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Abstract: The High Resolution Range Profile (HRRP) recognition has attracted great concern in
the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition
methods failed to model high dimensional sequential data efficiently and have a poor anti-noise
ability. To deal with these problems, a novel stochastic neural network model named Attention-based
Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM
is utilized to extract discriminative features and the attention mechanism is adopted to select
major features. RTRBM is efficient to model high dimensional HRRP sequences because it can
extract the information of temporal and spatial correlation between adjacent HRRPs. The attention
mechanism is used in sequential data recognition tasks including machine translation and relation
classification, which makes the model pay more attention to the major features of recognition.
Therefore, the combination of RTRBM and the attention mechanism makes our model effective for
extracting more internal related features and choose the important parts of the extracted features.
Additionally, the model performs well with the noise corrupted HRRP data. Experimental results
on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our
proposed model outperforms other traditional methods, which indicates that ARTRBM extracts,
selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable
for high dimensional data or noise corrupted data.
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1. Introduction

A high-resolution range profile (HRRP) is the amplitude of the coherent summations of the
complex time returns from target scatters in each range cell, which represents the projection of the
complex returned echoes from the target scattering centers on to the radar line-of-sight (LOS) [1].
The HRRP recognition has been studied for decades in the field of RATR because it contains important
structural information such as the target size and the distribution of scattering points [1–4]. In addition,
the HRRP is easy to obtain, store, and process. For the problem of HRRP recognition, a large number
of scholars have conducted extensive research [1,5–7]. The reported methods can be summarized as
extracted features of HRRPs after dividing the full target radar aspect angles into several frames
and performing the target detection to select the region of interest in an HRRP. The difference
between these methods lies in feature extraction. Common feature extraction techniques include HRRP
templates, HRRP stochastic modeling, time-frequency transform features, and invariant features [8,9].
These feature extraction techniques all have clear physical meaning and are conducive for promotion.
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However, most traditional recognition methods utilize the single HRRP rather than HRRP sequences,
which ignores the temporal and spatial correlation within the sample.

Noting strong relativity is contained between the adjacent HRRP, sequential HRRP is of potential
usage for recognition. To make use of the spatial and temporal correlation in a sequence, HMM is often
utilized for sequential problems such as sequential event detection in wireless sensor networks and
radar HRRP sequence recognition [10,11]. This method utilizes the sequence information of HRRP and
considers the structure information inside the target. In addition, the problem of azimuth sensitivity
is solved by framing [12–14]. However, the model can only represent local dependencies between
states and has a high computational complexity, which means it is not efficient at dealing with high
dimensional sequential data. Recently, deep learning has been gradually applied to radar. Ahmet Elbir
constructed a CNN model as a multi-class classification framework to select antennas in a cognitive
radar scenario, which is an essential application of deep learning in the radar field [15]. However,
the provided method still does not consider the situation of high dimensional sequential data.

Dealing with high dimensional sequential data has also been widely studied in the machine
learning community. Recently, a time-series model, which is potentially better studied to capture
dependency structures, relies on the use of Recurrent Neural Networks (RNNs). However, there are
many parameters that need to be trained in the model, which leads to the problem of gradient
dissipation or gradient explosion in the training process [16]. The Residual Network (ResNet) can
effectively solve the problem of gradient dissipation or gradient explosion by sharing the cross layer
parameter and retaining the intermediate features [17]. However, the model has no obvious advantages
in the processing of sequential data. Following the invention of the fast learning algorithm named
contrastive divergence algorithm (CD) [18] and its successful application to Restricted Boltzmann
Machine (RBM) learning, the Recurrent Temporal Restricted Boltzmann Machine (RTRBM) has been
proposed as a generative model for high dimensional sequences [19–24]. More specifically, the RTRBM
model is constructed by rolling multiple RBMs over time [21] where each RBM has a contextual
hidden state that is received from the previous RBM and is used to modulate its hidden units. Add to
it, RBM is a bipartite graphical model that uses a layer of “hidden” binary variables or units to
model the probability distribution of a layer of “visible” variables [24–28]. Based on this, the RTRBM
model introduces the correlation matrix between the hidden layers of adjacent RBMs to tack the
correlation inside the data into consideration [19]. The model has achieved great success in extracting
internal correlations between adjacent HRRPs and capturing spatial and temporal patterns in highly
dimensional sequential data. In the traditional method based on RTRBM, only one hidden layer
(at time frame t) is utilized for the recognition. However, in the training process of the RTRBM model,
the gradient of the parameters is propagating with time series, the ’vanishing gradient problem’
appears easily when T becomes longer. Therefore, with the time series propagating, the model
cannot extract deeper features and the sequential correlation features cannot transmit to the next RBM
smoothly in the learning process. As such, it is necessary to consider feature vectors at all the T time
sequences. Considering that the contribution of each feature vector to the recognition is different and
has been ignored in the traditional method based on RTRBM, it is essential for the recognition method
to gain the ability to pay more attention to the important feature parts.

In order to solve the problems which have been put forward, a new method that combines
the RTRBM model with the attention mechanism [29] for sequential radar HRRP recognition is
proposed in this paper. The attention mechanism was first proposed in the field of the visual image in
Reference [30] and has shown good performance on a range of tasks including machine translation,
machine comprehension, and Relation classification [31–36]. Therefore, it is theoretically possible for
HRRP sequence recognition when utilizing the attention mechanism. In ARTRBM, the combination of
RTRBM and the attention mechanism makes the model focus its attention on specific features, which are
important for the classification task. More specifically, this model encodes the HRRPs sequence through
the RTRBM model and then calculates the weight coefficient for each hidden unit, according to their
contributions to the recognition performance. Then the features are utilized to construct the attention
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layer for the recognition task. This combination brings performance improvements for high recognition
accuracy achievement and strong robustness to noise. To verify the effectiveness of the proposed
model, two experiments are executed, which utilizes the HRRP data converted from the SAR data of
MSTAR [37]. Experimental results indicate the superior performance of the proposed model against
HMM, Class RBM, and Principle Component Analysis (PCA). Additionally, the proposed model can
still achieve an ideal accuracy when the intensity of noise is lower than −15, which confirms its strong
robustness to noise.

This paper is organized as follows. In Section 2, the RBM and RTRBM are briefly introduced as a
preparation for the proposal of the method. In Section 3, the proposed model for sequential HRRP
recognition is presented in detail, which is followed by the training method for the proposed model in
Section 4. After that, several experiments on the MSTAR dataset have been performed to evaluate our
model in Section 5. Lastly, we conclude our work in Section 6.

2. Preliminaries

In this section, we will go over the salient properties of the Restricted Boltzmann Machine (RBM)
briefly and then give preliminaries about Recurrent Temporal Restricted Boltzmann Machine (RTRBM),
which is a temporal extension of RBMs.

2.1. Restricted Boltzmann Machine

The RBM is an undirected graphical model that uses a layer of hidden variables h = [h1, h2, · · · hm]

to model a joint distribution over the visible variables v = [v1, v2, · · · vn] [16]. The graphical depiction
of the RBM is depicted in Figure 1. The two layers are fully connected to each other by a weight matrix
W but there exists no connections between units within the same layer [28,38]. On the problem of
HRRP-based RATR, visible units can be an HRRP sample and the hidden layer can be used to extract
the features.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 17 

 

SAR data of MSTAR [37]. Experimental results indicate the superior performance of the proposed 
model against HMM, Class RBM, and Principle Component Analysis (PCA). Additionally, the 
proposed model can still achieve an ideal accuracy when the intensity of noise is lower than −15, 
which confirms its strong robustness to noise. 

This paper is organized as follows. In Section 2, the RBM and RTRBM are briefly introduced as 
a preparation for the proposal of the method. In Section 3, the proposed model for sequential HRRP 
recognition is presented in detail, which is followed by the training method for the proposed model 
in Section 4. After that, several experiments on the MSTAR dataset have been performed to evaluate 
our model in Section 5. Lastly, we conclude our work in Section 6. 

2. Preliminaries 

In this section, we will go over the salient properties of the Restricted Boltzmann Machine (RBM) 
briefly and then give preliminaries about Recurrent Temporal Restricted Boltzmann Machine 
(RTRBM), which is a temporal extension of RBMs. 

2.1. Restricted Boltzmann Machine 

The RBM is an undirected graphical model that uses a layer of hidden variables h =[hଵ, hଶ, ⋯ h୫]  to model a joint distribution over the visible variables v = [vଵ, vଶ, ⋯ v୬]  [16]. The 
graphical depiction of the RBM is depicted in Figure 1. The two layers are fully connected to each 
other by a weight matrix W but there exists no connections between units within the same layer 
[28,38]. On the problem of HRRP-based RATR, visible units can be an HRRP sample and the hidden 
layer can be used to extract the features. 

hidden layer h

visible layer v

weight matrix W

● ● ●

●●●

● ● ●

 
Figure 1. Graphical depiction of the RBM. 

The RBM defines the joint distribution over visible units v and hidden units h, which is shown 
in the equation below [24]. p(v, h) =  ୣ୶୮ [ି୉(୴,୦)]୞   (1) 

where Z = ∑ ∑ exp [−E(v, h)]୦୴  is the partition function, which is given by adding all possible pairs 
of visible and hidden vectors. Additionally, E is an energy function defined below.  E(v, h) = −h୘Wv − b୘v − c୘h (2) 

where Θ = {W, b, c}  consists of the model parameters, W ∈ R୑×୒ represent the weight matrix 
connecting visible and hidden vectors, and b ∈ R୒and c ∈ R୑are the biases of the visible and hidden 
layers, respectively. 

2.2. Recurrent Temporal Restricted Boltzmann Machine 

The Recurrent Temporal Restricted Boltzmann Machine is a generative model for modeling 
high-dimensional sequences, which was constructed by rolling multiple RBMs over time. In detail, 
the RBM at time step t is connected at t − 1 through the weight matrix W୦୦ and is conditioned on it. 
The dependency on h෠(୲) is the major difference compared to the RBM. It is worth noting that this 
horizontal deep architecture is different from the Deep Brief Networks (DBN), which stacks RBMs 
vertically [39]. Therefore, more sequence information can be extracted by RTRBM and performs 
better in many application scenarios such as radar HRRP target recognition. 

Figure 1. Graphical depiction of the RBM.

The RBM defines the joint distribution over visible units v and hidden units h, which is shown in
the equation below [24].

p(v, h) =
exp[−E(v, h)]

Z
(1)

where Z = ∑
v

∑
h

exp[−E(v, h)] is the partition function, which is given by adding all possible pairs of

visible and hidden vectors. Additionally, E is an energy function defined below.

E(v, h) = −hTWv− bTv− cTh (2)

where Θ = {W, b, c} consists of the model parameters, W ∈ RM×N represent the weight matrix
connecting visible and hidden vectors, and b ∈ RN and c ∈ RM are the biases of the visible and hidden
layers, respectively.

2.2. Recurrent Temporal Restricted Boltzmann Machine

The Recurrent Temporal Restricted Boltzmann Machine is a generative model for modeling
high-dimensional sequences, which was constructed by rolling multiple RBMs over time. In detail,
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the RBM at time step t is connected at t − 1 through the weight matrix Whh and is conditioned on

it. The dependency on ĥ
(t)

is the major difference compared to the RBM. It is worth noting that this
horizontal deep architecture is different from the Deep Brief Networks (DBN), which stacks RBMs
vertically [39]. Therefore, more sequence information can be extracted by RTRBM and performs better
in many application scenarios such as radar HRRP target recognition.

The graphical model for the RTRBM is illustrated in Figure 2.
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The model gives five parameters {W, Whh, ĥ
(t)

, b, c}. Here W is the weight matrix between the
visible and the hidden layer of the RBM at each time frame. Whh stands for the directed weights,

which connect the hidden layer at time t – 1 and t, and ĥ
(t)

is a vector of initial mean-file values of the

hidden units. The motivation for the choice of ĥ
(t)

is that, using the RBM associated with time instant

t, we have that E(h(t)
∣∣∣v(t)) = ĥ

(t)
; i.e., it is the expected value of the hidden units vector. In addition,

b(t) and c(t) are the biases of visible and hidden layers. respectively. In RTRBM, the RBM at time frame
t is conditioned on itself at time step t − 1 through a set of time dependent model parameters such as

the visible and hidden layer biases b(t) and c(t) that depend on ĥ
(t−1)

[40].{
b(t) = Whhĥ

(t−1)
+ b

c(t) = Whhĥ
(t−1)

+ c
(3)

while ĥ
(t)

is the mean-filed value of h(t), which is represented in detail below.

ĥ
(t)

= σ(Wv(t) + c(t)) =

{
σ(Wv(t) + c0) if t = 1;

σ(Wv(t) + Whhĥ
(t−1)

+ c) if t > 1.
(4)

Given hidden inputs ĥ
(t−1)

(t > 1), the conditional distributions are factorized and takes the
form below. 

P(ht,j = 1
∣∣∣v, ĥ

(t−1)
) = σ(∑

i
ωj,ivt,i + bj + ∑

l
Whhj,m ĥ

(t−1,m)
)

P(vt,i = 1
∣∣∣ht, ĥ

(t−1)
) = σ(∑

i
ωj,iht,j + ci)

(5)

Therefore, the joint probability distribution of the visible and hidden units of the RTRBM with
length T takes the form below [21].

p(v(1:T), h(1:T); ĥ
(1:T−1)

) =
T

∏
t=1

p(v(t), h(t); ĥ
(t−1)

) =
T

∏
t=1

exp [−E(v(t), h(t); ĥ
(t−1)

)]

Z
ĥ
(t−1)

(6)

where Z
ĥ
(t−1) denotes the normalization factors for the RBM at T = t and E(v(t), h(t), ĥ

(t−1)
) is the

energy function at the time step t, which is defined by the equation below.
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E(v(t), h(t); ĥ
(t−1)

) = −h(t)TWv− c(t)Tv− b(t)Th(t) (7)

Furthermore, given the hidden inputs ĥ
(1)

, ĥ
(2)

, · · · , ĥ
(T)

, all the RBMs are decoupled. Therefore,
sampling can be performed using block Gibbs sampling for each RBM independently. This fact is
useful in deriving the CD algorithm, which is a stochastic approximation and utilizes a few Gibbs
sampling steps to estimate the gradient of parameters [18,41].

3. The Proposed Model

Based on the original RTRBM, the newly proposed model brings the idea of the attention
mechanism, which is named Attention based RTRBM. The graphical structure of the proposed model
is demonstrated in Figure 3. In the proposed model, RTRBM is utilized to extract features from the
input data and store the extracted features in the hidden vector. A new hidden layer s is introduced to
RTRBM by the weighted sum in all hidden layers for the reason of measuring the role of each hidden
vector in recognition tasks and then the new hidden layer is used for classification.

In the context of radar HRRP recognition, the input data v = [v1, v2, · · · , vN] is the raw HRRPs
sequence and the output y is a sequence of the class label. Each feature vector is extracted from the
RTRBM, which is treated as an encoder to form a sequential representation.
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The upper half of Figure 3 represents the attention mechanism in the ARTRBM model.
The fundamental principle of the attention mechanism can be expressed as the classifier paying
more attention to the major part rather than all the extracted feature vectors.

As is shown in Figure 3, αt stands for the weight coefficient for the hidden layer at time step t.
The layer s is determined by the hidden layer of each time step and Wys corresponds to the weight
matrix, which connects the layer s and output layer y. Additionally, y is a vector representing the class
label in which all values are set to 0 except at the position corresponding to a label y, which is set to 1.

In order to detail and describe the process of our model, the flowchart about ARTRBM is
shown below.

As shown in Figure 4, the basic process of the attention mechanism can be summarized in
three steps. First, computing the feature energy ej and weight coefficients αj, which represent the
contribution of extracted feature vectors for recognition. Afterward, the final hidden layer s is
constructed, which is determined by the hidden layers of all time steps. Finally, the layer s is used in
the final classification task.
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In the attention mechanism, the final feature vector s is obtained by the weighted summation of
the hidden layers of each time, which can be expressed in the equation below.

si =
T

∑
j=1
αj··hij (8)

where the weight coefficient αj· can be defined as:

αj· =
exp (ej)

∑T
j=1 exp (ej)

(9)

where αj· represents the vector of the jth row elements of the matrix α and ej = Va· tan h(Wa·hj)

corresponds to the hidden layer energy at time frame j. The weight coefficient αj represents the role of
the hidden layer feature hj in recognition. The attention mechanism [30,41,42] is also determined by
the parameter αj. By training the parameters Va and Wa, the model can assign the hidden layer hj with
different weights at different moments, which makes the model more focused on the parts that play a
major role in the recognition tasks.

4. Learning the Parameters of the Model

In the proposed model, the RTRBM plays a role of the encoder, which describes the joint

probability distribution p(v(1:T), h(1:T); ĥ
(t−1)

). According to Equation (3) and Equation (7), the energy
function can be computed and is shown below.

E(v(1:T), h(1:T); ĥ
(1:T−1)

) = −(hT
1 Wv1 + cTv1 + bT

0 h1)−
T

∑
t=2

(hT
t Wvt + cTvt + bTht + hT

t Whhĥt−1) (10)

In order to learn the parameters, first, we need to obtain the partial derivatives of
log P(v1, v2, · · · , vT) with respect to the parameters. We use CD approximation [15,17] to compute
these derivatives, which require the gradients of energy function (10) to be based on all the
model parameters. Afterward, we separate the energy function into the following two terms
E = −H−Q2, where:

H = (hT
1 Wv1 + cTv1 + bT

0 h1) +
T
∑

t=2
(hT

t Wvt + cTvt + bTht)

Q2 =
T
∑

t=2
(hT

t Whhĥt−1)
(11)

Therefore, the gradients of E representing the parameters were separated into two parts. It is
straightforward to calculate the gradients of ∂H

∂Θ , and calculating ∂Q2
∂Θ would be more complex.

To compute ∂Q2
∂Θ , we first compute ∂Q2

∂ĥ
(t) , which can be computed recursively using the back

propagation-through-time (BPTT) algorithm (David Rumelhart, Geoffrey Hinton et al., 1986) and
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the chain rule. Therefore, the model parameters Θ can be updated via gradient ascent, which is shown
in the equation below.

∂E
∂Θ

=
∂(H + Q2)

∂Θ
= E

{ht}T
t=1|{vt,ĥt}

T
t=1

[
∂H
∂Θ

]
−E

{ht,vt}T
t=1|{ĥt}

T
t=1

[
∂H
∂Θ

]
+

∂Q2
∂Θ

(12)

where E
{ht}T

t=1|{vt,ĥt}
T
t=1

[
∂H
∂Θ

]
represents the universal mean of the gradient function ∂H

∂Θ under the

conditional probability p({ht}T
t=1

∣∣∣∣{vt, ĥt

}T

t=1
) and can be expressed using the equation below.

E
{ht}T

t=1|{vt,ĥt}
T
t=1

[
∂H
∂Θ

]
= ∑T

t=1 p(ht

∣∣∣vt, ĥt )·
∂H
∂Θ

(13)

Therefore, Equation (12) can be derived as:

∂E
∂Θ

=
∂(H + Q2)

∂Θ
= ∑T

t=1 p(ht

∣∣∣vt, ĥt )·
∂H
∂Θ
−∑T

t=1 p(ht,vt)·
∂H
∂Θ

+
∂Q2
∂Θ

(14)

Specifically, ∂H
∂Θ and ∂Q2

∂Θ are shown in Appendix A.
We extract the features from the input data with the RTRBM model, which are stored in h(j) at

every time step. Then we use h(j) as the input for the attention mechanism and compute the final
hidden layer s using Equation (8). To learn the parameters of the attention mechanism, we need
to choose an appropriate objective function. Here we use a close variant of perplexity known as
cross entropy, which represents the divergence between the entropy calculated from the predicted
distribution and that of the correct prediction label (and can be interpreted as the distance between
these two distributions). It can be computed using all the units of the layer s and expressed as:

fCross(θ, Dtrain) = −
1

|Dtrain|

|Dtrain|

∑
n=1

ln p(yn|sn ) (15)

where Dtrain = {(sn, yn)} is the set of training examples, n represents the serial number of the training
sample, and sn = (sn

1 , sn
2 , · · · sn

T) is the final hidden layer while yn = (yn
1 , yn

2 , · · · yn
T) corresponds

to the target labels. By taking Equations (8) and (9) into the objective function (15), the gradient
∂

∂θ fCross(θ, Dtrain) can be calculated and is derived below.

∂

∂θ
fCross(θ, Dtrain) =

1
|Dtrain|

|Dtrain|

∑
n=1

∂F(yn|sn )

∂θ
(16)

where:
F(yn|sn ) = − ln ∑

ci

p(yn|sn ) (17)

and:
p(yn|sn ) = ylny′ − (1− y) ln (1− y′) (18)

with:
y′ = σ(Wys·s + d) (19)

where y and y′ denotes the correct label and the output label, respectively. Wys is the weight matrix
that connects layer s and label vector y while the logic function σ(x) = (1 + exp (−x))−1 is applied to
each element of the argued vector. Therefore, the gradients ∂F(yn|sn )

∂θ can be exactly computed. The brief
deduction process and results are show in Appendix B.

The pseudo code of the model parameter update for the proposed model is summarized in
Algorithm 1, which is shown below.
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Algorithm 1. Pseudo code for the learning steps of Attention based RTRBM model

Input: training pair: {v_train; y_train}, hidden layer size: dim_h;
learning rate: λ1, λ2; momentum: β; and weightcost: η1,η2.
Output: label vector y
# Section 1: Extract features using RTRBM

(1): Calculate ĥ
(t)

according to Equation (4).

(2): Calculate P(ht,j = 1
∣∣∣v, ĥ

(t−1)
) and P(vt,i = 1

∣∣∣ht, ĥ
(t−1)

), respectively,

according to Equation (5).
(3): Calculate the L2 reconstruction error: Loss← ‖ vt − vt_k ‖2 .
(4): Update parameters of this section: Θ← Θ− ∆Θ , ∆Θ← β∆Θ− λ1(∇Θ− η1Θ)

(5): Repeat step (1) to (4) for 1000 epochs and save the trained Θ for test phase.
# Section 2: Classification with Attention mechanism

(1): Calculate αj, j ∈ (1, 2, · · · , T) according to Equation (9).
(2): Calculate si, i ∈ (1, 2, · · · , dim _h) according to Equation (8).
(3): Calculate the cross entropy according to Equation (15).
(4): Update parameters of this section: θ← θ− λ2(∇θ− η2θ)

(5): Repeat step (1) to (4) for 1000 epochs and save the trained θ for the test phase.

5. Experiments

In order to evaluate the proposed recognition model, several experiments on the MSTAR dataset
have been presented. First, arranging the training and testing HRRP sequences was introduced in
Section 5.1. Afterward, we completed two experiments with different purposes in Section 5.2. The first
section compared the performance of our proposed model with several other comparative models and
the second section tested the recognition ability of our model with different noise intensities.

5.1. The Dataset

In order to show the clear comparisons between our results with those in other papers more
easily, the publicly-available MSTAR (Moving and Stationary Target Acquisition and Recognition)
dataset, which has been widely used in related research was chosen in our experiments [12]. MSTAR is
funded by DARPA and is the standard dataset of the SAR automatic target recognition algorithm.
More detailed, the MASTAR dataset includes 10 kinds of targets data (X band) under different azimuth
angles and we chose three of the most similar targets for the experiment, which are the T72 main
battle tank, the BMP2 armored personal carrier, and the BTR70 armored personal carrier. In order to
make the MSTAR dataset suitable for our model, we first transformed the two-dimensional SAR into a
one-dimensional HRRP vector to train our proposed model. The HRRP of the three targets are shown
in Figure 5.
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All three classes of targets cover 0 to 360 degrees of aspect angles and their distance and azimuth
resolutions are 0.3 m [43,44]. In the dataset, each target is obtained under the depression angle of 15◦

and 17◦. The HRRPs of 17 degree of depression angle were used as the training data while the HRRPs
of 15◦ were used as the test data. The size of the training and testing dataset is briefly illustrated in
Table 1.

Table 1. Training and testing set of HRRPs for three targets.

Number Training Set Size Testing Set Size

1
BMP2

(Sn_C9563) 2330
BMP2 (Sn_C9563) 1950
BMP2 (Sn_C9566) 1960
BMP2 (Sn_C21) 1960

2 T72 (Sn_132) 2320
T72 (Sn_132) 1960
T72 (Sn_812) 1950
T72 (Sn_S7) 1910

3 BTR70
(Sn_C71) 2330 BTR70 (Sn_C71) 1960

Sum Training Set 6980 Testing Set 13650

We can see from the table that there are three targets in the table. The targets BMP2 and T72 contain
three similar models, respectively, while BTR70 contains one model. Taking BMP2 as an example,
we use Sn_C9563 to train the ARTRBM model and test it with Sn_C9563, Sn_C9566, and Sn_C21. In this
way, the generalization performance of our model can be examined. The training set and testing set
contain 6980 HRRPs and 13,650 HRRPs, respectively.

We divided the 360◦ of aspect angles into 50 aspect frames uniformly. Each frame covers 7.2◦.
In each frame, an HRRP is sampled at intervals of 0.1 degrees. Therefore, each frame contains 72 HRRPs.
Additionally, the composition of the sequential HRRP datasets is shown in Figure 6.Sensors 2018, 18, x FOR PEER REVIEW  9 of 17 
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To make the process more clearly, suppose that each HRRP sequence contains L(L ≥ T) HRRPs
and the steps to construct the sequential HRRP are shown as Algorithm 2 [45].

Algorithm 2. The composition of the sequential HRRP datasets.

Step 1: Start from the aspect frame 1 to L. The first HRRPs in frame 1 to L are chosen to form the first HRRP
sequence with length L. Slide one HRRP to the right and the second HRRPs in aspect frame 1 to L are chosen
to form the second HRRP sequence. Repeat this algorithm until the end of each frame.
Step 2: Slide one frame to the right and repeat step 1 to construct the following sequences.
Step 3: Repeat step 2 until the end of all aspect frames. If the remaining frame is less than L, then the first L− 1
frames are cyclically used one by one to form the remaining sequences.

In many studies, the clutter is removed to get “clean” HRRPs. We directly used the raw HRRPs.
The only preprocessing was normalizing the magnitude of each HRRP to its total energy. This setting
could make the experiments more closed to real recognition scenarios.
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5.2. Experiments

5.2.1. Experiment 1: Investigating the Influence of Hidden Layer Size on Recognition Performance

In this experiment, we will investigate the influence of the size of the hidden layer on recognition
performance. In order to explore this problem, two groups of contrastive experiments were organized
for different purposes. The first group is aimed at comparing the performance of the Attention-based
RTRBM model with contrast models on different hidden layer sizes while the second is to investigate
whether the attention mechanism really works and how much effect it has on performance.

Before conducting the experiments, we analyzed the influence rising from the length of the
RTRBM model at first. According to Table 2, it shows that when T is increased by more than 15,
stable test accuracy can be achieved. In addition, we can further improve the recognition rate by
adding hidden units. Therefore, to seek a balance between recognition accuracy and computational
complexity, T = 15 is adopted for the recognition task.

Table 2. The accuracy of different lengths of RTRBM.

Length of RTRBM T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

Hidden Units 128 128 128 128 128 128
BMP2 0.5496 0.5556 0.6649 0.6856 0.6900 0.6915

T72 0.7472 0.8345 0.8575 0.8545 0.8723 0.8789
BTR70 0.7594 0.8803 0.9368 0.9402 0.9402 0.9428

Average Accuracy 0.6854 0.7535 0.8197 0.8268 0.8341 0.8377

(A) Comparing the Performance of the Proposed Model with the Traditional Models

In the first group of contrast experiment, Class RBM (CRBM) with different hidden layer sizes
(number of hidden nodes = 16, 32, 64, 128, 256, 384, 512) were trained as comparisons to the proposed
method. We carry out the contrast experiments with two different data input methods by constructing
an average HRRP with 15 adjacent HRRPs and connecting 15 HRRPs end-to-end. The recognition
performance of each model is shown in Figure 7 where the test accuracy is computed by averaging the
test results of the three targets.
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T = 15.

It can be seen in Figure 7 that the superior recognition performance of Attention-based RTRBM
against the other two models. Additionally, our proposed model gets optimal recognition accuracy on
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each size of the hidden layer, which shows the strong ability to deal with high dimensional sequences.
The explanation for this result is that the proposed model can extract more separable features through
the RTRBM model and make better use of them using the attention mechanism. Class RBM with
average HRRP performs not as good as the other two models, but gets ideal recognition accuracy
when the number of hidden nodes increased to 384, which reflects that Class RBM needs more hidden
units to reach high recognition accuracy.

We design another baseline using PCA to reduce the dimension of input data. There are 15 features
retained after PCA and the classifier is the Support Vector Machine (SVM). We repeat the baseline
five times and the average test accuracy is 91.22%. Since the contrast experiment PCA+SVM does not
contain hidden units, we mark the results of the model at 512 hidden units in Figure 7. Therefore,
we can compare the PCA+SVM model with the best results of other methods. Additionally, the test
performance of the HMM model is lower than 80% when the sequence length is 15, which is provided
by Reference [12]. Similarly, we mark the results HMM at 512 hidden units in Figure 7 to compare
with the best results of other methods. Then we can conclude from Figure 7 that the correlation matrix
between the adjacent hidden layers helps RTRBM to extract more discriminatory features and the
weight coefficients make the attention mechanism select more separable features, which means that
ARTRBM is more suitable for the radar HRRP sequence recognition task.

To gain insight into the performance of three methods on different targets, we list the confusion
matrix for the three targets in Table 3. The number of hidden units for all the methods is 384.

Table 3. Confusion matrix of the model with 384 hidden units.

Methods Attention Based RTRBM CRBM (Connected HRRPs) CRBM (Average HRRP)

Targets BMP2 T72 BTR70 BMP2 T72 BTR70 BMP2 T72 BTR70
BMP2 0.9053 0.0717 0.0230 0.8461 0.0821 0.0718 0.8547 0.0819 0.0634

T72 0.0125 0.9758 0.0117 0.0187 0.9726 0.0087 0.0295 0.9516 0.0189
BTR70 0.0347 0 0.9653 0.0448 0.0052 0.9500 0.0525 0.0094 0.9381

Av. Acc. 0.9448 0.9229 0.9157

As shown in Table 3, the misclassification of BMP2 lowers the average accuracy. One possible
reason is that the features learned by the three models are not discriminatory enough to recognize the
true targets and another reason may be summarized as we train the models only on BMP2 (Sn_C9563).
However, test models on three types of the targets BMP2 and the three types of BMP2 (shown in
Figure 8) has a low similarity, which is lower than the three types of T72. However, our proposed model
still achieves higher accuracy than two contrast models on the classification of BMP2, which indicates
that Attention-based RTRBM is a better choice when there is a great difference between the training
and testing dataset.
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In the second contrastive experiments group, we designed several ways in which, without
attention mechanism, we complete the comparison. In addition, the purpose is to investigate the
impact of attention, which is the mechanism in the recognition performance.

The feature information are extracted by RTRBM and contained in the hidden layer, which are
expressed as ĥ(1), ĥ(2), · · · , ĥ(T). We use ĥ(1), ĥ(middle), ĥ(T), ĥ(mean) (the feature of the first, middle, last,
and the average of all time frames) as input data, respectively, and classify it with a Single Layer
Perceptron (SLP) model. In other words, we can regard the baselines as special forms of ARTRBM
that set the coefficients to [1, 0, · · · , 0], [0, · · · , 0, 1, 0, · · · , 0], [0, 0, · · · , 1] and

[
1
T , 1

T , · · · , 1
T

]
, respectively.

For fair comparison, in this experiment, T is set to 15 and the number of hidden units is 384, which can
achieve an ideal accuracy with low computation complexity. Therefore, ĥ(middle) represents the hidden
features when t = 8.

As shown in Figure 9, the proposed model achieves higher recognition accuracy than the other
four methods at all hidden layer sizes. This result indicates that the attention mechanism can select
discriminatory features more efficiently than other methods that select average ĥ(t) or any single
ĥ(t). It is worth noting in the figure that choosing average ĥ(t) performs better than the other three
contrastive experiments. In addition, with the time step t increases, RTRBM+SLP models perform
better. This is not surprising since the latter ĥ(t) contains more temporal and spatial correlation
information through the correlation matrix Whh. However, even the RTRBM+SLP model using ĥ(T)

still performs worse as our proposed model. Therefore, the attention mechanism greatly contributes to
the recognition performance.
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5.2.2. Experiment 2: Investigating the Influence of SNR on Recognition Performance

For applications in real scenarios, white Gaussian noise of different Signal-to-Noise (SNR)
increasing from −10dB to 30dB were added to the testing data to investigate the robustness of the
proposed model. In addition, the test data with different SNR are shown in Figure 10.
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As shown in Figure 10, white Gaussian noise of different SNRs is superimposed on the test HRRP
sequence. Each row in the figure represents the index of range cell while each column shows the
number of testing data. We use T72 as example, which contains 5820 HRRP samples.

In this example, we trained the ARTRBM using the HRRP sequence with T = 15 and 384 hidden
units. We choose the Class RBM with 384 hidden units as the contrast experiment and the data input
method connected 15 HRRPs end to end, which performs better than all other contrastive experiments
in Experiment 1. Another contrast experiment uses PCA to reduce the dimension to 15 of input data
and the classifier is the Support Vector Machine (SVM).

Figure 11 shows the recognition performance of three models with different SNR. It is obvious
that our proposed model achieves better performance than the other two models at all SNR levels
and it gets more than 10% advantage over the other two models at −10dB. Additionally, the testing
accuracy keeps stable at a high level, which is near the average accuracy in Table 2 (0.9488) when
the SNR is higher than 15dB, which inflects that our proposed model has a certain anti-noise ability.
The accuracy of the proposed model decreases to about 65% with the decrease of SNR. However,
this number is less than 55% for CRBM. This result shows the strong anti-noise power of ARTRBM.
Considering the working environment of the radar system, the training samples are often corrupted
by noise. The model we proposed is a better choice to perform the HRRP sequence recognition task.
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6. Conclusions

In this paper, attention-based RTRBM is proposed for target recognition based on the HRRP
sequence. Compared with the reported methods, the proposed method has some compelling
advantages. First, it introduces the correlation matrix between the hidden layers to extract more
correlation information, which makes the extracted features hold the previous and current information.
Afterward, it efficiently deals with high dimensional sequential data, which performs better than
Class RBM using two different data input methods. Additionally, it can be effective for choosing and
utilizing the important parts of the extracted features, which outperforms the RTRBM+SLP model
using different input features. Additionally, the proposed model performs well in the case of strong
noise, which indicates a strong robustness for the noise. In the near future, to better solve the problem
of sequential HRRP recognition, we plan to combine other deeper models with an attention mechanism
as a classifier for RTRBM or other sequential feature extraction models. Furthermore, in order to make
the model more applicable to the real scenario, we will operate related experiments in the cases of
different waveforms and pulse recurrence intervals (PRIs) or the case of the training phase and testing
phase at different angular sampling rates. Additionally, we attempt to develop a model that can set the
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length of the attention mechanism adaptively. In this case, the number of T will not need to be set by
experience, which may achieve a better performance.
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Appendix A

According to Equation (11), we get:

Qt+1 =
T

∑
τ=t

hτ+1Whh ĥτ = Qt+2 + ht+1Whh ĥt (A1)

In order to compute ∂Qt+1
∂ĥ(t,m) , we need to compute ∂Qt+1

∂Whh
first, which is shown in the equation below.

∂Qt+1
Whhm′ ,m

=
T
∑

t=τ

∂Qt+2
∂ĥ(t+1,m) · ∂ĥ(t+1,m)

Whhm′ ,m
+

∂ht+1,m′Whhm′ ,m
ĥ(t+1,m)

Whhm′ ,m

=
T
∑

t=τ

∂Qt+2
∂ĥ(t+1,m) ·ĥ(t+1,m′)(1− ĥ(t+1,m′))ĥ(t,m) + ∑

m′
ĥ(t+1,m′) ĥ(t,m

′)T
(A2)

Therefore, we get:

∂Qt+1

∂ĥ(t,m)
=

T

∑
t=τ

(
∂Qt+2

∂ĥ(t+1,m)
·ĥ(t+1,m′)(1− ĥ(t+1,m′)) + ht+1,m′)·Whhm′ ,m (A3)

where
∂ĥ(t+1,m)

∂Whhm′ ,m

= ĥ(t+1,m′)(1− ĥ(t+1,m′))ĥ(t,m
′)T (A4)

is calculated by Equation (4).
According to Equation (A1) and (A4), we get:

∂Q2
∂Whhm′ ,m

=
T

∑
t=2

(
∂Qt+1

∂ĥ(t+1,m)
·ĥ(t,m′)·(1− ĥ(t,m

′)) + ∑
m′

ĥ(t,m
′))·ĥ(t,m′)T (A5)

Similarly, the gradients ∂Q2
∂Θ can be represented by the equations below.

∂Q2
∂Whhm′ ,m

=
T
∑

t=2
(

∂Qt+1
∂ĥ(t+1,m) ·ĥ(t,m

′)·(1− ĥ(t,m
′)) + ∑

m′
ĥ(t,m

′))·ĥ(t,m′)T

∂Q2
∂W =

T
∑

t=1
(

∂Qt+1
∂ĥ(t+1,m) ·ĥ(t,m

′)·(1− ĥ(t,m
′)) + ∑

m′
ĥ(t,m

′))·vT
t

∂Q2
∂b =

T
∑

t=1
(

∂Qt+1
∂ĥ(t+1,m) ·ĥ(t,m

′)·(1− ĥ(t,m
′)) + ∑

m′
ĥ(t,m

′))

∂Q2
∂b0

= ∂Q2
∂ĥ(2,m) ·ĥ(1,m′)·(1− ĥ(1,m′))

∂Q2
∂c = 0

(A6)

and the gradients ∂H
∂Θ are represented below.

∂H
∂W

=
T

∑
t=1

hT
t vt;

∂H
∂Whh

= 0;
∂H
∂b

=
T

∑
t=2

ht;
∂H
∂b0

= h1;
∂H
∂W

=
T

∑
t=1

vt (A7)
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Appendix B

According to Equation (15) and (17), we get:

∂F(yn|sn )

∂Wys
= − 1
|Dtrain|∑s

sj(σ(z)− y) (A8)

where σ(z) = σ(Wys·s + d), and σ′(z) = σ(z)(1− σ(z)).
Similarly, we get:

∂F(yn|sn )

∂d
=

1
|Dtrain|∑c

(σ(z)− y) (A9)

Submitting Equations (15)–(17) into Equation (14), respectively, the gradients ∂F(yn |sn )
∂θ can be

computed exactly, which are shown below.

∂F(yn |sn )
∂Wam

= ∂F(yn |sn )
∂y′k · ∂y′Tk

∂si
· ∂sT

i
∂αj
·

∂αT
j

∂ei
· ∂eT

i
∂Wam

=
(y′k−yk)

y′k ·(1−y′k)
·y′k·(1− y′k)·Wys

T
k,i·h

T
i,j·

∂αT
j

∂ei
·Vam·

[
1− tanh2(Wam·hj)

]
·hj

(A10)

∂F(yn |sn )
∂Vam

= ∂F(yn |sn )
∂y′k · ∂y′Tk

∂si
· ∂sT

i
∂αj
·

∂αT
j

∂ei
· ∂eT

i
∂Vam

=
(y′k−yk)

y′k ·(1−y′k)
·y′k·(1− y′k)·Wys

T
k,i·h

T
i,j·

∂αT
j

∂ei
·tanh(Wam·hj)

(A11)

where

∂αT
j

∂ei
=

[
(1− β)

− exp (ei + ej)

(∑i exp ei)
2 + β

exp ei(∑i exp ei − exp ej)

(∑i exp ei)
2

]
with

{
β = 0, i 6= j

β = 1, i = j
(A12)
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