
sensors

Article

Overlap Spectrum Fiber Bragg Grating Sensor Based
on Light Power Demodulation

Hao Zhang 1,*,†, Junzhen Jiang 2,†, Shuang Liu 1, Huaixi Chen 3, Xiaoqian Zheng 1 and
Yishen Qiu 2

1 Department of Electronic Information Science, Fujian Jiangxia University, Fuzhou 350007, China;
1698011400281@fjjxu.edu.cn (S.L.); zxqyx789@163.com (X.Z.)

2 Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007,
China; jzjiang@fjnu.edu.cn (J.J.); ysqiu@fjnu.edu.cn (Y.Q.)

3 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
hxchen@fjirsm.ac.cn

* Correspondence: dream13027@sina.com or 1698091502181@fjjxu.edu.cn
† The authors contributed equally to this work.

Received: 19 April 2018; Accepted: 15 May 2018; Published: 17 May 2018
����������
�������

Abstract: Demodulation is a bottleneck for applications involving fiber Bragg gratings (FBGs). An
overlap spectrum FBG sensor based on a light power demodulation method is presented in this paper.
The demodulation method uses two chirp FBGs (cFBGs) of which the reflection spectra partially
overlap each other. The light power variation of the overlap spectrum can be linked to changes in the
measurand, and the sensor function can be realized via this relationship. A temperature experiment
showed that the relationship between the overlap power spectrum of the FBG sensor and temperature
had good linearity and agreed with the theoretical analysis.
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1. Introduction

Fiber Bragg gratings (FBGs) are key passive optical components with numerous advantages
including an all-fiber geometry, small size, low insertion loss, good insulation, and high flexibility [1].
As a result, they have attracted considerable attention because of their wide range of applications in
fiber sensors, fiber filters, fiber lasers, dispersion compensators, and other optoelectronic devices [2–5].
Fiber sensors based on FBGs have high sensitivity and resolution and facilitate measurements via
changes in reflection spectrum or transmitted spectrum induced by the measured entities [6]. FBGs are
widely used to measure temperature, stress, humidity, and many other physical quantities [7–10].

One of the key issues associated with FBGs sensors that is actively under investigation is signal
demodulation. Traditional demodulation methods make use of an optical spectrum analyzer (OSA) [1].
The advantages of this method include a simplified construction and extremely high resolution.
However, the OSA is extremely expensive and inconvenient to perform. Thus, this approach is
impractical for real-world application. Alternative methods based on well-known optical instruments
and tools, such as Fabry-Perot filters, the Mach–Zehnder interferometer, and linear edge filters have
been investigated for FBG demodulation to reduce the difficulty and the cost of applications of
FBG [11–14]. However, these methods are limited to some extent by a range of factors including low
sensitivity, limited ability to easily adjust the measurement range, high complexity, and the utilization
of devices that are not readily available [15].

A novel overlap spectrum FBG sensor based on light power demodulation is presented in this
paper. It uses two chirp FBGs (cFBGs) of which the reflection spectra partially overlap each other to
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realize sensor function. The light power of the overlap spectrum can be associated with changes in a
measurand. The design has a simple structure and a low cost. A temperature measurement experiment
was designed to test the performance of the FBG sensor. The experimental results revealed that the
relationship between the output light power of the FBG sensor and temperature could exhibit good
linearity, and the measurement range could be estimated and easily controlled.

2. Configuration and Principles

The two configurations of the overlap spectrum FBG sensor based on light power demodulation
are shown in Figure 1. The system is comprised of a broadband-amplified spontaneous-emission (ASE)
light source, a three-port or four-port circulator, two cFBGs, and an optical power meter (OPM). The
reflection spectra of the two cFBGs must partially overlap each other. The broadband light signal from
the ASE light source couples to cFBG A via port 2 of the circulator. cFBG A reflects a portion of light
that matches the Bragg reflection condition to cFBG B via port 3 of the circulator. cFBG B reflects a
portion of light with wavelengths in the overlap spectrum band of the two cFBGs, and the remaining
light is transmitted light. The OPM is connected to port 4 of the circulator to receive the reflected light
from cFBG B for the configuration using the four-port circulator. The OPM is connected to cFBG B to
receive the transmitted light from cFBG B for the configuration using a three-port circulator.
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Figure 1. Configuration of an overlap spectrum fiber Bragg gratings (FBG) sensor based on light power
demodulation, (a) using a four-port circulator, and (b) using a three-port circulator.

cFBG A works as a broadband filter in the design and cFBG B is a sensitive element or sensor
head. The overlap reflection spectrum of the two cFBGs is invariable when they are not affected
by environmental change. However, the overlap spectrum will change when one of the cFBGs is
externally perturbed. Therefore, the overlap spectrum can be used to monitor any measurand that is
capable of influencing the shift of reflection spectrum of cFBG B.

The relationships between the reflection spectra and transmission spectra of cFBGs A and B are
shown in Figure 2. For simplicity, the following discussion is based on the wavelength-shift of cFBG B
in the long wave direction, and the contrary is the case when the wavelength of cFBG B shifts to the
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short wave direction. For strong Bragg gratings, the reflected light power of cFBGs A and B can be
considered to be concentrated in the range of the full-width-at-half maximum (FWHM) bandwidth,
and the reflection spectrum can be treated approximately as a rectangular distribution. The FWHM
bandwidths of the reflection spectra of cFBGs A and B are BA and BB, respectively, and the edge
wavelengths of the reflection spectra of the cFBGs are as follows,{

λRA = λDA − BA
2

λFA = λDA + BA
2

(1)

{
λRB = λDB − BB

2
λFB = λDB + BB

2
, (2)

where λRA and λRB are the rising-edge wavelengths of the reflection spectra of cFBGs A and
B, respectively; λFA and λFB are the falling-edge wavelengths; and λDA and λDB are the center
wavelengths of cFBGs A and B, respectively. Obviously, the reflection spectrum received by the
OPM in Figure 1a is the overlap between cFBGs A and B. The bandwidth of the overlap spectrum is
given by:

BR =

 λFA − λRB =
(

λDA + BA
2

)
−
(

λDB − BB
2

)
λDA < λDB

λFB − λRA =
(

λDB + BB
2

)
−
(

λDA − BA
2

)
λDA > λDB

(3)
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Figure 2. Relationships between the reflection spectra and transmission spectra of the sensor when the
wavelength of cFBG B shifts in the long wave direction (a) for λDA < λDB, and (b) for λDA < λDB.

Figure 2 shows that the transmitted spectrum from the cFBG B is related to the reflection spectrum.
As one increases, and the other decreases necessarily. Therefore, the transmitted light received by the
OPM in Figure 1b can also be used to measure the measurand. In theory, the two configurations shown
in Figure 1 have the same effect. Furthermore, the bandwidth of transmitted light from the cFBG B in
Figure 1b is:

BT =

 λRB − λRA =
(

λDB − BB
2

)
−
(

λDA − BA
2

)
λDA < λDB

λFA − λFB =
(

λDA + BA
2

)
−
(

λDB + BB
2

)
λDA > λDB

. (4)
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The reflected light power for the configuration using a four-port circulator can be deduced as:

PR =
∫

BR

P(λ)dλ ≈ BR
BI

a1PI , (5)

where BI is the FWHM bandwidth of input light from the ASE source; PI is the total power of the input
light; and a1 is attenuation of the system, which is mainly caused by the circulator (port 1 to port 2,
port 2 to port 3, and port 3 to port 4). Similarly, the transmitted light power for the configuration using
a 3-port circulator is:

PT =
∫

BT

P(λ)dλ ≈ BT
BI

a2PI , (6)

where a2 is the attenuation caused by the circulator (port 1 to port 2, and port 2 to port 3). The
Bragg wavelength-shift occurs when cFBG B, which is utilized as a sensitive element, is influenced
by a measurand such as temperature, stress, humidity, and so on. The reflected light power and
the transmitted light power vary with the Bragg wavelength-shift. The sensitivity coefficient of the
wavelength-shift of cFBG B with the measurand is η, and the varied reflected and transmitted light
power is: {

PR + ∆PR = BR±η∆x
BI

a1PI

PT + ∆PT = BT∓η∆x
BI

a2PI
, (7)

where ∆x is the variation of the measurand. Obviously, the variation of the light power received by the
OPM is proportional to ∆x, and we have:{

∆PR = ±ηa1PI
BI

∆x = κ∆x
∆PT = ∓ηa2PI

BI
∆x = κ∆x

, (8)

where κ is the sensitivity coefficient of the overlap spectrum FBG sensor. Figure 3 shows that the
light power received by the OPM varies with the wavelength-shift of cFBG B. The wavelength-shift
conditions of the upper limit and lower limit of the reflected power and transmitted power are shown
in Table 1.

The maximum spectrum range that can be used for measurements is deduced from Figure 3 and
Table 1. It is expressed as:

Rmax =

{ BB
η BA > BB

BA
η BA < BB

. (9)

Equation (9) shows that the measurement range can be controlled by choosing the FWHM and
the sensitivity coefficient η of the cFBGs.
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Figure 3. The maximum spectrum range that can be used for measurements when the wavelength of
cFBG B shifts to the long wave direction (a) for λDA < λDB and BA > BB, (b) for λDA < λDB and BA < BB,
(c) for λDA > λDB and BA > BB, and (d) for λDA > λDB and BA < BB.

Table 1. Wavelength-shift condition of the upper limit and lower limit of the reflected power.

Light Power Center Wavelength FWHM Condition Wavelength-Shift
Condition

Upper limit
(reflected)/lower limit

(transmitted)

λDA < λDB BA > BB λFB = λFA
λDA < λDB BA < BB λRB = λRA
λDA > λDB BA > BB λRB = λRA
λDA > λDB BA < BB λFB = λFA

Lower limit
(reflected)/upper limit

(reflected)

λDA < λDB BA > BB λRB = λFA
λDA < λDB BA < BB λRB = λFA
λDA > λDB BA > BB λFB = λRA
λDA > λDB BA < BB λFB = λRA

Note: FWHM denotes the full-width-at-half maximum bandwidth.

3. Experiments and Discussion

A temperature measurement experiment was conducted to evaluate the performance of the
overlap spectrum FBG sensor based on light power demodulation. The experimental layout
shown in Figure 4 comprised an ASE light source (Wavephotonics Co., Ltd., Hefei, China, model
ASE-30-B; the wavelength covers the C-band; output power 30 mW), a four-port circulator (Shenjian
Communication Technology Co., Ltd., Shenzhen, China), two cFBGs, and three OPMs (Shenzhen
OSCOM Technology Co., Ltd., Shenzhen, China, model XQ5210). The experimental configuration
shown in Figure 4 could receive both reflected and transmitted light from the system. Although both
the reflection spectrum and transmitted spectrum have the same effect for measurement as mentioned
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in theory, there is a gap between theory and reality. Therefore, the experimental configuration shown
in Figure 4 combined both configurations shown in Figure 1 and was designed to compare the
performance of the two configurations.
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Two groups of cFBGs were used in the experiment for comparison. Both of their reflection 
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The spectrum of the ASE source is shown in Figure 5. It shows that the flatness of the spectrum
was less than 1 dB from 1537.5 nm to 1562.5 nm. The reflection spectrum of the cFBGs should be in
this range to reduce the nonlinearity of the sensor system. cFBG A was fixed at a constant temperature
(15 ◦C), and cFBG B was placed in a temperature-controlled cabinet (Ningbo Scientz Biotechnology Co.,
Ltd., Ningbo, China, model DL-2020). The temperature was varied from −20 to 100 ◦C. OPM A was
connected to port 4 of the four-port circulator and received reflected light from cFBG B. OPM B was
connected to cFBG B and received transmitted light from cFBG B. The accuracy of the measurements
can be severely affected by fluctuations of the intensity of the light source. Therefore, the transmitted
light from cFBG A received by OPM C was used to monitor the light intensity fluctuations. If the light
source fluctuated, the signal detected by OPM A and B were divided by the result received by OPM C
in order to suppress the influence of this effect.
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Two groups of cFBGs were used in the experiment for comparison. Both of their reflection
bandwidths were 5 nm, and their reflection spectra were in the flat region of the ASE source. The
cFBGs in the first group were apodized, while those in the second group were unapodized. Their
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reflection and transmission waveforms are shown in Figure 6, and the detailed parameters are shown
in Table 2.Sensors 2018, 18, x FOR PEER REVIEW  7 of 10 
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Figure 6. Reflection spectra, transmission spectra, and temperature characteristics of chirp FBGs 
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Figure 6. Reflection spectra, transmission spectra, and temperature characteristics of chirp FBGs
(cFBGs) at a constant temperature (15 ◦C) for (a) reflection spectra of Group I; (b) transmission spectra
of Group I; (c) reflection spectra of Group II; (d) transmission spectra of Group II; (e) reflected power vs.
temperature, and center-wavelength vs. temperature for the cFBG B used in Group I; and (f) reflected
power vs. temperature, and center-wavelength vs. temperature for the cFBG B used in Group II.
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Table 2. The detailed parameters of the cFBGs used in the experiment.

Group Identifier Center-Wavelength
(nm, 15 ◦C)

Rising-Edge
Wavelength

(nm)

Falling-Edge
Wavelength

(nm)

FWHM
(nm)

Temperature
Sensitivity

Coefficient (pm/◦C)

I
A 1555.34 1553.65 1557.04 3.39 10
B 1553.67 1552.19 1555.35 3.16 25

II
A 1551.37 1550.00 1553.77 3.77 10
B 1553.09 1550.50 1555.73 5.23 10

Figure 6e presents two relationship curves of the cFBG B of Group I. One is relationship between
reflected power and temperature, and the other is center-wavelength vs. temperature. It shows that the
reflectivity of cFBG B did not vary with temperature significantly. The slope of the center-wavelength
vs. temperature curve is the temperature sensitivity coefficient of cFBG B. Figure 6f shows similar
information for the cFBG B of Group II. Obviously, Group I corresponds to the situation in Figure 3c,
while Group II corresponds to the situation in Figure 3b. According to Table 1 and Equation (9),
the maximum theoretical measurement range of the sensor system was approximately 126 ◦C for
Group I and 377 ◦C for Group II. The reflection waveform of Group I could be shifted 1.69 nm towards
the long wave direction and 1.7 nm towards the short wave direction. This meant that the measurement
range for Group I was from 73 ◦C (15 ◦C increasing by 58 ◦C) to −53 ◦C (15 ◦C decreasing by 68 ◦C).
Similarly, the theoretical measurement range of Group II was from 342 ◦C (15 ◦C increasing by 327 ◦C)
to −35 ◦C (15 ◦C decreasing by 50 ◦C).

The experimental results were recorded at 5 ◦C intervals and after 20 min, before the temperature
reached the set value to uniformly heat the FBG. The relationship between the reflected (transmitted)
power and the temperature is shown in Figure 7. Figure 7a–c shows the experimental results for
Group I, and Figure 7d–f shows the results for Group II. Figure 7a,d indicates that the light source
used in the experiment was fairly stable. Some interesting phenomena and results can be observed in
Figure 7.

First, the relationship curves between power and temperature for Group I were more smooth
and linear when compared to the results for Group II. This was because the cFBGs in Group I were
apodized. Their reflection spectra were therefore smooth, and the sidelobes were reduced.

Second, Figure 7b,c shows that the relationships between the power of the light and temperature
for Group I can be divided into two parts: a linear region and a saturation region. The turning point
was at 75 ◦C. The relationship curves had good linearity and the steep slope was in the linear region.
However, the slope became flat in the saturation region, as the overlap spectrum had a maximum in
the saturation region as shown in Figure 3c. Therefore, this temperature was beyond the measurement
range of the system for Group I. According to the analysis of the measurement range, the upper limit
of the system for Group I was 15 ◦C increasing by 58 ◦C. Thus, the upper limit was 73 ◦C. This was in
exact agreement with the experimental results. The curves in Figure 7e,f did not indicate a significant
variation of the slope as the measurement range of the system in the case of Group II was large. The
temperature range in the experiment did not extend beyond the measurement range.

Finally, although using both the reflection spectrum for measurement and using the transmitted
spectrum for measurement had the same performance in theory, the experimental results revealed
different phenomena. The sensitivity when using the reflection spectrum in Group I was 0.034 µw/◦C,
and −0.054 µw/◦C when using the transmitted spectrum. In Group II, the sensitivity was
−0.578 nw/◦C when using the reflection spectrum, and 0.425 nw/◦C when using the transmitted
spectrum. Furthermore, the linearity of the reflected power vs. temperature curve was better than
that of the transmitted power vs. temperature curve. For example, the non-linear error of the linear
region in Figure 7b was ~1.75%, and ~7.77% in Figure 7c. Similarly, the non-linear error was ~10.84%
for Figure 7e and ~14.75% for Figure 7f. An important reason for the difference is that the reflection
spectrum of FBG was not a perfect rectangular distribution and there were some sidelobes in the
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reflection spectrum of FBG. The overlap reflection spectrum from cFBG B reduced more sidelobes
than the transmitted spectrum because it was reflected twice by cFBG A and cFBG B. Therefore, a
sensor system using reflected light from cFBG B is expected to perform better than a system using
transmitted light.
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Figure 7. The relationship between light power and temperature (a) for transmitted light from cFBG
A in Group I, (b) for reflected light from cFBG B in Group I, (c) for transmitted light from cFBG B in
Group I, (d) for transmitted light from cFBG A in Group II, (e) for reflected light from cFBG B in Group
II, and (f) for transmitted light from cFBG B in Group II. The dashed line in the figure is a linear fit
using the least square method.
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4. Conclusions

In summary, an overlap spectrum FBG sensor based on light power demodulation was presented.
The sensor used the overlap spectrum power of two cFBGs to detect changes in a measurand. Both
the theoretical analysis and experimental results indicated that the relationship between the overlap
spectrum power and the measurand exhibited good linearity. The experiment also revealed that FBG
apodization and the configuration using reflected light could improve the performance of the sensor.
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