthographic projection,
equisolid-angle projection and stereographic projection [37,38]. The panoramic stitching models
include a spherical model, cylinder model and cube model. Considering the experimental data in our
paper, an equidistant projection and a spherical model were used as examples.

The equidistant projection of a fish-eye lens can be expressed as:{
r′ = − f · Z/Y · θ/tan θ

c′ = − f · X/Y · θ/tan θ
(2)

where θ = a tan(
√

Z2
+ X2/Y), and (r′ c′) is the coordinate of the object in the fish-eye image.
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As shown in Equation (3), for a panoramic image using the spherical model, take vertical angle (v)
as the row coordinate and the horizontal angle (h) as the column coordinate. Considering h ∈ [−π π]

and v ∈ [−π/2 π/2], the size of the panoramic image column is 2 times that of a row.{
tan v = Z/

√
X2

+ Y2

tan h = X/Y
(3)

The imaging parameters can be obtained accurately by the control points. Equations (4) and (5)
are transformed by Equations (2) and (3) and represent the computational model of the panoramic/
fish-eye image. {

Z/Y = −r′ · tan θ/rd
X/Y = −c′· tan θ/rd

(4)

where rd =
√

r′2 + c′2, θ = rd/ f , and (r′ c′) is the fish-eye image coordinate.{
Z/Y = tan v ·

√
1 + tan2 h

X/Y = tan h
(5)

where v = r′′/row · π, h = c′′/col · 2π, (row col) expresses the size of the panoramic image, and (r” c”)
is the panoramic coordinate.

Let the right side of Equations (4) and (5) equal p1 and p2, which are known as the image coordinate.
The adjustment model of a panoramic/fish-eye image is shown in Equation (6); these variables can be
calculated by the DLT method. {

p1 = R20· x+R21· y+ R22· z
R10· x+R11· y+ R12· z

p2 = R00· x+R01· y+ R02· z
R10· x+R11· y+ R12· z

(6)

2.2.2. Registration Accuracy Evaluation

Substituting the solved variables and control points’ coordinates into Equation (6), p1 and p2 can
be calculated, and then the panoramic/fish-eye image coordinates of control points can be obtained by
Equations (7) and (8). {

v = a tan(p1/
√

1 + p22)

h = a tan(p2)
(7)

{
r′ = − f · p1 · θ/tan θ

c′ = − f · p2 · θ/tan θ
(8)

where θ = a tan(
√

p1
2 + p22), and the other parameters are the same as those previously indicated.

The registration error (δ) is given by Equation (9) and is considered to be the precision index
of registration.

δ =

√
m

∑
i=1

[
(ri − r′i)

2 + (ci − c′i)
2
]
/m (9)

where m is the number of control points, (ri ci) expresses the image coordinate of the control points
from Equations (7) and (8), and (ri

′ ci
′) expresses the real coordinate of the control points.

2.3. Skyline-Based Method

The skyline-based method includes skyline pixels extracted from a panoramic/fish-eye image,
skyline points extracted from LiDAR points and skyline pixels/points matching.
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2.3.1. Skyline Pixels Extracted from Panoramic/Fish-Eye Image

Because the difference in the image pixel value between the sky and other objects is significant,
the skyline can be easily extracted by this feature. The first grey jump as the skyline pixels are searched
from above to below and column by column, the skyline pixels (blue pixels) extracted from the
panoramic/fish-eye image can be obtained, as shown in Figure 5a,b, which include the top profile of
buildings, trees, billboards, power lines and street lamps. Considering the linear feature of a power line
and the discrete characteristics of LiDAR points, power line points extracted from LiDAR points are
incomplete; thus, power line pixel interference must be eliminated by setting a jump buffer. Figure 5a,b
show skyline pixels (red pixels) after optimization in which the power line pixels have been eliminated.

Figure 5. Skyline pixels (display in bold). (a) Panoramic image skyline pixels (red pixels) optimization.
(b) Fish-eye image skyline pixels (red pixels) optimization.

2.3.2. Skyline Points Extracted from LiDAR Points

Skyline points extracted from LiDAR points are influenced by imaging position, imaging attitude,
imaging focal length and imaging model. In particular, panoramic image registration is related to
imaging position and attitude, and fish-eye image registration is related to imaging position, attitude
and focal length. Imaging position and attitude can be obtained by GPS/IMU and calibration of the
MMS, and imaging focal length is obtained by camera calibration. Next, skyline points can be extracted
from LiDAR points as follows. First, generate a panoramic image with all points using Equation (3);
the highest pixel in the image is calculated column by column, and the point corresponding to this pixel
is a skyline point. The extraction algorithm of fish-eye image registration is similar; the skyline points
include a large amount of noise, and no skyline points correspond to skyline pixels in some regions;
therefore, constraints must be added in skyline matching to ensure the rigorous correspondence of
skyline points and pixels.
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2.3.3. Skyline Pixels/Points Matching

The skyline pixels/points are extracted from the panoramic/fish-eye image and LiDAR
points above. We define the image skyline pixels as Φ{ri , ci}i=0,1,...m and the skyline points as
Ω{xi , yi , zi}i=0,1,...n in this section to analyze the skyline matching method. The key of this method
is to restore the correspondence between Φ and Ω. We solve this problem using the brute force
optimization method. The position parameters have little influence on the image compared to the
attitude parameters; therefore, we only optimize attitude parameters in this paper. As shown in
Equation (10), the procedure follows from constructing the correcting matrix R′, which consists of
3 correction angles (rx

′ ry
′ rz
′), and then placing R′ before R in the imaging model. (rx

′ ry
′ rz
′) can

be obtained by brute force optimization, and the registration of the LiDAR points and the image is
performed when the skyline pixels/points are matched.[

X Y Z
]T

= R′ · R · [x y z]T (10)

where R′ = R′X · R′Y · R′Z,

R′X =

 1 0 0
0 cos(r′x) − sin(r′x)
0 sin(r′x) cos(r′x)

R′Y =


cos
(

r′y
)

0 − sin
(

r′y
)

0 1 0

sin
(

r′y
)

0 cos
(

r′y
)

R′Z =

 cos(r′z) − sin(r′z) 0
sin(r′z) cos(r′z) 0

0 0 1


First, the imaging position (XS YS ZS), the attitude (rx ry rz) and the focal length (f ) are obtained

from GPS/IMU and calibration of the MMS [1] (as this calculation is very common, it is not described
in detail here). Taking the maximum error of (rx ry rz) as the initial value range (w) and dividing it into
t parts, as shown in Equation (11), (t + 1)3 panoramic/fish-eye synthetic images Ω{ri , ci} are generated
using Ω{xi , yi , zi} according to Equations (2), (3) and (10). Second, we calculate the similarity between
Ω{ri , ci} and Φ

{
rj , cj

}
, as shown in Equation (12). With the number of matching skyline pixels (n)

used as the evaluation index, the highest similarity can be obtained from (t + 1)3 synthetic images,
and taking the corresponding parameters (i, j, k) as the initial value of the next iteration, each iteration
reduces the range by half. 

r,
x(s+1) = r,

x(s) − w(s) + i · 2 · w(s)/t
r,

y(s+1) = r,
y(s) − w(s) + j · 2 · w(s)/t

r,
z(s+1) = r,

z(s) − w(s) + k · 2 · w(s)/t
(11)

where s expresses the s-th iteration, w (s) = w/2s, r′x (0) = r′y (0) = r′z (0) = 0◦ and i, j, k = 0, 1, . . . , t.

n =

{
n ++, |Ω{rc} −Φ{rc}| < e
n, |Ω{rc} −Φ{rc}||> e

(c = 1, 2 . . . col) (12)

where e denotes the gross error elimination threshold; when the row difference between Ω{ri , ci} and
Φ{ri , ci} in the same column are less than e, n is added; otherwise they are unchanged. n reflects the
skyline similarity between a real image and a synthetic image. e is used to eliminate mismatching of
skyline pixels. Considering the differences of acquisition sensors, skyline points are impossible to
match completely. For example, the building skyline in the left part of the panoramic image is easy to
extract from the image; however, LiDAR points are missing in the corresponding region, and there
is no matching skyline. e can eliminate this part of the skyline, such that it is not involved in the
parameter optimization.



Sensors 2018, 18, 1651 9 of 21

3. Experiments and Analysis

3.1. Comparison of the Registration Methods

To compare the accuracy of our method, the original registration method, the skyline-based
registration method and the control point registration method (referred to below as method I, II and III,
respectively) were used for the panoramic/fish-eye image registration. First, the original registration
(I) was conducted according to Equations (1)–(3), and the registration parameters (f,XS,YS,ZS,rx,ry,rz)
were obtained by GPS/IMU and MMS calibration. Second, by taking advantage of control points
for registration (III) according to Equations (4) and (5), this method does not require the initial value.
The registration results of the panoramic/fish-eye image (N) with method I and III are shown in
Figure 6.

Figure 6. Registration result with 3 methods. (a) Panoramic image registration; (b) Fish-eye image registration.

The key parameters involved in the skyline registration method include: angle error range (w),
parameter segmentation (t), gross error threshold (e), number of matching pixels (n) and registration
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error (δ). n is the evaluation index of the parameter optimization, δ expresses the matching error of
38 (19) control points. Herein, let w = 5◦, t = 6, and e = 5 pixels. Next, the skyline is extracted from
the panoramic/fish-eye image and the LiDAR points, as described above. The skyline points are
used for imaging 73 times by Equations (2), (3) and (10), and n between each generated image and
real image skyline is calculated. We take both sides of maximum n as the starting value of the next
iteration, and w is reduced by half in each iteration. After 6 iterations, the matching skyline pixels
of the panoramic/fish-eye image are shown in Figure 7. The registration results with 3 methods are
shown in Figure 6. Figures 8 and 9 show local images to compare the registration effect.

Figure 7. Matching skyline pixels, black pixels express real image skyline, display with 10 pixels width,
red pixels express synthetic image skyline. (a) Panoramic image skyline (n = 1420); (b) Fish-eye image
skyline (n = 454).

Figure 8. Local effect comparison of panoramic image registration, black squares express real location
of control points; blue, red, and green crosses are synthetic location of control points calculated by
method I, II, and III respectively. (a) Building and Lamp; (b) Lamp and Billboard; (c) Lamp; (d) Building
and Tree.
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Figure 9. Local effect comparison of fish-eye image registration, black squares express real location
of control points; blue, red, and green crosses are synthetic location of control points calculated by
method I, II, and III respectively. (a) Lamp and Billboard; (b) Lamp; (c) Lamp and Tree.

As shown in Figure 7, the matching skyline pixels includes the top outlines of buildings, trees,
lamps, etc. The influence of the unmatched skyline’s registration effect has been eliminated, such as the
missing parts (the building in the left panoramic image) and cables. Simultaneously, considering the
discrete types of point clouds and the continuity of the image, the number of matching skyline pixels(n)
is far less than the column of the panoramic/fish-eye image. The proportion of the panoramic and
fish-eye images is 17.75% and 11.35%, respectively. Figures 8 and 9 show the local registration effect
of the panoramic and fish-eye images, respectively, with 3 methods. A large dislocation is observed
with method I, especially in the billboards, street lights, trees, buildings, etc. Conversely, method III
can obtain the ideal effect, and all objects have a very high coincidence. The proposed skyline-based
method can also achieve good registration, whose accuracy is between that of method I and that of
method III. To quantitatively analyze the effect of the 3 methods, the registration error (δ) is calculated
by the control points according to Equation (9). Table 1 lists δ in each iteration using our method,
and Table 2 lists δ for 3 methods.

Table 1. Skyline registration error in each iteration (w, rx
′, ry

′, rz
′(degrees), δ(pixels)).

NO. w Panoramic Image Fish-Eye Image

rx
′ ry

′ rz
′ n δ rx

′ ry
′ rz

′ n δ

1 5 3.333 0 0 1263 10.914 0 1.666 0 205 28.850
2 2.5 3.333 0 0 1263 10.914 0 0.833 0 320 23.250
3 1.25 3.75 −0.416 0 1293 11.035 0 1.25 −0.416 373 15.231
4 0.625 3.541 −0.208 0 1391 9.906 −0.208 1.041 −0.416 415 17.105
5 0.312 3.541 −0.208 0.104 1392 8.895 −0.104 1.041 −0.520 439 15.493
6 0.156 3.489 −0.104 0.156 1420 8.692 −0.104 1.093 −0.520 454 14.723
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Table 2. Registration accuracy with 3 methods (pixels).

Methods I II III

Panoramic image (4000 × 8000) 29.041 8.692 5.883
Fish-eye image (6000 × 4000) 56.347 14.723 4.792

As shown in Table 1, δ becomes stable in both panoramic/fish-eye images after 6 iterations; w has
been reduced to 0.15◦, and the angle parameters are no longer the main factors affecting registration
accuracy. Analysis of each iteration reveals that δ noticeably decreases as n increases, and that the
rotation angle parameter has been optimized gradually. Table 2 lists δ of 3 methods. Our method has an
accuracy (δ/image diagonal) of 0.97‰ and 2.04‰ in the panoramic and fish-eye images, respectively,
which is greater than that of method III and less than that of method I. This conclusion is the same
as the above image analysis. Finally, the position error of each control point with the 3 methods is
analyzed in detail. Figure 10 shows the error of 38/19 control points in the panoramic/fish-eye image.
Figure 11 shows the locations of all control points after registration.

According to Figure 10a,b, the error of each control point is clearly reduced after each iteration
compared with method I, especially in the first iteration. Afterwards, the error maintenance reduces
in subsequent iterations and gradually approaches that of method III. Figure 11 displays all control
points calculated by the 3 methods on panorama/fish-eye images. We can see that the direction of
the control points’ offset is consistent compared with the real position in method I, and this error is
regular, indicating the optimized rotation angle has a theoretical basis.

Figure 10. The error of 38/19 control points in the panoramic/fish-eye image with 3 methods, series 1
expresses the error of each control point in method I; similarly, series 2–7 express 6 iterations of our
method, and series 8 expresses the result of method III. (a) Panoramic image; (b) Fish-eye image.

Figure 11. Control points displayed in the panoramic/fish-eye image. (a) Fish-eye image (No.13–31);
(b) Panoramic image (No.12–31); (c) Panoramic image (No.1–11); (d) Panoramic image (No.32–38).
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3.2. Point Cloud Colouring

LiDAR points can be given an RGB value after registration, so the points not only contain spatial
information but also have texture information. Using texture points can achieve a texture image with
any position and attitude. The procedure follows by setting the current imaging position as N, N − 1
and N + 1 to express the imaging positions before and after N in the sequence images, as shown in
Figure 12a. We generate an image according to the perspective imaging model. The main axis is along
the road direction and the other rotation angle is 0◦. The imaging focal length is 250 pixels and the
imaging size is 1000 × 1000. Figure 12b–d show the imaging results. Through texture points imaging,
we can obtain the scene from an arbitrary location and attitude to meet different vision requirements.

Figure 12. Texture point cloud imaging. (a) Plane map of texture points and the location of N − 1, N, N
+ 1(black crosses). (b–d) Perspective imaging of texture points in different location, (b) N − 1; (c) N;
(d) N + 1.

3.3. Sequence of Panoramic/Fish-Eye Image Registration

Our registration method is verified by the previous experiment. In this section, experiments are
performed using our method with a sequence of panoramic/fish-eye images (N − 2, N − 1, N + 1,
N + 2) to analyze the regularity of the optimized parameters. The parameters involved in our method
are the same as those previously indicated. The rotation angle correction value (rx

′ ry
′ rz
′) of each

panoramic/fish-eye image can be obtained automatically. Figure 13 shows the registration result using
the 3 methods. Figures 14 and 15 show the local registration effect using the 3 methods considered.

Figures 14 and 15 show the local image with 3 methods to compare the effectiveness of the
registration. Our method has obvious optimization effects compared with method I and approaches
the effect of method III. Moreover, our method is completed without manual intervention, unlike
method III. For quantitative analysis, Table 3 lists the imaging position and angle correction value of
a sequence of panoramic/fish-eye images using our method, Table 4 lists the registration accuracy of
a sequence of panoramic/fish-eye images for the 3 methods considered.

Table 3. Registration parameters of panoramic/fish-eye image sequence (XS,YS,ZS(meters), rx
′, ry

′,
rz
′(degrees)).

NO.
Imaging Position Panoramic Image Fish-Eye Image

XS YS ZS rx
′ ry

′ rz
′ rx

′ ry
′ rz

′

N − 2 710.416 714.012 12.220 3.229 0.104 −0.104 0 0.416 −0.520
N − 1 705.175 708.426 12.249 3.333 −0.208 0.208 −0.104 0.729 −0.416

N 699.901 702.818 12.294 3.489 −0.104 0.156 −0.104 1.093 −0.520
N + 1 694.606 697.180 12.376 3.958 −0.104 0.208 −0.208 1.458 −0.520
N + 2 689.282 691.499 12.494 4.375 −0.104 0 −0.104 2.083 −0.416
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Table 4. Registration accuracy of panoramic/fish-eye image sequence with 3 methods (pixels).

Methods
Panoramic Image Fish-Eye Image

N − 2 N − 1 N + 1 N + 2 N − 2 N − 1 N + 1 N + 2

I 19.411 23.520 37.302 46.543 32.744 44.569 76.456 95.497
II 9.305 9.199 11.772 16.439 11.310 14.306 24.651 28.169
III 5.342 7.204 5.674 5.336 5.264 6.860 7.775 13.287

Figure 13. Registration result of panoramic/fish-eye image sequence with 3 methods. (a) N − 2;
(b) N − 1; (c) N + 1; (d) N + 2.

Figure 14. Local registration effect of panoramic images sequence with 3 methods. (a) N − 2; (b) N − 1;
(c) N + 1; (d) N + 2.
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Figure 15. Local registration effect of fish-eye images sequence with 3 methods. (a) N − 2; (b) N − 1;
(c) N + 1; (d) N + 2.

As shown in Table 3, the interval between sequence images is approximately 7 m, and the road
height difference is within 0.3 m. The angle correction values of each panoramic/fish-eye image are
different. Although the difference is small in most cases, it must be solved separately, rather than
used directly for the next image. Table 4 shows that the registration error of method III is the smallest;
the error of method II is approximately 2 times that of method III; and the error of method I is
approximately 3 times that of method II. For further analysis, as shown in Figure 16, the position error
of each control point using the 3 methods in a sequence of images is analyzed in detail.

Figure 16. Cont.
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Figure 16. The error of 38/19(17) control points in the panoramic/fish-eye image sequence with
3 methods, series 1–3 expresses the error of each control point in method I, II and III, respectively.
(a) Panoramic image(No.1–38); (b) Fish-eye image(No.13(14)–31(30)).

As shown in Figure 16a,b, the error of each control point is noticeably reduced compared with
that of method I. Moreover, the error distribution of the control point has a certain regularity with our
method. First, the error of control points located at both ends of a panoramic image is large, such as no.
(1, 2, 37 and 38). Second, the control points located at the top of the image have a larger error, such as
no. (14 and 26) in the panoramic/fish-eye image (N + 1, N + 2), leading to a greater registration error
of the fish-eye image (N + 1, N + 2) and the panoramic image (N + 2) than that of the others.

4. Discussion

4.1. Parameters in Skyline Pixels/Points Mat Ching

The parameters in skyline matching are angle error range (w), parameter segmentation (t) and
gross error threshold (e), and keep the same in panoramic/fish-eye image registration. w is the iteration
range of angle initial values (rx ry rz), in this paper, which is obtained from IMU. If IMU is unavailable,
the approximate values of rx, rz could be solved by adjacent imaging position, and ry is set to 0.
t determines the efficiency of registration. The nodes are set evenly in the correction angles (rx

′ ry
′ rz
′),

and it produces (t + 1)3 images at each iteration. The number of iterations can be reduced when t is
large, but the amount of computation will be increased by power function. In order to ensure the
accuracy of registration, w is reduced to half not w/t after each iteration. e is the key parameter of
optimization; the matching skyline pixels/points less than e are considered as successful matches.
When e is larger, it would be more mismatched points, but when e is small, it would filter out correct
matching pixels/points. In addition, e is related to the image’s rows, the rows of the panoramic and
fish-eye images is 4000 and 6000 pixels respectively in our experiments, it is empirically proved that
setting e to 5 pixels is suitable.

4.2. The Precision and Automation Compare with Other Methods

Our method does not require manual intervention in the registration of panoramic/fish-eye
images and LiDAR points. In recent studies, some articles use primitive pairs as line and plane,
and a rigid registration to obtain high-precision result. However, extracting primitive pairs
automatically from images and LiDAR is still challenging. Cui et al. [1] extracted line features
from LiDAR points automatically and from the corresponding rectified mono-images through
a semi-automation process, and achieved the registration accuracy of 4.718 and 4.244 pixels (image size
is 1616 × 1232 pixels) in spherical and panoramic camera respectively. However, the process requires
a manual check for primitive pairs before registration. Li et al. [2] took parked vehicles as registration
primitives, and extracted them from panoramic images via Faster-RCNN; particle swarm optimization
was further utilized to refine the translations between the panoramic camera and the laser scanner
and registration error less than 3 pixels (image size is 2048 × 4096 pixels) are obtained. However,
this automatic registration method relies on the parked vehicles, which makes its application scenarios
limited. Moreover, the extraction of vehicles often fails due to poor illumination or occlusion.
Our method takes skyline as primitive pairs as it is easy to extract both from image and LiDAR
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and skyline exists in most of scenes. In addition, our method can be used for both fish-eye image and
panoramic image.

4.3. Weakness and Future Work

The main weakness of our method is the dependence on the skyline. In an open area, the image
pixels of skyline could represent very distant objects, while points cloud are limited in long distance,
making skyline pixels/points failed to match. Therefore, our method is more suitable for urban area
or similar places with nearby skyline. There are also some problems require further study, such as
the optimization of the position parameters which could be iterated alternately with the attitude
parameters. The stitching error of the panoramic image also needs to be further studied as the camera
center of each fish-eye lens hardly overlaps, and the attitude of each lens is seldom in the same
horizontal plane.

5. Conclusions

In this paper, we proposed a skyline-based method for automatic registration of LiDAR points and
panoramic/fish-eye image sequence in an MMS. The effectiveness of this method was demonstrated
by comparison with the original registration and control points registration methods. Compared with
other related works, the main contribution of this study is that (1) The panoramic/fish-eye image
registration model is efficient and can achieve high-precision registration of an image and LiDAR points
in an MMS. (2) The skyline-based registration method can automatically optimize the initial attitude
parameters and realize high-precision registration of panoramic/fish-eye images and LiDAR points
in an MMS. (3) The attitude correction values are different in panoramic/fish-eye image sequence;
each value must be solved individually.
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Appendix A.

Table A1. 3D coordinates of the control points (m = 38) (meters).

No. 1 2 3 4 5 6 7 8 9 10

X 736.872 750.315 720.542 720.324 720.490 720.626 725.968 738.342 736.746 729.746
Y 719.029 719.590 700.018 700.155 698.666 698.618 694.241 677.968 676.344 669.746
Z 21.071 18.655 13.994 12.090 12.129 14.009 18.400 23.493 23.547 21.818

No. 11 12 13 14 15 16 17 18 19 20

X 726.453 701.737 694.998 684.251 674.913 675.536 671.280 657.947 657.668 647.327
Y 664.691 668.587 675.141 639.304 614.069 615.144 649.908 626.820 626.328 624.664
Z 21.959 18.065 21.664 47.039 23.763 30.859 22.581 23.723 30.674 23.370

No. 21 22 23 24 25 26 27 28 29 30

X 623.430 609.152 632.710 657.169 625.455 680.693 601.633 649.663 626.746 651.056
Y 599.102 611.827 637.231 663.092 643.725 688.327 630.632 669.189 655.939 681.286
Z 24.280 24.345 23.444 22.564 17.430 21.746 21.645 17.741 21.697 21.765

No. 31 32 33 34 35 36 37 38

X 673.819 650.928 657.382 656.167 678.039 686.893 707.353 722.722
Y 695.005 704.462 711.380 720.494 743.051 745.828 741.755 730.199
Z 18.171 30.328 30.201 35.273 35.389 30.197 22.362 17.831
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Table A2. 2D coordinates of control points in the panoramic image (m = 38) (pixels).

No.
N − 2 N − 1 N N + 1 N + 2

r c r c r c r c r c

1 762.4 1532.3 573.0 1602.9 458.6 1654.4 372.6 1686.2 311.4 1710.0
2 816.0 1743.5 675.4 1761.5 578.5 1779.7 495.7 1788.2 431.4 1795.2
3 2223.2 1875.2 1638.1 1841.8 1167.7 1841.4 841.8 1846.6 638.3 1855.2
4 2218.3 2021.4 1629.8 1989.0 1161.4 1961.4 836.6 1944.6 636.6 1932.4
5 2270.4 2025.4 1715.5 1995.4 1243.4 1966.9 906.4 1948.5 688.6 1935.7
6 2274.7 1886.8 1721.9 1854.6 1249.9 1846.4 911.6 1850.2 693.6 1855.8
7 2168.3 1708.3 1772.0 1682.4 1412.3 1685.9 1116.3 1706.5 897.1 1728.1
8 2181.5 1709.2 1963.9 1690.5 1747.7 1681.3 1543.0 1681.6 1359.8 1686.8
9 2241.4 1715.1 2024.5 1694.6 1808.4 1682.8 1600.2 1681.0 1409.8 1685.7

10 2496.0 1788.7 2298.2 1763.6 2084.0 1743.9 1864.4 1733.0 1649.0 1724.7
11 2615.3 1808.2 2436.6 1781.4 2241.3 1761.9 2029.1 1745.7 1810.6 1735.8
12 3243.9 1903.1 3115.1 1876.4 2945.2 1842.4 2708.4 1807.7 2394.5 1764.2
13 3483.9 1784.3 3380.4 1729.2 3240.7 1653.4 3006.9 1552.0 2619.5 1417.9
14 3443.5 1534.8 3388.3 1489.2 3328.7 1439.4 3254.7 1388.0 3163.3 1331.7
15 3438.0 1926.4 3388.2 1917.7 3344.9 1907.0 3292.9 1903.4 3232.1 1893.7
16 3437.4 1845.8 3390.5 1830.9 3347.5 1816.2 3296.3 1804.9 3236.8 1788.8
17 3697.7 1896.4 3663.8 1880.7 3631.9 1860.7 3585.2 1843.0 3527.1 1813.4
18 3685.9 1926.1 3657.9 1916.7 3634.8 1905.8 3603.3 1901.3 3567.8 1891.0
19 3684.4 1841.6 3657.9 1825.3 3635.2 1809.3 3604.6 1794.6 3569.9 1773.6
20 3778.8 1941.3 3759.1 1935.6 3748.3 1927.4 3727.5 1925.4 3707.0 1918.6
21 3819.7 1963.9 3806.1 1962.1 3803.2 1958.6 3790.1 1961.8 3779.9 1962.1
22 3993.6 1965.0 3987.4 1962.3 3992.1 1957.5 3993.0 1960.4 3994.3 1961.2
23 4001.0 1939.1 3998.2 1932.4 4009.4 1926.0 4011.1 1921.4 4015.8 1915.2
24 4023.7 1892.1 4026.1 1876.1 4042.1 1854.8 4053.8 1833.4 4069.9 1800.3
25 4114.3 2009.8 4125.5 2012.3 4139.7 2007.7 4154.0 2011.3 4171.4 2013.4
26 4089.7 1767.3 4117.3 1703.1 4174.5 1599.6 4275.7 1426.1 4543.3 1081.8
27 4162.1 1982.9 4168.9 1979.4 4188.0 1978.4 4201.5 1980.8 4216.9 1982.3
28 4186.4 1977.0 4212.6 1974.5 4243.9 1961.3 4284.7 1955.6 4338.2 1945.3
29 4221.8 1949.5 4237.7 1944.8 4267.1 1938.3 4296.2 1933.8 4330.0 1928.1
30 4355.6 1888.0 4400.3 1870.7 4467.2 1848.4 4549.5 1822.8 4654.9 1787.1
31 4387.3 1881.9 4479.4 1847.7 4627.0 1796.6 4858.6 1718.3 5267.2 1608.7
32 4789.0 1684.7 4892.0 1650.0 5025.9 1607.2 5187.3 1562.4 5388.5 1517.6
33 4928.8 1634.0 5064.0 1591.9 5237.6 1546.5 5439.3 1498.4 5679.7 1465.7
34 5132.5 1535.0 5281.1 1495.2 5461.0 1457.7 5656.5 1424.8 5870.1 1405.3
35 5895.4 1393.5 6106.1 1389.7 6317.1 1402.2 6507.1 1423.2 6672.7 1442.0
36 6159.8 1449.5 6384.6 1463.5 6591.1 1489.5 6764.0 1515.8 6908.5 1541.8
37 6828.7 1515.5 7051.2 1576.1 7210.8 1633.2 7324.1 1658.3 7409.5 1687.8
38 7806.8 1584.7 7839.0 1675.3 7863.6 1729.8 7873.6 1753.5 7884.5 1772.4

Table A3. 2D coordinates of control points in the fish-eye image (m = 19/17) (pixels).

No.
N − 2 N − 1 N N + 1 N + 2

r c r c r c r c r c

13 928.4 2523.9 725.9 2400.8 454.9 2222.2 48.6 1971.8 *** ***
14 890.5 1980.3 799.2 1880.2 705.5 1772.6 589.1 1655.5 462.5 1504.1
15 824.0 2832.7 723.2 2808.7 633.4 2790.8 526.4 2781.8 410.8 2753.7
16 830.4 2652.9 733.5 2622.1 648.5 2584.8 544.2 2560.5 427.9 2520.0
17 1365.0 2770.9 1296.6 2736.2 1229.3 2693.3 1135.9 2650.9 1016.4 2587.6
18 1339.2 2833.5 1282.7 2813.0 1241.8 2793.7 1169.3 2777.6 1097.5 2754.8
19 1338.5 2652.5 1288.4 2617.5 1243.8 2578.7 1179.5 2548.3 1111.4 2502.5
20 1532.3 2866.6 1496.0 2852.5 1469.4 2837.0 1430.9 2831.6 1389.2 2818.7
21 1621.3 2916.8 1597.3 2910.1 1584.0 2904.4 1564.8 2909.7 1543.9 2911.5
22 1985.9 2915.4 1984.5 2910.9 1989.1 2904.4 2000.1 2910.9 2010.7 2912.6
23 2008.4 2861.6 2007.3 2848.7 2022.0 2833.0 2032.5 2826.0 2048.1 2812.0
24 2056.6 2762.5 2066.1 2727.3 2093.4 2683.4 2121.2 2635.1 2162.8 2565.0
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Table A3. Cont.

No.
N − 2 N − 1 N N + 1 N + 2

r c r c r c r c r c

25 2249.2 3012.4 2266.5 3009.9 2300.2 3007.4 2332.8 3015.4 2381.4 3020.8
26 2195.5 2493.2 2253.8 2356.2 2362.6 2137.8 2537.5 1778.9 2914.3 1038.7
27 2351.7 2954.4 2368.7 2948.6 2403.1 2944.8 2436.6 2953.0 2477.8 2954.5
28 2402.9 2940.1 2467.5 2935.5 2522.5 2908.1 2612.3 2893.8 2735.6 2870.2
29 2477.3 2885.8 2514.2 2871.6 2572.8 2858.0 2636.4 2848.8 2716.6 2835.1
30 2757.4 2750.6 2852.6 2711.5 2988.3 2660.8 3158.2 2602.9 3384.3 2520.5
31 2826.6 2736.6 3014.4 2661.3 3313.0 2542.7 3771.2 2357.3 *** ***

*** express No.13 and 31 control points are not in the fish-eye image (N+2).
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