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Abstract: With the rapid development of cyber-physical systems (CPS), building cyber-physical
systems with high quality of service (QoS) has become an urgent requirement in both academia and
industry. During the procedure of building Cyber-physical systems, it has been found that a large
number of functionally equivalent services exist, so it becomes an urgent task to recommend suitable
services from the large number of services available in CPS. However, since it is time-consuming,
and even impractical, for a single user to invoke all of the services in CPS to experience their QoS,
a robust QoS prediction method is needed to predict unknown QoS values. A commonly used
method in QoS prediction is collaborative filtering, however, it is hard to deal with the data sparsity
and cold start problem, and meanwhile most of the existing methods ignore the data credibility issue.
Thence, in order to solve both of these challenging problems, in this paper, we design a framework
of QoS prediction for CPS services, and propose a personalized QoS prediction approach based on
reputation and location-aware collaborative filtering. Our approach first calculates the reputation of
users by using the Dirichlet probability distribution, so as to identify untrusted users and process
their unreliable data, and then it digs out the geographic neighborhood in three levels to improve the
similarity calculation of users and services. Finally, the data from geographical neighbors of users
and services are fused to predict the unknown QoS values. The experiments using real datasets show
that our proposed approach outperforms other existing methods in terms of accuracy, efficiency,
and robustness.

Keywords: cyber-physical systems; QoS prediction; collaborative filtering; data sparsity; user
reputation; geographical neighbors

1. Introduction

Technical advances in ubiquitous sensing, embedded computing, and wireless communication
have led to a new generation of engineered systems called cyber-physical systems (CPS) [1]. CPS has
changed the way that we interact with the physical world. It provides a smart infrastructure to connect
abstract computational artifacts with the physical world, and breaks the boundary between the cyber
world and the physical world [2]. CPS integrates multiple techniques, including distributed computing,
communication, and automatic control, to support a variety of intelligent services and applications in
many fields, such as transportation, healthcare, entertainment, and city infrastructure [3–5]. In CPS,
wireless sensors or the Internet of Things collect information from web networks and various mobile
devices, thus generating a large amount of data [6]. CPS provide a variety of services for our life
by collecting a large amount of data. However, due to a large increase in CPS services, it is difficult
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for users to select high-quality CPS services, so it becomes an urgent task to effectively recommend
suitable candidate services for different users.

There are two kinds of attributes for CPS services, namely, functional and non-functional
attributes. With the increase of CPS services, there are more and more competitive services with
similar functionality, and non-functional attributes become a key factor in service selection, since they
can differentiate the performance of candidate CPS services with the same or similar functionality.
Quality of service (QoS) becomes a hot spot in current service computing and distributed computing
research [7]. In the real world, the values of some user-dependent QoS properties (for example,
response time, throughput, and so forth) may vary largely because of different users, physical
positions, network conditions (4G, 5G, Wi-Fi, and so forth), and other objective factors [8]. It is
impractical for a single user to simply attempt all candidate CPS services to obtain sufficient QoS
data for evaluation, therefore, it is important to predict user-dependent QoS values for effective CPS
services recommendation.

There is no doubt that collaborative filtering (CF) has recently been widely used in QoS prediction
methods, especially neighborhood CF [9–23]. The neighborhood CF-based approach typically consists
of two steps: (1) Finding similar users (or services) and mining their similarity; and (2) calculating
unknown QoS values based on existing historical data of similar users (or services). However, there
are two main problems in existing approaches: (1) The data are usually very sparse when calculating
the similarity of users (or services). When the QoS matrix is extremely sparse, the QoS values observed
by users may be very few or even null. In this case, it is difficult to calculate user (or service) similarity
accurately, and data sparseness will reduce the accuracy of predicting QoS values. (2) It is usually
assumed that all users are honest and they will provide reliable QoS data. However, in reality, some
users may submit random or unchanging values, or some users (for example, service providers) may
provide good QoS values for their own services and provide poor values to their competitors [13].
Most existing approaches fail to identify and pre-process the unreliable QoS data before QoS prediction.
Therefore, an effective QoS prediction approach, which can not only deal with data contributed by
untrusted users, but also mitigate the impact of data sparseness and the cold start problem [24],
and finally achieve high prediction accuracy, is required for a robust CPS service recommender system.

In order to solve the two problems, in this paper, we propose a personalized QoS prediction
approach named GURAP (Geographic location and User Reputation Aware Prediction) based on
reputation and location-aware collaborative filtering for CPS services. Firstly, in order to deal with
unreliable data contributed by untrusted users, we propose to calculate the reputation of users based
on the collected QoS data and the Dirichlet probability distribution, then we can identify the untrusted
users based on a reputation threshold and fix the QoS contributions from the untrusted users. Secondly,
in order to mitigate the impact of data sparseness and the cold start problem, we propose to find out
the user and service neighbors from the perspective of geographical location on three levels, and then
improve the similarity calculation of users and services. Thirdly, in order to achieve high prediction
accuracy, we propose an improved CF method to predict missing QoS values based on the QoS records
of similar users and similar services. The extensive experiments conducted in Section 5 demonstrate
the validity and robustness of our approach.

The rest of this paper is organized as follows. In Section 2, we review the related work on CPS
services QoS prediction. In Section 3, we introduce our proposed QoS prediction framework for CPS
services. The details of our QoS prediction approach are presented in Section 4. Then the proposed
approach is evaluated with an extensive experiment on a public dataset WSDream in Section 5. Finally,
conclusions and future work are given in Section 6.

2. Related Work

Service oriented computing (SOA) has been widely studied in service composition [25,26],
service selection [27,28], service recommendation [29], and service discovery [30]. These studies
have been proved valuable in many areas, such as distributed computing, cloud computing, Internet
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of Things, and networked physical systems. As the number of CPS services continues to increase, it
becomes more and more difficult for users to efficiently find suitable services from a large number of
services. Therefore, most recommender systems use QoS-based methods to recommend high-quality
services to users. However, as services typically run on dynamic networks, the values of some
QoS attributes (for example, response time, throughput, and so forth) are affected by the context of
different users, such as geographical location and network conditions. Therefore, an accurate and
personalized QoS prediction method is crucial for the successful implementation of a QoS-based
service recommender system.

At present, QoS prediction approaches for services can mainly be classified into three types:
Time series [31], context-based [32], and CF-based methods. Furthermore, the CF-based approaches
can be mainly divided into two kinds: Neighborhood-based (memory) CF and model-based CF.
The neighborhood-based CF approaches predict the missing QoS values by utilizing the observed QoS
values of similar users or similar services. Shao et al. [11] first used collaborative filtering to realize
QoS prediction, and they proposed a user-based CF method to predict QoS values. Zheng et al. [33]
proposed a hybrid CF approach (UIPCC) of predicting the QoS values of services, and conducted
a large-scale distributed QoS assessment of real-world services. Chen et al. [34,35] proposed
a sort-oriented approach that combines project-based collaborative filtering with potential factor
models to address service ranking. Hu et al. [31] proposed a QoS prediction approach considering both
the temporal dynamics of QoS attributes and the personalized factors of service users. The approach
seamlessly combines the CF method with the improved time series method and uses the Kalman filter
to compensate for the shortcomings of the ARIMA model. These neighborhood-based CF approaches
indicate that sufficient QoS entries are required for QoS prediction with normal performance.

The model-based CF predicts the missing entries primarily by using the observed data to train
a predefined factor model. Matrix factorization (MF) is a typical model-based approach in collaborative
filtering that has been extended in many applications. Luo et al. [21] established a collaborative
filtering model based on matrix factorization for QoS prediction under non-negative condition
constraints. They dealt with non-negative-bound QoS matrices through non-negative latent factor
models and introduced Tikhonov regularization to obtain regularized non-negative latent factor
models. Zhang et al. [22] proposed a service QoS prediction framework called WSPred, which mainly
adopted the tensor factorization technique to fit the factor model of user–service-temporal tensor,
and used factorization to combine user-specific, service-specific, and temporal feature matrices to
predict missing values. Xie et al. [23] considered hidden correlation (asymmetric correlation) between
users and services, and proposed an asymmetric correlation regularized matrix decomposition (MD)
framework for service recommendation.

Most of the traditional approaches directly use the historical QoS values provided by users to
predict the unknown QoS values, without considering whether the QoS values are reliable or not.
Therefore, in order to improve the accuracy of QoS prediction, some researchers propose to improve
the traditional approaches based on user reputation. Qiu et al. [14] proposed a reputation-aware
prediction approach, which calculated users’ reputation based on the QoS value contributed by the
user, and then filtered the users with low reputation and used the purified QoS data to predict the
missing value. However, the exclusion of the QoS data contributed by low reputation users causes
the data matrix to intensify in sparseness. Therefore, Xu et al. [15] proposed a CF method based
on reputation matrix decomposition, which directly integrates user reputation into the factor model
learning process. However, the reputation calculation depends on many parameters, and improper
parameter settings may result in poor performance. In order to overcome the limitation, Wu et al. [16]
proposed a credibility-aware QoS prediction (CAP) method, which employs two-stage K-means
clustering to identify untrustworthy users. However, this approach only uses credible similar users to
predict the values, without considering the valuable information of the services. Thus, Su et al. [17]
proposed a trust-aware prediction (TAP) method for the reliable personalized QoS prediction. They use
the K-means clustering algorithm and Beta-based probability distribution method to calculate users’
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reputation degrees first, and the degrees are used as weights of the original QoS matrix, and finally
the missing QoS values are predicted based on the weighted QoS matrix. The above two approaches
mainly solve the problem of untrustworthy users on the accuracy of QoS prediction, but they do not
solve the data sparseness and cold-start problems.

In order to alleviate the problem of highly sparse data in the real world, many researchers have
proposed methods to counteract this. In reference [36], Chen et al. proposed a hybrid QoS prediction
approach, which uses a hierarchical clustering to integrate services with the same physical environment,
rather than a separate service, to excavate the user’s similarity. Recently, some researchers have
begun to realize the importance of geographic location information on QoS prediction. For example,
Tang et al. [9] represented the location of users and services as three-layers (IPu, ASNu, CountryIDu)
and used Pearson correlation coefficient (PCC) to find similar users or similar services at different
geographic regions. This approach not only reduces the search space, but also alleviates the problem
of sparse matrix to a certain extent. In reference [18], Chen et al. validated that the QoS value of the
service that was invoked by the user was significantly influenced by the geographic neighborhood
of the service, based on the empirical data of the real world QoS data set. They use hierarchical
neighborhood clustering to classify the services into three-tiered geographical regions based on
the implicit geographic information of the service. However, there is no guarantee in the national
geographic region that there will be enough geographic neighbors, and it also did not consider the
impact of users’ geographic information on the projections. These approaches alleviate the problem
of sparseness and cold start of the matrix to a certain extent, and also improve the accuracy of QoS
prediction. However, these approaches are based on the assumption that the user is trusted and the
QoS value provided is reliable. In the real world, the user is not necessarily credible, and the QoS
value provided by the untrustworthy user will reduce the QoS prediction accuracy.

Through previous research work, we can find that most of the approaches do not consider both
of the problems on reliable QoS preprocessing and data sparseness in QoS prediction. Hence, we
firstly propose the GURAP approach to solve the two challenges simultaneously. Our approach can be
divided into three steps. In the first step, we identify the untrusted users and amend the QoS values
contributed by them with the average value of the reliable QoS interval for each CPS service. In the
second step, we classify users/services according to geographic locations in three levels, then calculate
the relevance degrees between every two levels of geographic neighbors to improve the calculation
of Pearson correlation, and then select the top-K similar geographical neighbors according to the
similarity of users/services. In the third step, an improved collaborative filtering method is proposed
to calculate the missing QoS values based on the reliable QoS records from the selected top-K similar
users/services.

The principal contributions of this paper can be summarized as follows:

• We propose an improved method for calculating users’ reputation, based on the approach in
reference [17]. Different to the probability model and the treatment of data from the identified
unreliable users, our method uses statistical interval partitioning, Gaussian normal distribution,
and Dirichlet probability distribution to calculate users’ reputation. Next, the untrusted users are
identified and their unreliable QoS data are fixed by the mean value of reliable users. This ensures
the credibility of user data and avoids exacerbating the sparseness of QoS data due to the direct
deletion of unreliable data.

• In order to identify similar users/services and alleviate data sparseness, we propose a geographic
proximity recognition algorithm based on the locations of users/services. The algorithm fully
exploits the geographic relevance of users/services and improves the Pearson correlation formula
to identify the neighbors of users/services in geographic location.

• We propose a QoS prediction approach (GURAP) based on reputation and geographic
location-aware collaborative filtering. The approach can predict unknown QoS values, based on
reliable QoS data from users and services with geographic proximity. We simultaneously consider
the impact of data reliability and data sparseness on the prediction accuracy for the first time.
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We conduct extensive experiments with real world data sets to study the prediction accuracy and
robustness of our approach by comparing with classical approaches.

3. QoS Prediction Framework for CSP Services

Recently, researchers proposed frameworks such as WSRec [33], EMF [37], and HMF [20] to
collect QoS data contributed by users and use them to predict unknown QoS values. However, these
prediction frameworks ignore the reliability of the collected data. In fact, QoS values may be unreliable
since they can be provided by untrusted users. Therefore, some researchers proposed prediction
frameworks such as RAP [14] and TAP [16] to calculate users’ reputation to identify untrusted users, so
as to ensure that the used data are reliable. However, these frameworks ignore the effect of data sparsity
on the prediction as the QoS prediction accuracy would be reduced when the data are extremely sparse.
To meet the major challenges, we propose a highly reliable QoS prediction framework, based on
reputation and location-aware collaborative filtering, as shown in Figure 1.

In Figure 1, in the QoS prediction framework for CPS services, the data collection layer submits
the QoS data of all users invoking CPS services, and the geographic location information of users and
services, to the data processing layer. Then the data processing layer predicts the unknown QoS values
for trusted users, based on the collected data. Finally, the QoS prediction framework transmits the
predicted QoS information to the CPS service recommendation system to recommend the appropriate
services for the user. Specific steps are as follows.

1. First, in the data collection layer, the QoS records of users’ invocation of CPS services, as well
as the geographic location information of users and CPS services, are collected and transmitted
to the collection node through the internet. The collection node then transfers the collected
information to the data management module in the data processing layer.

2. The data management module is in charge of information extraction, transformation, and load
from multiple sources, and the collected data are classified to three kinds, namely the QoS data,
users’ locations, and services’ locations.

3. In the user reputation recognition module, the calculation unit performs pre-processing on the
QoS data matrix, identifies the untrusted users, and processes the unreliable QoS data to form
a new QoS matrix.

4. In the user-service-similar-neighbor identification module of the data processing layer, the module
computing unit firstly mines the correlation between the geographical locations of the users
or services through calculation, and then identifies the similar geographical neighbors of
users/services, according to the new QoS matrix.

5. In the unknown QoS prediction module of the data processing layer, the module predicts the
unknown QoS values of the trusted user based on the reliable QoS records from the selected
top-K similar users/services.

6. In the last step, the predicted unknown QoS value is transmitted to the CPS service
recommendation system to select a high-quality CPS service for the user. Afterward, the process
starts from step 1 again, thus forming a CPS service prediction recommendation system for
computing, communication, and control.
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Figure 1. The quality of service (QoS) prediction framework for cyber-physical system (CPS) services.

4. QoS Prediction Approach Based on Reputation and Location-Aware Collaborative Filtering

4.1. The Process of GURAP

In this section, we will introduce the personalized QoS prediction approach, GURAP, based
on geographic location and reputation-aware collaborative filtering for CPS services. As shown in
Figure 2, the main process of GURAP consists of three parts: The user reputation-based calculation
part (CURA), the geographic-based user (service) similarity neighbor recognition part (GUIPCC), and
the unknown QoS value prediction part, based on users and services. The details of each process are
described in Sections 4.2–4.4 respectively.
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4.2. User Reputation-Based Calculation

QoS is a collection of properties that describe the non-functional nature of CPS services, where
each property represents one aspect regarding CPS services [38]. According to the characteristics of
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QoS attributes, we can classify the QoS attributes into two categories: One is collected and analyzed
on the service side, and the values are the same for different users (for example, cost, availability,
popularity, and so forth); the other kind is the attributes depending on users, and the values vary
among different users due to their different locations, network environment, and so on (for example,
response time, throughput, and so forth) [39]. Please note that we only deal with the prediction of
user-dependent QoS metrics in this paper. Since the factors associated with each user are not the same,
different users have different QoS values for the invocation of a same CPS service. However, under
normal circumstances, the QoS values observed by most users for each service should fall within the
normal range, and an observation highly deviating from the normal value is unlikely to happen [17].
Therefore, if a user always submits QoS feedback highly deviating from the majority, this user may be
untrustworthy. Based on this principle, we can evaluate the probability whether the user is trustworthy
based on the information of user’s feedback on previous invocation records. The following is the
detailed introduction of CURA.

We first assume that there is a set of m users U = {u1, u2, ..., um} in the system, a set of n services
S = {s1, s2, ..., sn}, and the user service matrix is an m × n matrix R. Each entry in the matrix ri,j (i ≤ m,
j ≤ n) represents the value of a certain user-side QoS attribute (for example, response time) of the CPS
service sj observed by the user ui. If user ui has not invoked the CPS service sj before, ri,j is equal to
0. The QoS matrix is as shown in Table 1. In practice, it is not possible for a user to invoke all of the
services to obtain QoS values, so in the real world many QoS values are unknown.

Table 1. A toy example of the user-service quality of service (QoS) matrix.

S1 S2 S3 S4 S5

u1 0.334 0 0.432 0 0
u2 0 0.938 0 0 1.321
u3 0.206 0.304 0 0 0
u4 0 0 0 0.468 0.541

4.2.1. Calculating User’s Feedback Vector

In order to get a feedback vector of each user, we divide the task into three steps: Normalizing the
QoS data, determining the reliable user cluster, and calculating the user feedback vector.

(1) Normalizing QoS data

Because the range of QoS values for all users invoking each service is different, in order to divide
the statistical interval more conveniently, the QoS value ri,j of each service needs to be normalized.
We normalize the QoS data using a linear function normalization method shown in Equation (1):

nri,j =
ri,j − rmin

j

rmax
j − rmin

j
(1)

where nri,j denotes the normalized value of ri,j, rmin
j is the smallest QoS value of service j, and rmax

j is
the largest QoS value of service j. When the service QoS value invoked by the user is 0 (missing value),
the value is 0 after normalization.

(2) Determining reliable user cluster

In order to determine reliable user clusters, we separate the QoS values of all users, for each
service, in the normalized QoS matrix to UK statistical intervals, according to the statistical interval
division method and the normalized QoS value. For example, the QoS data in [0, 1] intervals can be
evenly divided into 11 intervals of (0, 0.1], (0.1, 0.2], ..., (0.9, 1], and [0, 0]. For all users, the users who
invoke services are similar [16,36]: Trustworthy users always take the major part of all users, and their
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QoS values are in the normal range, so the intervals that contain the most users can be considered
reliable. The user cluster in the reliable interval on service j is defined as:

Umax
j = {u|u ∈ Ct

j , t = argmax
k
|Ck

j |, 0 ≤ k ≤ (UK− 1)} (2)

where Umax
j denotes the set of users in a reliable interval on service j, |Ck

j | denotes the number of
users in the kth interval, and t denotes the index of the interval with the largest number of users.
When determining the reliable interval, the number of users in the [0, 0] interval is not counted.

(3) User’s feedback vector

When the QoS value of the service invoked by the user is 0, the user has no feedback on the
service. Since a reliable user set Umax

j reflects the result of most users after invoking the service, QoS
values submitted by the user in a reliable interval would be closer to the normal value of service j.
As mentioned earlier, unreliable data is highly deviant from the normal value, so we can classify user
feedback into two types of service by assessing the user’s QoS values and deviation of normal values
of reliable user clusters: Trusted feedback and untrusted feedback. Trusted feedback means that the
QoS value of the service invoked by the user is within a normal range (trust interval), otherwise it is
not trusted feedback.

The QoS value submitted by the user in the reliable interval would be closer to the normal value
of service j. Thence, in order to obtain the trusted interval, similar to reference [40], we assume that
the QoS values obtained from different users’ observations of the CPS service follow the Gaussian
distribution N (µ, σ2), where µ and σ represent the average of reliable user sets in each service and
standard deviation, respectively. According to the 3σ rule [10] in the Gaussian normal distribution,
there is a probability of 99.73% for users to observe QoS values in the range of [µ − 3σ, µ + 3σ],
which can be set as the reliable interval of each service. Then user i invoking one of the services j in the
trusted interval can be expressed as:

nri,j = {nri,j|µt
j − 3σt

j < nri,j ≤ µt
j + 3σt

j , nri,j 6= 0} (3)

where µt
j and σt

j denote the average and standard deviation of users in the reliable interval t of service
j, respectively, and nri,j denotes the normalized QoS value after user i invokes service j.

According to the above steps, we calculate the credible interval of each service, then the user
feedback information can be divided into trusted feedback, untrusted feedback, and no feedback,
according to the QoS value of the CPS service invoked by the user. Finally, we count each user’s
feedback information, and express the user’s feedback information as a feedback vector:

→
Fbi = [poi, noi, nei] (4)

where
→

Fbi denotes the feedback vector of user i, poi denotes the number of trusted feedback of
user i, noi denotes the number of times without feedback, and nei denotes the number of times of
untrusted feedback.

4.2.2. Calculating Users’ Reputations

User reputation reflects a measure of trustworthiness of the public about a user’s behavior
feedback in the past. Reputation mechanisms can provide an incentive for honest feedback behavior
and help users decide who is credible. In our GURAP approach, we calculate the user’s reputation
(the QoS value that the user invokes the service in the future is the probability of the trusted
feedback) by using the Dirichlet probability distribution, based on feedback from the user invoking
the CPS service.
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According to the user’s feedback, the probability of the trusted feedback of the user invoking
the service in the future can be set as p1, the probability of no feedback can be set as p2, and the
probability of untrusted feedback can be set as p3. The probability that the user will invokes the
service’s QoS feedback in the future is a vector

→
p = (p1, p2, p3). Therefore, according to the Dirichlet

probability distribution, the corresponding parameters are α1, α2, and α3, and the parameter vector
can be represented as

→
α = (α1, α2, α3). Therefore, the probability of the user’s future feedback can be

expressed by the Dirichlet probability function Dir(
→
p |→α ) as follows:

Dir(
→
p |→α ) = τ(α1 + α2 + ... + αK)

τ(α1)...τ(αK)

K

∏
k

pαk−1
k , K = 3 (5)

where p1 + p2 + p3 = 1, α1, α2, α3 > 0, and τ is a gamma function subjecting to τ(t) =
∫ ∞

0 xt−1e−xdx.
When the Dirichlet probability distribution parameter is an integer, τ(n) = (n− 1)!. The probability
expected value of the Dirichlet distribution can be given by the following:

E(
→
p ) = (

α1

∑K
i=1 αi

,
α2

∑K
i=1 αi

, ...,
αK

∑K
i=1 αi

), K = 3 (6)

The user’s feedback before the user invokes CPS service is unknown, but the sum of probabilities
for all cases equals one. Therefore, the prior probability of the user’s various feedback conditions
should obey uniform distribution Uniform (0,1). Therefore, a variety of feedback of users invoking

CPS services conforms to the Dirichlet distribution Dir(
→
p |
→
1 ). As described above, after the user

invokes the service, the number of positive feedback after the user i invokes the CPS service is poi,
the number of no feedback is noi, the number of negative feedback is nei, and the count vector can
be set to

→
m = (poi, noi, nei). The posterior distribution of the feedback probability

→
p of user i can be

expressed as follows, because the counting vectors conform to a multinomial distribution:

Dir(
→
p |
→
1 +

→
m) =

τ(poi + noi + nei + 3)
τ(poi + 1)τ(noi + 1)τ(nei + 1)

·(ppoi
i,1 pnoi

i,2 pnei
i,3 ) (7)

According to the Dirichlet probability distribution property, when the feedback probability
→
p of

the service invoked by the user is the probability expectation of Dirichlet distribution, the Dirichlet
probability distribution has the highest relative frequency. That is to say, the value of probability

→
p of

the user is most likely to be the probability expectation of the Dirichlet distribution. Therefore, once
the user’s various feedback is known, the probability of trusted feedback, non-feedback, and untrusted
feedback of the future invocation service of the user i can be expressed as follows:

pi,1 = E(Dir(
→
p |
→
1 +

→
mi)) =

poi+1
poi+noi+nei+3

pi,2 = E(Dir(
→
p |
→
1 +

→
mi)) =

noi+1
poi+noi+nei+3

pi,3 = E(Dir(
→
p |
→
1 +

→
mi)) =

nei+1
poi+noi+nei+3

(8)

where pi,1, pi,2, and pi,3 denote the probabilities of trusted feedback, no feedback, and untrusted
feedback of the user i invoking services in the future, respectively. This is because we can only evaluate
whether the user is credible when the user invokes the service and has feedback, namely the user’s
reputation. That is to say, the user’s reputation is the probability of trusted feedback when the user has
feedback. Therefore, the user’s reputation can be expressed as:

Rei =
pi,1

pi,1 + pi,3
, (pi,1 + pi,3) 6= 0 (9)

where Rei denotes the reputation of user i and its value is between [0, 1], because the probability
of user’s trusted feedback is between [0, 1]. For example, after the user i invokes the CPS service,
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the number of trusted feedback is 7, the number of non-feedback is 22, and untrusted feedback number
is 1. Therefore, the probability of trusted feedback of the user invoking the service in the future
is pi,1 = 7+1

7+22+1+3 ≈ 0.24242, the probability of no feedback is pi,2 = 22+1
7+22+1+3 ≈ 0.69697, and the

probability of untrusted feedback is pi,3 = 1+1
7+22+1+3 ≈ 0.06061. Finally, the reputation value of user i is

Rei = pi,1
pi,1+pi,3

= 0.24242
0.06061+0.24242 ≈ 0.79999.

4.2.3. Identifying Untrustworthy Users and Fixing Unreliable QoS Values

(1) Identifying untrusted users

Based on the Dirichlet probability distribution and the QoS value of the user invoking services,
we can calculate the reputation value of all users, then we can identify the untrusted users by the
user’s reputation value. In our approach, the approach of user reputation-aware CURA is to identify
untrustworthy users by using the thresholds δ. When the user’s reputation value is less than threshold
δ, the user is identified as untrustworthy. Identifying untrusted users is given by the following formula:

U = {u|Reu < δ} (10)

where U is the set of untrusted users and δ denotes the threshold that can be used to identify untrusted
users. Our approach is to calculate the appropriate threshold δ in the experiment, which can be directly
used to identify untrusted users. However, in the real world, the threshold δ is still very difficult
to set, because when the threshold δ is set to be low, untrusted users may be identified as credible,
and this could lead to a lower prediction accuracy. When the threshold δ is set to be very high, it may
also identify trusted users as untrustworthy, and affect the predictive performance of our approach.
A comprehensive experimental study of thresholds will be conducted in Section 5.

(2) Fixing unreliable QoS values

In the real world, the collected QoS data is very sparse. If QoS values provided by untrusted users
are directly filtered, the QoS matrix will be sparser. Hence, our approach is to identify the untrusted
users by user reputation and then fix the untrusted data provided by untrusted users. The formula for
unreliable data correction can be expressed as follows:

r′u,j =

{
Rumax

j , ru,j > 0
0 , ru,j = 0

and u ∈ U (11)

where r′u,j denotes the modified QoS value of untrusted user u on service j, ru,j denotes the original

QoS value of the untrusted user u in service j, and Rumax
j denotes the mean of the QoS values (this is

not the normalized QoS value of the matrix R) of the user set Umax
j in the reliable interval of service j.

Modifying the unreliable QoS data contributed by untrusted users can get a new m× n QoS matrix R′,
where r′i,j is the QoS value of user i invoking service j.

4.3. Geographic-Based User (Service) Similarity Neighbor Recognition

Experiments based on reference [18] show that the rating of services has different positive
correlation degrees with the average rating of its neighbors, for different geographic regions levels,
and the vast majority of services have neighbors under the geographic region-level relationship. It is
shown in reference [9] that users in the same geographical area tend to have similar performance, so it
is highly valuable to take the information of user location into account for QoS prediction. Therefore,
this paper digs up potential geographical position information of user services to better identify similar
geographical neighbors of user services and alleviate the data matrix sparseness. Our approach,
GUIPCC, identifies the user services similarity geographical neighbor according to the following
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three steps: The geographic neighborhood stratification, computation of geographic neighborhood
correlation-degree, and the identification of similar geographical neighbors of user services.

4.3.1. The Geographic Neighborhood Stratification

In this paper, we consider the geographical information of each user from three aspects:
The latitude and longitude, country and autonomous network (AS), and the geographical information
of each service from the latitude and longitude, AS, and provider. We think geographical coordinates
are not enough for two reasons: First, the literature [41] indicates that simply because users
have close coordinates does not mean that they are definitely in the same AS network, while the
network environments are similar within an AS network, and different among multiple AS networks.
Therefore, it is valuable to divide users/services according to their AS networks, so as to capture
the users/services’ similarity within an AS network. Similarly, we also capture the similarity within
a country. Second, when we only consider geographical coordinates, the prediction performance of
clustering users according to coordinates is not satisfying, since there are only a few users in each
group, so we employ the country level and AS level of similar users to solve the inaccuracy caused by
data sparseness.

For the stratification of geographical neighborhood of services, we employ a two-point K-means
clustering algorithm to cluster the latitude and longitude of the service to obtain KS service clusters.
For service Sj, we divide the services into KS service clusters by minimizing the following formula:

SJ =
K

∑
k=1

∑
→
L j∈Ck

‖
→
L j −

→
µ k‖

2
, and 1 ≤ K ≤ KS (12)

where Ck denotes the kth service cluster in the service,
→
L j denotes the latitude and longitude vector

→
L j = (Loj, Laj) of the service Sj,

→
µ k denotes the center point of the kth service cluster, and SJ denotes

the sum of squared errors of the kth iteration of the two-point K-means algorithm. The two-point
K-means clustering algorithm makes the SJ minimum at each iteration, and it does not stop until the
number of service clusters reaches the expected KS service cluster. Therefore, the two-point K-means
does not only exist on a random centroid selection, but also minimizes the sum of square error of
each step.

Because the users’ number in the dataset is too small, we set all users as one user cluster.
By clustering, we get user clusters and service clusters, respectively. We classify the users in the
users cluster into different country geographic neighborhood levels, according to the user’s country
attribute, and then classify the users in the country geographic neighborhood through the user’s AS
attributes into different AS geographic neighborhood levels. Similarly to users, we classify the services
in a service cluster into multiple AS geographic neighborhoods and classify the services in the AS
geographic neighborhood into multiple provider geographic neighborhoods. In this way, we divide
the users and services into three-tier geographic neighborhoods levels, respectively. For example,
the relationship between the three-tier geographic neighborhoods level is shown in Figure 3.

We define Provider-Level, SAS-Level, and SCluster-Level as the CPS service groups that are
geographically close to the target CPS service at the corresponding zone level, and then define
UAS-Level, Country-Level, and UserSet-Level as geographic user groups near the target user. The user’s
UserSet-Level represents a collection of all users. Service providers Provider-Level, service autonomous
network SAS-Level, user autonomous network UAS-Level, and user country Country-Level denote
that services or users with the same geographic characteristics are clustered in the same area
level. For example, services with the same CPS service provider are grouped together in the same
Provider-Level area.

We set the geographical neighbor cluster of the UAS-Level area where the target user a is located
as ANu

a , the geographical neighbor cluster in the Country-Level area where the target user a is located
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but not in UAS-Level area as CoNu
a , the geographical neighbor user cluster of the target user a in the

Country-Level area as ACoNu
a , and the geographical neighbor user cluster that is not in the Country-Level

area where the target user a is located as ClNu
a .

We set the geographical neighbor service cluster of the Provider-Level region where the target
service t is located as PNs

t , the geographical neighbor service cluster in the SAS-Level region where
the target service t is located but not in the Provider-Level region as ANs

t , the geographical neighbor
service cluster of the target service t in the SAS-Level region as APNs

t , and the geographical neighbor
service cluster in the SCluster-Level area where the target service t is located but not in the SAS-Level
area as CNs

t .
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where ),( uasim  denotes the similarity between user a  and u , S  denotes the CPS service set 
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4.3.2. Calculating Geographic Neighborhood Correlation Degree

To dig up the relationships among users/services in locations so as to identify their geographical
neighbors, the geographic neighborhood correlation-degree of users/services needs to be computed.
For three-tiered geographic neighbors of users/services, we only need to compute the correlation
among users/services in a user/service cluster. We first give the PCC similarity calculation formula
for users/services:

sim(a, u) =


∑

j∈S
(r′a,j−r′a)(r′u,j−r′u)√

∑
j∈S

(r′a,j−r′a)2
√

∑
j∈S

(r′u,j−r′u)
2
, |S| > 1

0, 0 ≤ |S| ≤ 1

(13)

sim(t, s) =


∑

i∈U
(r′i,t−r′t)(r

′
i,s−r′s)√

∑
i∈U

(r′i,t−r′t)
2
√

∑
i∈U

(r′i,s−r′s)
2 , |U| > 1

0, 0 ≤ |U| ≤ 1

(14)

where sim(a, u) denotes the similarity between user a and u, S denotes the CPS service set previously
invoked by user a and u, |S| denotes the number of services invoked by user a, and u, r′a, and r′u denote
the average QoS value of user a and u invoking the CPS service in QoS matrix R′, respectively. sim(t, s)
denotes the similarity between services t and s. U denotes the set of users that have previously invoked
CPS services t and s, |U| denotes the number of users invoking CPS services t and s, r′i,t denotes the
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QoS value of user i invoking service t in the user service QoS matrix R′, and r′t and r′s represent the
average QoS value of the user accessing the services t and s, respectively.

According to Formulas (13) and (14), we first calculate the similarity between users in the user
cluster, and services in the service cluster. Then we calculate the average similarity AUa between user
a and users in ANu

a , average similarity CoUa between user a and users in CoNu
a , average similarity

ClUa between user a and users in ClNu
a , and average similarity ACoUa between user a and users in

ACoNu
a . Then we calculate the average similarity PSt between service t and services in PNs

t , average
similarity ASt between service t and services in ANs

t , average similarity APSt between service t and
services in APNs

t , and average similarity CSt between service t and services in CNs
t .

The positive correlation is different due to the service at different geographical neighborhood
levels, and in order to better assess similar users and service geographical neighbors, we evaluate the
correlation between the three-tier geographical neighborhood levels of users or services. We set the
geographic correlation-degree γco

a , γcl
a of the two users, and set the geographic correlation-degree ϕa

t ,
ϕc

t of the two services. The correlation-degree formula can be expressed as:

γco
a =

{
CoUa
AUa

, CoUa > 0∧ AUa > 0∧ AUa > CoUa

1, otherwise
(15)

γcl
a =


ClUa

ACoUa
, ClUa > 0∧ ACoUa > 0∧ ACoUa > ClUa

ClUa
AUa

, ClUa > 0∧ AUa > 0∧ AUa > ClUa

1, otherwise

(16)

ϕa
t =

{
ASt
PSt

, ASt < PSt ∧ PSt > 0∧ ASt > 0

1, otherwise
(17)

ϕc
t =


CSt

APSt
, APSt > 0∧ CSt > 0∧ APSt > CSt

CSt
PSt

, PSt > 0∧ CSt > 0∧ PSt > CSt

1, otherwise

(18)

where γco
a denotes the correlation-degree between the user cluster CoNu

a and the user cluster ANu
a ,

and γcl
a denotes the correlation-degree between the service cluster ClUa and the service cluster ACoNu

a .
ϕa

t denotes the correlation-degree between the service cluster ANs
t and the service cluster PNs

t , and ϕc
t

denotes the correlation-degree between the service cluster CNs
t and the service cluster APNs

t .

4.3.3. The Identification of Similar Geographical Neighbors of Users and Services

In the real world, when the user service QoS matrix is sufficiently sparse, the target user and
the user in the UserSet-Level geographical area may not have a service to be observed jointly, which
results in the target user having little or no similar geographical neighbors, thereby reducing the
QoS prediction accuracy. In order to ensure that the user has enough similar geographical neighbors,
the similarity that the user doesn’t commonly invoke a service with target users is replaced with
the average similarity of the target user’s geographical neighborhood level. The modified similarity
formula is as follows:

simu(a, u) =


AUa, u ∈ ANu

a ∧ sim(a, u) = 0
CoUa, u ∈ CoNu

a ∧ sim(a, u) = 0
ClUa, u ∈ ClNu

a ∧ sim(a, u) = 0
(19)

Experiments in [18] show that the services have different neighbor qualities at different regional
levels, and there is a stronger positive correlation between the services in Provider-Level geographic
regions than those in SAS-Level and SCluster-Level regions. The same positive correlation between
users in different user neighborhood levels is also different. Therefore, in order to make the similar
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neighbors of more users and services in a stronger positive correlation geographical neighborhood
level, we improve the user and service similarity by the correlation-degree between geographical
neighborhood levels. The improved service similarity formula can be expressed as:

sim′u(a, u) =


simu(a, u), u ∈ ANu

a
simu(a, u)× γco

a , u ∈ CoNu
a

simu(a, u)× γcl
a , u ∈ ClNu

a

(20)

sim′s(t, s) =


sim(t, s), s ∈ PNs

t
sim(t, s)× ϕa

t , s ∈ ANs
t

sim(t, s)× ϕc
t , s ∈ CNs

t

(21)

According to the above steps, we calculate the final similarity between the target user and all users in
UserSet-Level, and the similarity between the target service and all the services of SCluster-Level where
the target service resides. Next, we use the traditional Top-k algorithm to identify the top KNU similar
geographic neighbors of the target user and the top KNS similar geographic neighbors of the target
service, respectively. Then similar neighbors, whose similarities are equal to or less than 0, are filtered
out. Finally, we use N(u) to represent the set of similar geographical neighbors of the target user, while
N(s) represents the set of similar geo-neighbors for the target service.

4.4. Unknown QoS Value Prediction Based on Reliable Data

We identified untrusted users in Section 4.2 and obtained similar geographic neighbors for services
and users in Section 4.3. Hence, we can calculate the unknown QoS value of the trusted users, based
on the similar geographic neighbors of the trusted user and the new QoS matrix. The formula for the
unknown QoS prediction is as follows:

r̂u,s = r′u +

∑
u′∈N(u)

sim′u(u, u′)(r′u′ ,s − r′u′)

∑
u′∈N(u)

sim′u(u, u′)
(22)

where u denotes the user identified as trusted, r̂u,s represents the predicted value of user u on service s,
r′u represents the average QoS value observed by user u for all services in the R′ matrix, N(u) denotes
the user set of similar geographical neighbors of user u, and sim′u(u, u′) represents the similarity
between user u and similar user u′.

Since the user service QoS matrix is very sparse in the real world, it is likely that the QoS value
r′u′ ,s that the similar neighbor u′ of user u observes the service s to be equal to 0. If the QoS value that
the majority similar neighbor u′ of user u invokes service s equals to 0, the accuracy of QoS value
prediction will be reduced. Therefore, in order to mitigate the effect of the sparseness of the QoS
matrix, an approximation of the service s to be invoked by the user u′ can be substituted when r′u′ ,s
equals to 0. r′u′ ,s is calculated as follows:

r′u′ ,s =


r′s +

∑
s′∈N(s)

sim′s(s,s′)(r′u′ ,s′−r′
s′ )

∑
s′∈N(s)

sim′s(s,s′) , r′u′ ,s = 0

r′u′ ,s r′u′ ,s 6= 0

(23)

where r′s and r′s′ denote the average QoS values of services s and s′ observed by the users in the QoS
matrix R′, respectively, r′u′s′ denotes the QoS value of the service s′ invoked by the user u′ in the QoS
matrix R′, N(s) denotes the service set of similar geography neighbors of the service s, and sim′s(s, s′)
represents the similarity of service s with its similar geographical neighbor s′. By using Formulas (22)
and (23), we can predict the unknown QoS value of trusted users on the CPS service.
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5. Experiments Results

In this section, we conduct a broad experimental evaluation of the proposed GURAP approach.
The experimental and other approaches we proposed are implemented with the jupyter notebook
editor in Python, and run on a machine with an Intel ® Core ™ i5-4590 CPU @ 3.30GHZ processor,
8GB of RAM, and Windows 7 Sp1 system. The experiment includes two parts: (1) Comparison of
GURAP with other popular approaches; and (2) verification of the influence of different parameters on
prediction accuracy.

5.1. Experimental Settings

The dataset in experiments comes from the real dataset published by Zheng et al. [42–44],
including two matrices, the response time matrix (rtMatrix), and the throughput matrix(tpMatrix),
both of which contain real QoS assessment results from 339 users of 5825 services. The dataset
collects 1,974,675 response-time and throughput records. Response times range from 0 to 20 s,
and the throughput ranges from 0 to 1000 kbps. This data set also contains the geographical
location information of the user side and service side. Geographic location information includes
geographical information and network location information. Geographic information includes the
latitude and longitude of users and services, and the country to which the user belongs. Network
location information includes the AS (Autonomous Network) and service providers that include the
service. In our experiments, we use the response time dataset and randomly set p% of the users
as untrusted users, and QoS values contributed by untrusted users will be replaced by randomly
generated values. To meet the requirement of matrix sparsity in the real world, we randomly remove
the entries in the QoS matrix to a certain density and then use the removed QoS entry as the expected
value to study the prediction performance.

5.2. Experimental Indicators

The first experimental evaluation indicator is the identification of untrusted users accuracy
(IUUA), which assesses the accuracy of our approach in identifying untrusted users and proves the
validity of our approach. It is defined as follows:

IUUA =
2× |UT

I |
|UA

I |+ |UT |
(24)

where |UT
I | indicates the number of genuine untrustworthy users after our approach identification,

|UA
I |means the number of untrusted users identified through our approach, and |UT | represents the

number of untrusted users we randomly set. The larger the IUUA value is, the better the recognition
accuracy is. When the value is equal to 1, it indicates that all the untrusted users in the QoS data are
identified, and none of the trusted users are identified as untrustworthy.

The mean absolute error (MAE) and root mean squared error (RMSE) metrics are evaluation
indicators commonly used to evaluate the prediction accuracy of QoS prediction methods in CF.
Smaller MAE and RMSE values indicate a higher accuracy, which is defined as follows:

MAE =
∑u,s |ru,s − r̂u,s|

N
(25)

RMSE =

√
∑u,s |ru,s − r̂u,s|2

N
(26)

where N is the number of missing entries that need to be predicted in the QoS matrix, ru,s is the QoS
value of the trusted user u observing the service s, and r̂u,s represents the predicted QoS value. Since
QoS value ranges for different services are different, we use a normalized mean absolute error (NMAE)
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metric to measure the prediction accuracy, where a smaller NMAE value implies higher prediction
accuracy. NMAE is defined as:

NMAE =
MAE

∑u,s ru,s/N
(27)

5.3. Comparison

In this section, to demonstrate the validity of our GURAP approach based on geographic location
and reputation-aware, we conducted extensive experiments with the most advanced QoS prediction
approaches and compared our approach to them. We select several of the following approaches to
compare with our approach.

• UPCC: In this approach, the QoS value is predicted by utilizing the similarity between two users
using the Pearson correlation coefficient (PCC), and the history invocation records of similar
users [45].

• IPCC: This approach is similar to the UPCC method, except that it predicts the unknown QoS
value by calculating the similarity between two services and using the QoS value of similar
services [46].

• UIPCC: This approach integrates the UPCC and IPCC approaches into a unified model, and
then uses the similar users and similar services to combine their predicted results with specific
parameters λ [33].

• CURA: This approach is the one we proposed in Section 4.2 of this paper that predicts unknown
QoS entries by identifying untrusted users and processing unreliable data and then combining
the processed QoS data with the UPCC method.

• GUIPCC: GUIPCC identifies similar services and similar users using the QoS data of unidentified
untrusted users by the approach proposed in Section 4.2 of this article, and then uses the prediction
approach in UIPCC to predict missing QoS values.

• TAP: In this approach, user reputation is evaluated and a set of reliable similar users are identified
by using K-means clustering and Beta distribution, and then the results predicted by similar
users and the unknown QoS values predicted by similar services, based on service clustering, are
combined with specific parameters λ [17].

• GNMF: In this approach, similar service geo-neighbors are identified by using a bottom-up
hierarchical neighborhood clustering of service geography and then integrated into matrix
decomposition to predict [18].

In our experiments, matrix density is defined as the density of the original QoS data set. Since
the matrices in the real world are usually very sparse, we investigate the effect of different matrix
densities on the prediction accuracy of our method, where the step size is 5%, changing the QoS matrix
density from 5% to 30%. The percentage of untrusted users is set to 2.95% and 5.90%, indicating
that the randomly selected 2.95% or 5.90% of the 339 users are set as untrusted users. UK is set to
15 and the statistical interval in our GURAP approach is set to 15. δ is set to 0.10, indicating that the
threshold for identifying untrusted users is 0.10. KS is set to 9, indicating that the service is clustered
into nine service clusters through latitude and longitude clustering. KNS and KNU are set to 35 and 12,
respectively, indicating that the 35 most similar services and the 12 most similar users geo-neighbors
are selected for prediction

Tables 2 and 3 show the NMAE and RMSE results for different approaches at different densities
for two percentages of untrusted users, while the bold ones indicate the result of our approach.
The experimental results show several important results.

(1) In different response time matrix densities, our approach can achieve smaller NMAE and RMSE
values than other approaches at different response time matrix densities, which shows that our
approach is more accurate than the existing approaches, in most cases. Specifically, compared
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with TAP, in the case of 2.95% untrusted users, the values of NMEAE and RMSE in our approach
GURAP increased by an average of 16.83% and 17.05%, respectively. In the case of 5.90% of
untrustworthy users, they increased by an average of 17.49% and 17.83%, respectively. Compared
with the GNMF model in the case of two kinds of untrustworthy users, in GURAP the NMAE
values reached 14.62% and 13.32%, respectively, while the RMSE values reached 26.19% and
27.59%, respectively.

(2) Compared with UPCC, IPCC, UIPCC, and GUIPCC, our approach GURAP achieves better
prediction accuracy. The reason for this result is that our approach guarantees the reliability of
the data by identifying untrusted users through the user reputation method and by using the
average QoS value of the reliable users to correct the value contributed by the untrusted user.
Other approaches do not consider whether the QoS data provided by the user is reliable. As the
GUIPCC approach considers the geographical location information, the prediction accuracy is
improved, compared to the other three approaches.

(3) Compared with the CURA and TAP approaches, our approach mines the potential geographical
information relationships of users and services so that more similar neighbors can be obtained
and geographical neighbors of users can be used to mitigate the matrix sparseness. TAP does not
consider the impact of geographical location, but also ignores that the contribution of untrusted
users will affect the prediction accuracy, therefore as the matrix density increases, the prediction
accuracy decreases. Because the CURA method processes the unreliable data, as the matrix
density increases, the prediction accuracy can continue to improve.

(4) Compared with the GNMF method, our approach achieves smaller NMAE and RMSE values
in QoS prediction, but the degree of reduction in RMSE value is very large, because the RMSE
evaluation index is more sensitive to outliers. Because our approach identifies untrustworthy
users and processes the values of unreliable data, while GNMF does not consider unreliable data
and directly uses the original QoS data to predict., our approach has better prediction accuracy
than GNMF.

(5) When the response time matrix density is 5%, the GURAP approach’s NMAE value is similar to
the TAP method, and the RMSE value in the TAP method is greater than the GURAP approach,
because in the TAP method, when the data is very sparse, the volume of untrusted data is
also very small, therefore the impact of untrusted users on QoS prediction is small. However,
the RMSE assessment index is very sensitive to outliers, and the TAP method does not processes
untrusted data, so the RMSE value is larger than in GURAP. When the matrix density is greater
than 5%, our approach is greatly improved compared to the TAP method. Compared with
GNMF, The prediction accuracy of the GURAP approach is always larger than that of GNMF,
and increases as matrix density increases. Experiments show that our approach can achieve better
prediction accuracy by considering user reputation and the potential geographic information of
service users.
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Table 2. Prediction accuracy comparison on response time normalized mean absolute error (NMAE).
The bold numbers indicate the result of the approach.

Matrices Methods
Matrix Density(MD)

5% 10% 15% 20% 25% 30%

2.95% Untrustworthy Users

UPCC 0.9229 0.8674 0.8670 0.8451 0.8215 0.7917
IPCC 0.9443 0.8875 0.8706 0.8675 0.8425 0.8014

UIPCC 0.8553 0.7887 0.7863 0.7620 0.7364 0.7206
CURA 0.7745 0.6227 0.5485 0.4882 0.4917 0.4766

GUIPCC 0.8184 0.7650 0.7469 0.7351 0.7094 0.6805
TAP 0.6304 0.5889 0.6043 0.6203 0.6168 0.6070

GNMF 0.6842 0.6471 0.6079 0.5646 0.5465 0.5128
GURAP 0.6455 0.5518 0.4887 0.4798 0.4502 0.4354

Improvement vs. TAP (%) −2.39% 6.30% 19.13% 22.65% 27.01% 28.27%

Improvement vs. GNMF (%) 5.66% 14.73% 19.61% 15.02% 17.62% 15.09%

5.90% Untrustworthy Users

UPCC 0.9369 0.8870 0.8790 0.8467 0.8261 0.7987
IPCC 0.9576 0.8903 0.8755 0.8555 0.8478 0.8159

UIPCC 0.8631 0.8022 0.7892 0.7460 0.7485 0.7325
CURA 0.7883 0.6197 0.5239 0.4891 0.4569 0.4486

GUIPCC 0.8122 0.7809 0.7571 0.7381 0.7190 0.6984
TAP 0.6501 0.5725 0.5991 0.6232 0.6275 0.6258

GNMF 0.6989 0.6265 0.5998 0.5523 0.5264 0.5025
GURAP 0.6573 0.5555 0.4826 0.4665 0.4511 0.4357

Improvement vs. TAP (%) −1.11% 2.97% 19.45% 25.14% 28.11% 30.38%

Improvement vs. GNMF (%) 5.95% 11.33% 19.54% 15.53% 14.30% 13.29%

Table 3. Prediction accuracy comparison on response time root mean squared error (RMSE). The bold
numbers indicate the result of the approach.

Matrices Methods
Matrix Density(MD)

5% 10% 15% 20% 25% 30%

2.95% Untrustworthy Users

UPCC 2.4882 2.2699 1.9419 1.8698 1.8088 1.7901
IPCC 2.5753 2.3225 2.1973 1.931 1.8888 1.7575

UIPCC 2.3637 2.0274 1.9799 1.8419 1.7403 1.7391
CURA 1.88 1.7196 1.5648 1.5471 1.4329 1.4015

GUIPCC 2.3637 1.974 1.9099 1.8119 1.7003 1.6791
TAP 1.6645 1.6308 1.6446 1.6517 1.6679 1.6851

GNMF 2.2754 2.0785 1.8724 1.7029 1.6823 1.6547
GURAP 1.4939 1.4329 1.3757 1.3325 1.3269 1.2845

Improvement vs. TAP (%) 10.25% 12.14% 16.35% 19.33% 20.44% 23.77%

Improvement vs. GNMF (%) 34.34% 31.06% 26.53% 21.75% 21.13% 22.37%

5.90% Untrustworthy Users

UPCC 2.5332 2.3007 2.1174 1.9267 1.8613 1.8157
IPCC 2.6811 2.3964 2.1436 1.9987 1.882 1.8305

UIPCC 2.4767 2.2887 2.0342 1.9264 1.8226 1.793
CURA 1.8871 1.7339 1.5566 1.5582 1.4636 1.4102

GUIPCC 2.4263 2.1584 1.9342 1.8768 1.8023 1.7734
TAP 1.7067 1.6521 1.6563 1.6648 1.6858 1.6904

GNMF 2.333 2.0166 1.8986 1.8069 1.7309 1.6952
GURAP 1.4967 1.4459 1.3769 1.3343 1.3246 1.2835

Improvement vs. TAP (%) 12.30% 12.48% 16.87% 19.85% 21.43% 24.07%

Improvement vs. GNMF (%) 35.85% 28.30% 27.48% 26.15% 23.47% 24.29%

5.4. Impacts of Percentage of Untrusted Users

In order to study the impact of the percentage of untrusted users on prediction accuracy, we set
the number of untrusted users to 5, 10, 15, 20, and 50, and the percentage of untrusted users to 1.47%,
2.95%, 4.42%, 5.90%, and 14.75%, respectively. The matrix densities vary from 5% to 30%, and δ, UK,
KS, KNS, and KNU parameter settings are the same as Section 5.3. The experimental results are shown
in Figure 4.
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Figure 4. (a) Impact of untrustworthy users (NMAE); (b) Impact of untrustworthy users (RMSE).

Experimental results show:

(1) In Figure 4a,b, when the percentage of untrustworthy users is 1.47%, the QoS prediction
assessment indicators NMAE and RMSE are generally the smallest. When the matrix density is
small, the overall trend is slowly increasing, but their NMAE and RMSE values are all very close.
This is because the data obtained by our approach when processing untrusted data is only close
to the true value, when the number of untrusted users increases, the increase of untrusted data
will affect the prediction accuracy of QoS. However, when the matrix density is relatively large,
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the NMAE and RMSE values fluctuate within a certain range. This indicates that our method can
identify unreliable users and can handle untrusted QoS data.

(2) From Figure 4a,b, it can also be seen that NMAE and RMSE continue to reduce as the matrix
density becomes more and more dense. This is because for different percentages of untrusted
users, more dense matrices can provide more information.

5.5. Impact of Threshold δ

δ is a threshold for identifying an untrusted user, and when the user reputation value is less
than this threshold, the user is identified as an untrusted user. To study the effect of thresholds on
identifying the untrusted users, we varied the threshold δ from 0.05 to 0.50 in steps of 0.05. The number
of untrusted users is set to 5, 10, 15, 20, and 50 and the statistical interval UK is 15. This experiment is
conducted at 5% and 20% matrix densities. The experimental results are shown in Figure 5.

Figure 5 shows the impact of thresholds on identifying untrusted users. We make a few observations.

(1) At first, IUUA increases rapidly as δ increases, when the matrix density is 5%. This is because
user reputation methods cannot identify untrusted users when δ is small. After IUUA rises to 1,
it declines as the value of δ increases, because when the value is too large, trusted users will be
identified as untrusted users.

(2) In Figure 5a,b, there are the earliest declines in the case of five untrusted users, and the slowest
drop for 50 untrusted users. This is because when the number of untrusted users is small, some
feedback situations of the trusted users can be easily recognized as untrusted feedback, as some
trusted users have relatively small reputation values. Therefore, with δ increasing, trusted users
can easily be identified as untrusted users, which influences the prediction accuracy.

(3) It can be seen from Figure 5 that when the value is 0.10, the IUUA value can be maximized at
both matrix densities.
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5.6. Impact of UK

UK denotes the number of statistical intervals. In order to study the effect of parameter UK on
the prediction accuracy, we change the step size from 3 to 21, with 2 steps. The number of untrusted
users is set to 5, 15, and 50, and the other parameters δ, KS, KNS, and KNU are the same as Section 5.3.
This experiment is performed at 5% and 20% matrix densities. The experimental results are shown in
Figure 6.
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Experimental results show:

(1) It can be seen from Figure 6 that the values of NMAE and RMSE keep declining when the value
of UK is between 3 and 15. When the value of UK is between 15 and 21, the values of MAE and
RMSE begin to slowly rise again. This is because when the number of statistical intervals UK
is relatively small, the reliable interval cannot distinguish the untrustworthy users. When the
statistical interval is relatively large, the reliable interval users may not be able to completely
include all the trusted users.

(2) It can also be observed in Figure 6 that when the number of untrusted users is 5, the NMAE and
RMSE values are smaller than those of 15 and 50, while when the number of untrustworthy users
is 15, the NMAE and RMSE values are generally smaller than for 50 users. This fact shows that
when there are more untrusted users, this will still affect the accuracy of QoS prediction.

(3) As can be seen from Figure 6, when UK equals 15, the NAME and RMSE values are the smallest
under different numbers of untrusted users, which indicates that when the statistical interval UK
is 15, our approach has the best prediction accuracy.

5.7. Impacts of Matrix Density

The matrix density is the percentage of entries in the user service QoS matrix which have non-zero
values, indicating how many history records in the QoS data can be used to predict the missing entries.
In order to study the effect of matrix density on our approach, we changed the matrix density from
5% to 30%, with a step size of 5%. We choose the number of untrusted users to be 5 and 20, and the
settings for the other parameters δ, UK, KS, KNS, and KNU are the same as Section 5.3. The experimental
results are presented in Figure 7.

As can be seen from Figure 7, the NMAE and RMSE values decrease rapidly as matrix density
increases at first, and then the NMAE and RMSE values decrease at a slower rate when the matrix
density becomes larger. This means that as the matrix density increases, more information is available
for prediction, so the prediction accuracy will increase; but as the matrix density becomes larger and
larger, the focus should be on improving the prediction model. It can also be seen in Figure 7 that in
the case of two different untrusted users, the value of NMAE and RMSE are all very close. This shows
that our approach can identify untrusted users well, and minimize the impact of untrusted users.

5.8. Impact of Ks

In order to study the influence of the number of service clusters KS, on the prediction accuracy,
we do two sets of experiments. The first set of experiments will change KS, from 6 to 15 with a step size
of 1. Other parameters δ, UK, KS, KNS, and KNU are set the same as in Section 5.3. The matrix density is
set to 5% and the number of untrusted users is set to 5 and 20. In another set of experiments, other
experimental parameters are set the same as the first set of experiments, except that the matrix density
is set to 20%. The experimental results are shown in Figure 8.
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Experimental results show:

(1) In Figure 8a,b, the overall trend of NMAE value decreases first and then increases as KS increases,
which indicates that when the number of service clusters is too small, our approach can’t exclude
services that are dissimilar but happen to have similar QoS experiences with a few common users.
In addition, when the service cluster is too much, the number of services in the service cluster
will be too small to find adequate geographic neighbors.
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(2) In Figure 8c,d, the overall trend of the RMSE value also decreases first and then increases as KS
increases, but the RMSE value decreases quickly. This is because RMSE evaluation indicators are
more susceptible to services that are not truly similar.

(3) As can be seen from Figure 8a–d, when KS is equal to nine, the values of NMAE and RMSE are
the smallest. This shows that when the number of service clusters is nine, our approach has the
best prediction accuracy.

5.9. Impact of KNS and KNU

KNS and KNU denote, respectively, the number of closest neighbors to a service or user. In order to
study the influence of service cluster KNS and user cluster KNU on prediction accuracy, we have done
two sets of experiments. The first set of experiments will change KNS from 5 to 40 with a step size of 5.
KNU will be set to 12, other parameters δ, UK, and KS are set the same as in Section 5.3. Matrix density
is set to 15%, and the number of untrusted users is set to 5, 15, and 50. Another set of experiments will
change KNU from 3 to 30 with a step size of 3. KNS is set to 35, and the other settings are the same as
the first experiment. The experimental results are presented in Figure 9.
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Figure 9 shows the effect of the change in parameters KNS and KNU on the prediction. We make
a couple of observations.

(1) The values of NMAE in Figure 9a and RMSE in Figure 9c initially decrease rapidly with increasing
KNS, but after KNS is equal to 15, the rate of decline slows down. After KNS is equal to 35, the
values of NMAE and RMSE rose rapidly again. This is because when the number of geographical
neighbors of services is too small, our approach cannot obtain enough information to predict
unknown QoS values, and when KNS is too large, the dissimilar geographical neighbors will
affect the accuracy of QoS prediction.

(2) When KNS equals 35, the NMEA value in Figure 9a and the RMSE value in Figure 9c are the
smallest in the case of different numbers of untrusted users. This shows that when the service’s
similar geographic neighbors equals 35, the QoS prediction accuracy is best.

(3) In Figure 9b,d, the values of NMAE and RMSE begin to decrease. Then, when KNU equals
12, NMAE and RMSE reach the minimum value. When KNU is greater than 12, the values of
NMAE and RMSE increase continuously. However, when KNU is greater than 24, the values of
NMAE and RMSE increase slowly. The reason is similar to the above, when KNU increases to
a certain level, the impact of this parameter on QoS prediction will be weakened. As can be seen
from Figure 9b,d, when KNU is equal to 12, that is the geographical proximity of the user is 12,
the prediction accuracy of our approach is optimal.

(4) Thus, it can conclude that KNS equal to 35 and KNU equal to 12 give the best parameter setting for
the experimental results in our approach.

6. Conclusions and Future Work

User reputation and geographic location information of users and services have significant
impacts on QoS prediction for CPS services. In this paper, we propose a QoS prediction approach
(GURAP) based on location and reputation-aware collaborative filtering to predict the unknown QoS
value for CPS services. The proposed approach includes three algorithms, namely a user reputation
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calculation algorithm, a user and service similar geographical neighbor identification algorithm, and
an unknown QoS prediction algorithm. The user reputation algorithm first calculates the reputation
of the user based on the QoS information of the feedback that the user invokes from services and
the Dirichlet probability distribution, and then identifies the untrusted user based on the reputation
threshold and fixes the unreliable data provided by the untrusted user. The user and service similar
geographical neighbor identification algorithm first, according to the collected geographic information
of users and services, divides the service and users into three levels of geography level by the method of
geographical neighborhood stratification, then improves the PCC formula by the relationship between
user and service geographical area. The unknown QoS prediction algorithm predicts unknown QoS
values by using similar geographical neighbors of trusted users and services. The three algorithms
in our proposed approach can not only identify the untrusted users precisely and mine the nearest
geographical neighbors, but also alleviates the problem of matrix sparsity and cold start. Extensive
real-world experimental evaluations show that our approach is more accurate and robust than most
state-of-the-art methods.

Our GURAP approach uses only the similar geographic neighbor information of users and
services to predict the unknown QoS value of trusted users. Since cyber-physical systems can collect
the information about the surrounding environment of various devices, we will try to mix objective
information of users or services with our methods to improve prediction accuracy, such as the
popularity of the service, costs, personal basic information of the user, network conditions of the
users or services, and so on. Due to the small number of users of the dataset we use, we cannot cluster
users’ latitudes and longitudes, which can affect prediction results. Therefore, in the future, we will
collect more real-world datasets to experiment with our QoS prediction framework.
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