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Abstract: This study proposes a tactile estimation method of molded plastic plates based on human tactile
perception characteristics. Plastic plates are often used in consumer products. The tactile evaluation plays an
important role in product development. However, physical quantities not taking into account human tactile
perception have been employed in previous tactile estimation procedures. Hence, in this study, we adopted
the vibrational thresholds of the mechanoreceptive units—FA I, FA II, SA I and SA II—for stimuli detection
and developed a tactile estimation method for plastic plates that clarified the mechanoreceptive units related
to tactile sensation. The developed tactile sensor consists of a base and a silicone rubber pad that contains
strain gauges in it. We detected vibration during touch by the sensor and calculated the estimation of
the firing values of the cutaneous mechanoreceptors, which are the essential data obtained by humans
during tactile perception, in comparison to the amplitude spectrum of the vibration with the threshold
amplitude of each mechanoreceptive unit. Simultaneously, we calculated the relationship between the
normal and tangential forces recorded while the sensor ran over the samples. As a result of stepwise
linear regression analysis using these values as explanatory variables, the evaluation scores for Soft were
successfully estimated using the firing value of FA II and the relationship between normal/tangential forces,
and the evaluation scores for Rough were estimated using the SA I firing value.

Keywords: tactile sensor; human tactile perception; mechanoreceptive units; sensory evaluation

1. Introduction

Plastic materials are often used for the outer packaging of consumer products such as cameras,
personal computers, and instrumental panels of automobiles. Appropriate design of the tactile sensation of
such products may provide additional value to the product itself, in addition to its original functionality [1].
However, the tactile sensation of plastic parts has yet to be assessed compared with that of cloth or cream.
Additionally, tactile estimation of plastic surfaces is a crucial matter in industrial production from the
viewpoint of quality control of mass-produced consumer products manufactured in different factories.

There are a number of research studies on the tactile estimation of products with plastic and
other materials [2–10]. Kawasegi et al., for example, investigated the relationship between the tactile
sensory responses and the physical properties of the surfaces of molded plastic samples with textures
at the micrometer scale [4]. Ramalho et al. developed a probe that can measure the friction coefficient
between the probe and fabrics, and they obtained a correlation between the slippery/smoothness
sensations and the friction coefficient [5]. Thieulin et al. developed an artificial finger to measure
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the friction and acoustic vibrations that occurred when the device slid on the surface of paper [6].
They showed that there was a correlation between the feature quantity from acoustic vibration that
they defined, and the softness evaluated by the subjects. Song and Hu et al. developed a finger-shaped
tactile sensor based on a thin PVDF film for surface texture measurement by imitating human active
texture perception processes, detected the vibration from the sensor, and classified the outcomes for
five different types of linen [7,8]. Chen et al. measured the vibration data obtained when an artificial
finger ran over a sample. The vibration was detected by the sound wave of the conductive liquid that
was used in the artificial finger [9].

The experimental data obtained in the previous research can be classified into three categories,
namely, (a) the physical properties of the samples; (b) the data derived from the event caused by the
interaction between sensors and samples, such as the friction coefficient; and (c) the data derived
from the processing of the recorded sensor data, such as the peak value of vibration. Such data is
frequently related to the tactile evaluation directly. However, in an actual human tactile perception
process, the phenomena occurring in the finger are perceived by the mechanoreceptors as stimuli [11].

In this study, when stimuli are subsequently triggered and send induced impulse signals
to the brain, we assumed that humans would collectively interpret that as the tactile sensation.
Correspondingly, in our effort to evaluate the tactile sense of an object, it would be appropriate to
emulate this process. Therefore, in this study, we develop a tactile estimation method for molded
plastic samples based on the tactile perception mechanism in humans.

2. Materials and Methods

2.1. Plastic Samples

Eight plastic plates, shown in Figure 1, are used in this study as test samples. The arithmetic
average roughness values of the samples, Ra, were measured using DektakXT (Bruker Corporation,
Billerica, MA, USA). The dynamic friction coefficient, µ′, was measured using KES-SE with a 10 mm2

piano-wire sensor (Kato Tech Co. Ltd., Kyoto, Japan).
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Figure 1. The information of plastic test samples. (a) The enlarged views (Scale bar: 5 mm); (b) 

arithmetic average roughness, Ra (mean ± SD, n = 10); and (c) dynamic friction coefficient, µ’ (mean ± 

SD, n = 10). Materials of the plates are: #1; polystyrene, #2; unknown, #3; polypropylene, #4; 

polyethylene, #5; polycarbonate, #6; polymethyl methacrylate, #7; unknown, #8; polyethylene. 
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Figure 4. The inform ation of polym er resin plates. (a) The enlarged view s (Scale bar:5 m m ), (b) Ra
(m ean ±SD ,n = 10),and (c)µ’(m ean ±SD ,n = 10).
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Figure 1. The information of plastic test samples. (a) The enlarged views (Scale bar: 5 mm); (b) arithmetic
average roughness, Ra (mean ± SD, n = 10); and (c) dynamic friction coefficient, µ′ (mean ± SD, n = 10).
Materials of the plates are: #1; polystyrene, #2; unknown, #3; polypropylene, #4; polyethylene, #5;
polycarbonate, #6; polymethyl methacrylate, #7; unknown, #8; polyethylene.
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2.2. Sensory Evauation of Plastic Samples

To obtain the tactile sense scores of different plastic samples, a sensory evaluation test was
conducted with human volunteers. Note that the test protocol was approved by The Bioethics
Board of the Faculty of Science and Technology, Keio University. The subjects received a thorough
explanation of the test methods and then signed an informed consent form before participating in
the study. The sensory evaluation was performed under 25.4 ± 0.8 ◦C and 61.7 ± 3.8% RH with the
participation of 48 healthy adults (24 males and 24 females), aged 22.3 ± 1.4 (between 21 and 28) years
old. We employed a semantic differential method with a seven-step unipolar scale. Note that evaluated
words were 13 Japanese adjectives (cf. Table S1). During the test, each sample was put in a box so that
visual information was excluded.

For the evaluation, words were classified using principal component analysis (PCA) [12,13] based on
the evaluation scores using SPSS (Version 22, International Business Machines Corp., Armonk, NY, USA).
The conditions for detecting the principal components in PCA include the criteria that: (i) the eigenvalue of
each PC should be greater than unity; and (ii) the cumulative contribution rate is greater than 0.75. If these
conditions were not satisfied, we deleted one of the evaluated words that had the lowest PC loading
among all the evaluated words for each PC. This deletion process was repeated until the above conditions
were satisfied.

2.3. Tactile Sensing System and Experimental Conditions

We developed a tactile sensing system capable of detecting vibration, while a tactile sensor ran
over a sample. Figure 2a,b shows the actual image and an explored view drawing of the tactile
sensor, respectively. Two strain gauges glued on a phosphor bronze plate are embedded in a silicone
rubber pad to detect vibration induced on the sensor. The outputs from the strain gauges are acquired
through a dynamic strain amplifier (DPM–913B, Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan).
Figure 2c shows the entire sensing system, in which the tactile sensor mentioned above is attached to
the traction arm of the friction tester (KES-SE, Kato Tech Co., Ltd., Kyoto, Japan). Upon testing, the
normal force, N, between the tactile sensor and the sample can be adjusted by placing weights on the
traction arm. As the sample table of the KES-SE friction tester moves horizontally, the tactile sensor
runs over the sample. The vibration data induced from the relative movement of the sensor and the
sample can then be measured through the strain gauges. In addition, a force sensor connected to the
traction arm detects the tangential force, F.
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Figure 2. Tactile sensing system with developed tactile sensor. (a) Actual image of the sensor; (b) exploded
view drawing of the sensor; and (c) overall view of the sensing system. The drawing in (c) shows the
tactile sensor runs over a sample as a result of the sliding of the table. The strain gauges of the sensor
detect vibration, while the force sensor measures the tangential force.
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Conditions of vibration information measurement are as follows: The running speed of the tactile
sensor, V, was 10 mm/s, the running distance was 30 mm and the normal force, N, applied between
the tactile sensor and the sample was 0.52 N.

2.4. Estimation Method for Firing Values of Mechanoreceptive Unit

There are four mechanoreceptors in our glabrous skin (cf. Figure S1)—Meissner corpuscles (FA I),
Pacinian corpuscles (FA II), Merkel disks (SA I), and Ruffini endings (SA II) [14–16]. They constitute
mechanoreceptive units with corresponding neurons. The mechanoreceptive units respond to mechanical
stimuli induced based on vibration inputs, and fire nerve impulses to the neuron. The relationships
between the physiological threshold of the amplitudes of the stimuli for firing and the respective
frequencies, are reported for each unit [15], as summarized in Figure S2 [17]. Using the experimental
data plotted in Figure S2, we could approximate the threshold line, L, on the logarithmic chart for each
mechanoreceptive unit as,

log LFA I =

{
log 499− 0.890 log f , if fFA I,1 < f ≤ fFA I,2

log 52.1 + 0.0119 log f , if fFA I,2 < f ≤ fFA I,3
, (1)

log LFA II =

{
log 1690− 1.93 log f , if fFA II,1 < f ≤ fFA II,2

−5.00 + log 2.00 + 1.39 log f , if fFA II,2 < f ≤ fFA II,3
(2)

log LSA I =

{
log 43.5− 0.545 log f , if fSA I,1 < f ≤ fSA I,2

log 0.787 + 0.683 log f , if fSA I,2 < f ≤ fSA I,3
(3)

log LSA II =

{
log 501− 0.783 log f , if fSA II,1 < f ≤ fSA II,2

log 17.1− 0.0340 log f , if fSA II,2 < f ≤ fSA II,3
(4)

where, LFA I, LFA II, LSA I, and LSA II, are the thresholds for FA I, FA II, SA I, and SA II, respectively,
and f is the frequency of the vibration stimulus. The parameter that expresses the frequency range
for each equation can be found in Table 1. This parameter indicates the effective range of each
mechanoreceptive unit and the inflection point. Each mechanoreceptive unit responds or fires if the
intensity of mechanical stimulus surpasses the corresponding threshold line.

Table 1. The effective frequency range for each mechanoreceptive unit.

m f m,1 (Hz) f m,2 (Hz) f m,3 (Hz)

FA I 0.500 12.2 67.0
FA II 20.0 241 800
SA I 0.500 26.2 120
SA II 0.500 91.2 400

Considering the above characteristics, we estimate the firing value of each mechanoreceptive unit,
i.e., running the tactile sensor, and then compare the obtained vibration data with the aforementioned
threshold line in the frequency domain. Hereon, the intensity of firing of the mechanoreceptive unit (m)
is represented by Im.

First, we transformed the acquired vibration data from the time domain to an amplitude spectrum,
P, in the frequency domain using FFT, implemented in MATLAB (MATLAB 2016a, Math Works Inc.,
Natick, MA, USA) at a sampling frequency of 10 kHz, and with the use of the Hamming window.
In addition, to compare the amplitude spectrum with the vibration detection thresholds, the threshold
lines should be transformed from displacement to amplitude spectral units. To accomplish this,
the conversion coefficient, D, was determined as follows. We selected the sample that had the lowest
arithmetic average roughness, Ra value (henceforth referred to as Rar), as the reference sample,
assuming that we can detect its value. The frequency, f r, corresponding to Rar was then obtained
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from the running speed and the average length of the roughness curve element of a reference sample
(henceforth defined as RSmr) as,

fr = V/RSmr. (5)

Using this frequency, the conversion coefficient, D, could be calculated as,

D = A/2Rar, (6)

where, A represents the amplitude spectrum value of the vibration data in the frequency domain
at a frequency f r. Note that, the vibration detection thresholds of mechanoreceptive units were
determined using peak-to-peak values, while the amplitude spectrum was determined using
zero-to-peak amplitude values. Correspondingly, Rar doubled in the equation. Using D, the thresholds
for the mechanoreceptive units (m), Lm, are transformed as,

Lm
′ = D× Lm, (7)

in the amplitude spectral domain. Lm
′ is then superimposed on the vibration data in the frequency

domain to calculate the intensity of firing, Im, as the area between the vibration data and Lm
′, whereby

the vibration data is superior to Lm
′, as expressed below.

∆Pm,i =

{
log Pi − log Lm,i

′, if Pi ≥ Lm,i
′

0, if Pi < Lm,i
′ (8)

Im =
fm,3

∑
f= fm,1

∆Pm,i, (9)

where, Pi is the amplitude spectrum of the ith data on the periodogram, and Lm,i
′ is the ith value of

Lm
′ on the periodogram. Note that f m,1, f m,2, f m,3, are referenced from Table 1. Figure 3 shows the

conceptual diagram of the stimulus values, representing an example of vibration data after the FFT
of sample #3 and LSA I

′. The colored area is the area where the vibration data are superior to LSA I
′,

and the area is defined as the intensity of firing.
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In addition, to obtain the characteristics of the interaction between a sample and the tactile sensor,
we calculated the relationship between the tangential force and the normal force, M, as,

M = F/N (10)
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Note that the tangential force, F, used for this calculation is the average value recorded over
a distance of 20 mm in a stable state (running distance ranged from 5 mm to 25 mm).

2.5. Tactile Estimation Method—Connecting Theacquired Data and the Principal Components

Since each principal component derived by the PCA, described in Section 2.2, could be represented
by the evaluation word having the highest contribution to the PC, we performed a stepwise linear
regression analysis to predict the scores of the words based on the calculated intensity of firing of the
mechanoreceptive unit, Im, and the normal-tangential force relationship, M, using SPSS. The accuracy
of prediction of the dependent variable was expressed as a contribution ratio, and the weights of
the independent variables can be evaluated from the regression coefficients in the case of multiple
regression analyses [3,18]. The stepwise condition was determined by p < 0.10.

3. Results and Discussion

3.1. Sensory Evaluation Results

Based on the sensory evaluation test, scores were obtained for all the evaluated words. After the first
classification of words by PCA based on the evaluation scores using SPSS (cf. Table S2), we deleted words
(sticky, fine, dry, moist and warm) according to the rules listed in Section 2.2. Then, we classified the words
again (cf. Table S3), and deleted a word (sticky) according to the rules. Finally, we classified the words again
by PCA. As a result, three PCs were extracted that related to softness, roughness, and coldness, as shown in
Table 2. The cumulative contribution rate was 76.6% with the use of eight words. We selected only PC1 and
PC2 to perform the following stepwise linear regression analyses for tactile estimation, since PC3 exhibited
significantly smaller changes in the principal scores among all the samples (cf. Figure S3). The word with
the highest contribution for each PC, i.e., Soft for PC1, and Rough for PC2, was regarded as the representative
word for each PC. The scores for these words were then considered as the dependent variables for the
stepwise linear regression analysis.

Table 2. Results obtained from the principal component analysis.

Evaluate Index PC1
(Softness)

PC2
(Roughness)

PC3
(Coldness)

Soft 0.893 −0.0650 0.0141
Hard −0.873 0.0528 0.0976

Elastic 0.853 −0.0617 0.0413
Rough −0.0600 0.874 −0.0498
Coarse −0.0711 0.824 −0.0597
Smooth 0.0419 −0.791 0.106

Cold −0.0140 −0.0621 0.927
Cool −0.0199 −0.127 0.918

Eigenvalue 2.55 2.11 1.47
Contribution rate (%) 28.7 26.2 21.6

Cumulative contribution rate (%) 28.7 54.9 76.6

3.2. Estimated Index Values from Acquired Data

According to the surface roughness of sample #7 that had the lowest Ra, Rar can be defined to
be 0.278 µm. The average length of the roughness curve element of sample #7, RSmr, was estimated
to be 0.121 ± 0.0137 mm (mean ± SD, n = 10) by DektakXT. Therefore, by using the running speed,
V, and RSmr, f r was calculated to be 82.8 Hz, based on Equation (5). The amplitude spectral value,
A, at f r was 0.313 ± 0.0969 V (mean ± SD, n = 10) for sample #7. Using the means of A and Rar, D,
was calculated to be 0.564 V/µm based on Equation (6). Using D, the modified threshold for the
mechanoreceptive unit (m), Lm

′, was calculated using Equation (7).
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The intensity of firing of the mechanoreceptive unit (m), Im, was then calculated using Equations (8) and (9),
as shown in Figure 4. As indicated, the intensity of firing of each mechanoreceptive unit differed for different
samples. Some previous studies were conducted to estimate tactile sensation using vibration information,
but they only used physically featured qualities, such as the frequency of resonance vibration [19], and the peak
value of vibration [9]. Neither of these markers was related to the firing nature of the mechanoreceptive units.
Tactile estimation using the psychophysical thresholds of the mechanoreceptive units was also reported [20],
but the firing of each mechanoreceptive unit was not estimated. In addition, the threshold lines were empirically
defined. On the other hand, this study derived the intensity of each mechanoreceptive unit with appropriately
defined threshold lines, and the derived intensities of the mechanoreceptive units represented the differences of
test objects.
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Figure 5 shows the normal-tangential force relationship, M, of each sample. The reason M exceeded
unity is probably due to the stick-slip phenomenon occurring between the silicone rubber pad and the
samples [21]. This is the reason we do not refer to M as the friction coefficient.
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3.3. Stepwise Linear Regression Analyses

Using the intensity of firing of mechanoreceptive unit (m), Im, and M as index values, we performed
stepwise linear regression analyses to estimate the results of sensory evaluations. The results of the
stepwise linear regression analyses between the dependent variables (the scores of Soft and Rough),
and the explanatory variables (Im and M), are shown in Figure 6. The prediction models are formulated as,

So f t = 5.59− 0.002× ISA I, (11)

Rough = −16.075 + 0.011× IFA II + 11.633×M (12)
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The positive values of β′ are shown using solid lines, and the negative values using dotted lines.

In the regression model for Soft, IFA I, IFA II, ISA II, and M are excluded during the stepwise analysis
because they fail to meet the quantifying criterion (p < 0.10). The usability of ISA I was found to
significantly contribute to the prediction of the determinants of Soft (R2 = 0.562, p < 0.05). Although
R2 value is not high enough to conclude correlation between ISA I and Soft, there is a clear linear
relation between them as shown in Figure S4. R2 value only reflects the dispersion of the plots in this
case. The detail of the model is shown in Table S4. SA I has the capacity to reflect spatio-temporal
information [22], and is indicative of the skin response subject to its fluent deformation. The amount
of skin deformation and the contact area with the sample are related to the recognition of softness.
In this study, the samples were not deformed significantly based on pressure exerted by the finger,
but the finger deformation was mainly caused by horizontal interactions. The interaction along the
horizontal direction was derived from the stickiness of the samples, and was considered to influence
the evaluation of Soft. However, humans detect the softness of an object by touching while changing
the pressing force of the finger. Therefore, the reason that R2 of the model for Soft was small lays in the
measurement method. The tactile sensor was pulled horizontally with a constant load and the normal
force was not changed while the sensor is running over the sample.

Additionally, in the regression model for Rough, IFA I, ISA I, and ISA II, are excluded based on the
quantifying criterion (p < 0.10). Usability of IFA II and M were found to significantly contribute to the
prediction of the determinants of Rough (R2 = 0.817, p < 0.05). The detail of the model is shown in
Table S5. In this model, it was shown that Rough became smaller as IFA II became larger. It is known
that there are macroscopic markers and fine roughness markers in the psychophysical aspects of tactile
sense [23]. Moreover, there is a published report indicating that the tactile sensation is smoothed when
low-frequency vibrations are combined with high-frequency vibrations [24]. While FA II plays a role
in acceleration detection [25], IFA II was selected for the Rough detection model because it concurrently
responded to the vibration stimulus at a relatively higher frequency. Furthermore, the regression model
for Rough also suggested the importance of M in this estimation. It is known that the normal-tangential
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force relationship (generally perceived as the friction coefficient) affects the surface roughness feeling
of tactile sensation [26].

To confirm the effectiveness of the proposed method, we also performed single regression analyses
using Ra and the dynamic friction coefficient, µ′, both of which have been extensively used for the
estimation of tactile sensation [27,28]. The usability of Ra is found to significantly contribute to the
prediction of the determinants of Soft (R2 = 0.586, p < 0.05), while the usability of µ′ does not. In addition,
the usability of Ra was also found to significantly contribute to the prediction of the determinants of
Rough (R2 = 0.788, p < 0.01), while the usability of µ′ does not. The details of the models are shown
in Tables S6 and S7. Figure 7 shows the comparison of the results from linear regression analyses
using the index values and the results of simple regression analyses using Ra and µ′. From this result,
it was found that the R2 of the model for Soft and Rough using the index values was superior to that
elicited using µ′ and was close in value to that elicited using Ra. However, the meaning of the model
using Ra and the model using the index values are entirely different. Humans do not detect surface
roughness determined for machining, but the stimuli detected by the mechanoreceptors allow the
sense of tactile feeling. For this reason, the model using the index values is capable of estimating
a tactile sensation based on the mechanism of human tactile perception. Furthermore, with the model
using the index values proposed in this study, we clarified which receptors are strongly related to
which tactile sensation. Therefore, using our method, estimating tactile sensation and clarifying the
receptors involved is possible at the same time.
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4. Conclusions

Estimation of tactile sensation is required for the development of products to improve their
commercial values. For this, we developed a tactile sensing system that is capable of detecting vibration
and tangential forces, while a sensor ran the tested samples. From the vibration data obtained, estimations
of the firing values of the mechanoreceptive units were calculated based on the human tactile perception
mechanism. Simultaneously, an estimation of the force relationship value between normal/tangential
forces was calculated. We also conducted sensory evaluations to obtain the sample scores for different
words under evaluation, and extracted three principal components for the tactile sensation of tested
samples using principal component analyses. As a result of tactile estimations using stepwise linear
regression analyses, we constructed regression equations to estimate the scores of the representative
words of the two principal components from the estimated values. In conclusion, Soft and Rough scores
were successfully estimated from the acquired data.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/5/1588/
s1, Figure S1: The mechanoreceptors in the human finger, Figure S2: The physiological threshold-frequency
characteristics for mechanoreceptive units, (a) FA I, (b) FA II, (c) SA I, and (d) SA II. The approximate lines
represent Lm, Figure S3: The relationship between the principal scores of (a) PC1 and PC2, (b) PC1 and PC3,

http://www.mdpi.com/1424-8220/18/5/1588/s1
http://www.mdpi.com/1424-8220/18/5/1588/s1
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and (c) PC2 and PC3, Figure S4: The relation between the SA I index value, ISA I, and the evaluation score for
Soft, Table S1: Words used for the sensory evaluation test (terms in brackets are in Japanese), Table S2: Results
obtained from the first principal component analysis. Sticky, fine, dry, moist and warm do not meet the criteria
listed in Sec. 2.2, Table S3: Results obtained from the second principal component analysis. Sticky does not meet
the criteria listed in Sec. 2.2, Table S4: Results of the stepwise linear regression analyses between the index values
and Soft scores, Table S5: Results of the stepwise linear regression analyses between the index values and Rough
scores, Table S6: Comparison results of the stepwise linear regression analyses of Soft scores using the index
values, µ′ and Ra, Table S7: Comparison results of the stepwise linear regression analyses of Rough scores using
the index values, µ′ and Ra.
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