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Abstract: Transverse navigation has been proposed to help inertial navigation systems (INSs) fill
the gap of polar navigation ability. However, as the transverse system does not have the ability
of navigate globally, a complicated switch between the transverse and the traditional algorithms
is necessary when the system moves across the polar circles. To maintain the inner continuity
and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this
research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs.
Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and
corresponding long-term contributions of main error sources is conducted for the high-precision
INSs. According to the analytical expressions of the long-term navigation errors in polar areas,
the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse
horizontal position errors, and the first-order drift dominates the transverse azimuth error, which
results from the g0 gyro drift coefficients that occur in corresponding directions. Simulations are
conducted to validate the theoretical analysis and the deduced analytical expressions. The results
show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation
characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

Keywords: polar navigation; transverse frame; long-term error propagation; high-precision INSs;
Earth-fixed frame

1. Introduction

Nowadays, the increased exploration of polar areas makes the high-precision navigation of
airplanes and vessels at high latitudes an urgent requirement in economic, military and research
fields [1,2]. Although there are abundant navigation methods at low and mid attitudes, most of
them (e.g., radio navigation, satellite navigation, magnetic compasses and celestial navigation)
are limited, or even invalid, in polar regions due to the special geometry and magnetic field
required [3–7]. Fortunately, inertial navigation is based on dead reckoning with almost no need
for external information [8], which makes inertial navigation systems (INSs) insensitive to the outside
environment. Thus, INSs should be able to stably provide high-precision navigation solutions at
high latitudes. However, some problems have to be solved first [9,10]. Firstly, the convergence of
meridians causes a significant increase in longitude error and azimuth error at high latitudes and even
the invalidity of the heading reference near the poles. Secondly, the rates of velocity and azimuth are
predicted to sharply increase when the system passes through the poles, which could cause overflow
during computing.
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The primary cause of such problems is that the widely used definition of the navigation frame,
namely, the geographic frame (n-frame), relies on the geographic distribution of parallels, meridians
and the poles. A representative solution is to choose other navigation frames of which the definitions
are independent of such geographic distribution. The grid system [11] and transverse system [12] have
been proposed to achieve this goal. These two systems are based on a grid frame and a transverse
frame, respectively, which have become widely used in recent research related to polar navigation.
Although the practical differences between the two systems are inconspicuous, the transverse system
is easier to visualize and less complicated [12]. Its basic idea is to move the poles to somewhere on
the equator. Thus, the new equator will run through the traditional poles, and the advantages of
equatorial navigation could be obtained in polar navigation [12]. However, as the shape of the Earth
is closer to an ellipsoid than to a sphere, the standard transverse system is limited by the principle
error resulting from the spherical assumption. Yao et al. [13] and Li et al. [14] modified the definition
of the transverse frame under the ellipsoidal Earth model. These two works used different normals
to indicate the local-level plane, and they also have different definitions of transverse latitude and
transverse longitude. The modified transverse frame shown in reference [13] has similar advantages to
the n-frame—able to indicate the movement and attitude relative to the surface of the Earth and to
cooperate with external auxiliary information.

It should be noted that neither the grid system nor the transverse system has the ability to navigate
globally. When the vehicle locates near the intersection points of the 90◦ W and 90◦ E meridians with
the equator, both of the two systems face similar problems to the n-frame system in polar areas. As the
n-frame is widely used at low and mid latitudes, the system needs a complicated switch between
the polar navigation algorithm and the traditional algorithm when it moves across the polar circles,
which would introduce a sudden change in the core integral process. Zhou et al. [15] and Yao et al. [16]
have proposed indirect polar navigation methods, using a combination of the wander navigation
system and grid navigation or the transverse navigation to achieve inner consistency. However,
the wander attitude reference can be employed only in some polar regions because it would become
invalid at latitudes of ±90◦ [17]. Such a problem can be solved by choosing a navigation frame that is
completely independent of the shape of the Earth and the system’s position. Based on this thought,
Liu et al. [18] employed the pseudo INS mechanization to constitute a global navigation algorithm.
The navigation calculation unit is executed in the pseudo-Earth frame under the spherical Earth
model, which matches the standard transverse frame but is not a commonly-used mechanization in
general INSs. In addition, the navigation calculation outputs under the spherical Earth model need
to be corrected and transformed to the ellipsoidal Earth model for human–machine interaction and
communication [18]. In order to achieve the same or better performance of global navigation with
the least change in the existing systems, we would like to improve the algorithm one step further
using the simpler, and more frequently used, Earth-fixed mechanization directly under the ellipsoidal
Earth model.

In order to improve the precision of polar navigation, more factors have been considered.
For example, an accurate initial alignment is essential for INSs. Gao et al. employed the unscented
Kalman filter to accomplish the polar alignment based on the pseudo-Earth frame [19]. Cheng et al.
used the adaptive unscented Kalman filter with the aid of a star sensor to improve the accuracy of
polar transfer alignment for conditions where the master INS is inaccurate and the information from
the system model is abnormal [20]. Wang et al. proposed a polar transfer alignment algorithm based
on an improved adaptive Kalman filter, which aimed to solve the problem caused by lever-arm and
flexural deformation [21]. Moreover, Yan et al. established an integrated navigation system to improve
the polar navigation accuracy of unmanned underwater vehicles [22]. As for the high-precision and
long-term INSs, it is not enough to merely provide the pure-inertial mechanization and error models.
The analysis of damping technology and error propagation is also essential. Li et al. [23] proposed
a polar damping technology for the transverse strapdown INS based on the system’s static error
characteristics. Huang et al. designed a damping algorithm based on the Kalman filter to reduce the
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overshoot errors due to the switch from the non-damping state to the damping state [24]. In this paper,
the damping technology is discussed, and two more aspects are taken into consideration: First, outside
of the polar areas, the kinematic error characteristics could be analyzed using static models, as the
system’s angular velocity around the Earth’s axis is far less than the Earth’s rotational rate. However,
in polar areas, the movement around the Earth’s axis is non-ignorable compared with the Earth’s
rotation and thus, results in a change in the error characteristics, which has not been addressed in
existing works. Second, a damping method that does not increase the complexity of the navigation
algorithm switch is preferred. In addition, navigation errors of INSs are induced by multiple error
sources. Finding out long-term contributions of main error sources is essential for the design of
high-precision INSs [25], which is barely discussed in the polar navigation themed existing works and
will be addressed in this paper.

This research focuses on a hybrid polar navigation method which has a more concise form and
will be easier to implement. A comprehensive analysis of this method is proposed including the
basic mechanism, the pure-inertial error model, the discussion of proper damping technology and the
corresponding long-term error propagation for high-precision INSs. The rest of this paper is arranged
as follows: In Section 2, the oscillation of traditional horizontal channels in polar areas is reanalyzed
considering the longitude rate. Then, the pure-inertial hybrid transverse polar navigation method and
its error models are proposed in Sections 3 and 4, respectively. In Section 5, the damping technology is
discussed based on the kinematic error characteristics. The analytical expressions of the long-term
navigation errors are deduced in Section 6. The simulation results are discussed in Section 7. Finally,
conclusions are drawn in Section 8.

2. Traditional Horizontal Oscillation in Polar Regions

Before the polar navigation method for INSs is discussed, it should be noted that the convergence
of meridians will cause other problems besides the rapid growth of errors. The system’s longitude rate
(

.
λ) is a function of the eastern velocity (vE) and latitude (L) [26]:

.
λ =

vE

(RN + h) cos L
, (1)

where h is the height above the reference ellipsoid and RN is the normal radius of curvature taken in
the direction of the prime vertical, given in [26,27]

RN =
a

(1− e2 sin2 L)1/2 , (2)

where a is the semi-major axis and e is the first eccentricity of the reference ellipsoid.
In Equation (1), cos L decreases along with the increase of latitude and will tend towards zero

as the latitude approaches ±90◦. At low or mid latitudes,
.
λ is far less than the Earth’s rotational rate

(ωie). Therefore, the low speed kinematic error characteristics can be represented using static error
models. However, when the system moves along a certain parallel near the poles, the considerable
magnification of

.
λ leads to a difference between the static and kinematic oscillation characteristics in

the system’s horizontal channels.
Based on the n-frame error models of the pure-inertial navigation [8,26,28], variables involving

.
λ

remain, while other relatively small quantities and the coupling between the vertical and the horizontal
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channels are neglected. Thus, the state equation of the kinematic errors in horizontal channels is
simplified as

δ
.
rN

δ
.
rE

δ
.
vN

δ
.
vE.

ψN.
ψE.
ψD


=



0 −
.
λ sin L 1 0 0 0 0

.
λ sin L 0 0 1 0 0 0
−ω2

s 0 0 −ω1 0 g 0
0 −ω2

s ω1 0 −g 0 0
0 0 0 0 0 −ω2 0
0 0 0 0 ω2 0 ω3

0 0 0 0 0 −ω3 0





δrN

δrE

δvN

δvE

ψN

ψE

ψD


+



0
0
∇N

∇E

εN

εE

εD


, (3)

where
ω1 =

(
2ωie +

.
λ
)

sin L

ω2 =
(

ωie +
.
λ
)

sin L

ω3 =
(

ωie +
.
λ
)

cos L

. (4)

In Equation (3), δrN and δrE are the Northern and Eastern position errors, δvN and δvE are the
Northern and Eastern velocity errors, ψN, ψE and ψD represent the Northern, Eastern and vertical
components of the psi angle (the psi angle is a rotation vector that reflects the orientation difference
between the computed version and the actual version of the navigation frame due to gyro errors [29]),
ωs is the Schuler frequency, ∇N and ∇E are the Northern and Eastern accelerometer errors, εN,
εE and εD are the Northern, Eastern and vertical components of gyro drift errors, and g is the
gravity acceleration.

Using A7×7 to denote the coefficient matrix in Equation (3), the characteristic equation can be
calculated from |sI−A7×7| (I denotes the 7× 7 unit matrix), as

s
(

s2 + ω̃2
)[

s4 + 2
(

Ω2 + 2ω̃2 sin2 L
)
+ Ω4

]
= 0, (5)

where
Ω2 = ω2

s −
.
λ sin2 L

( .
λ + 2ωie

)
ω̃ = ωie +

.
λ

}
. (6)

The roots of the characteristic equation consist of zero, a pair of purely imaginary numbers
± j(

.
λ + ωie) and two pairs of complex numbers whose angular frequencies are approximately

ωs ± (
.
λ + ωie)sin L. In contrast to the conditions at low and mid latitudes, the distribution of

characteristic roots in polar areas is also influenced by the longitude rate,
.
λ. Thus, the horizontal

channels would have two kinds of oscillation characteristics according to the magnitude of
.
λ.

(1) When the system situates in polar regions but is still away from the poles, the order of
magnitude of

.
λ is similar to ωie and much smaller than ωs (e.g.,

.
λ = 8.95 × 10−5 rad/s for vE = 5 m/s

at 89.5◦ N). In the short term, (
.
λ + ωie) sin L can be neglected and the oscillations in horizontal

channels are mainly Schuler oscillations. Therefore, the traditional damping network is still workable,
and the angular frequency of the damped horizontal channels is

.
λ + ωie, which means more drastic

fluctuation in error curves.
(2) If the system is close enough to the poles, the order of magnitude of

.
λ is similar to, or even

bigger than, ωs (e.g.,
.
λ = 0.045 rad/s for vE = 5 m/s at 89.999◦ N). Then, the angular frequencies of

the complex roots, namely
.
λ + ωie and ωs ± (

.
λ + ωie) sin L, are mainly determined by

.
λ. This means

that the fluctuation in horizontal channels will be far more drastic than Schuler oscillations. Therefore,
the traditional damping network is invalid.

In summary, the problems that traditional INSs are confronted with in polar areas include not
only the extremely large longitude error and azimuth error, but also more drastic fluctuation in the
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horizontal channels and even the invalidity of existing damp techniques due to the system’s movement.
A polar inertial navigation algorithm should solve both the problems.

3. Mechanism of Hybrid Transverse Navigation

Fundamentally, all the problems that the traditional inertial navigation algorithm encounters
in polar areas result from the convergence of meridians. If definitions of all the coordinates used
in the navigation algorithm are not influenced by either the poles’ location or the distribution of
parallels and meridians, such problems will be theoretically solved. Inertial-frame (i-frame) and the
Earth-fixed-frame (e-frame) navigation are able to satisfy this demand.

For example, using e-frame as the navigation frame, the differential equations of position, velocity
and direction cosine matrix of attitude are [8,25]

.
re

= ve
.
ve

= Ce
mfm − 2[ωe

ie]v
e + ge

.
C

e
m = −[ωe

ie]C
e
m + Ce

m [ωm
im]

, (7)

where r is the position vector, v is the velocity vector relative to the Earth, f is the specific force vector
measured by the accelerometer unit, g is the gravity vector, ωe

ie is the angular velocity vector of the
e-frame relative to the i-frame, ωm

im is the angular velocity vector of the measurement frame (m-frame)
relative to the i-frame, the symbol indicates the formation of the antisymmetric matrix representation
of the inner vector, and Ce

m is the direction cosine matrix from m-frame to e-frame.
Based on Equation (7), the e-frame error model of the pure-inertial system is [8,25]

δ
.
re

= δve

δ
.
ve

= [fe]Ψe + Ce
m∆fm − [2ωe

ie]δve + (Γe
s − [ωe

ie][ω
e
ie)]δre + Ce

nδgn
.

Ψ
e
= −[ωe

ie]Ψ
e + εe

, (8)

where Γe
s is the tensor of gravitational gradients and Ψe is the psi angle in the e-frame. The main error

sources of an INS are the accelerometer error, ∆fm, gyro drift rate, εe and the gravity disturbance vector,
δgn. In the differential equations of navigation errors, the variables Ce

m∆fm, εe, Ce
nδgn, fe and re change

with the system’s position and then influence the equations’ solutions. If all of the error sources remain
at the same level and the vehicle’s kinestate has no sudden change at different latitudes, solutions of
Equation (8) will vary in the form of finite changes in the three components of a vector with a constant
length as it points at different directions. Therefore, the e-frame algorithm could provide globally
consistent navigation solutions without sharply increasing the number of errors in any region.

However, most applications prefer to use information about movements relative to the surface of
the Earth, which the e-frame navigation outputs are not able to provide. This is the reason why almost
all INSs use the n-frame as the navigation frame at low and mid latitudes. Although the n-frame
becomes invalid near the poles, transverse and grid navigation based on alternative local-level frames
have been presented and could ensure the same accuracy as traditional INSs in low or mid latitude
regions. Yet, it should be noted that the transverse frame and the grid frame will become invalid near
certain points on the equator. As a consequence, taking global navigation into consideration, a switch
between traditional and polar navigation is required when the vehicle travels across the polar circles;
this will be complicated and destroy the consistency of the entire navigation algorithm.

Here, a hybrid navigation method is designed to combine the advantages of the e-frame system
and the transverse system. The time integral in the INSs will be always carried out in the e-frame using
Equation (7), namely, employing e-frame mechanization. However, outputs will be based on different
frames according to the latitude. At low or mid latitudes, the system will output traditional n-frame
positions, velocities and attitudes. In polar areas, the system will output navigation information based
on the transverse frame. Thus, the switch is only needed in the output part and will be much easier
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to realize. The transverse frame used here is the modified one under the ellipsoidal Earth model [13]
shown in Figure 1.

As shown in Figure 1, the transverse equatorial plane is the Greenwich meridian plane.
The intersections of the 90◦ W and 90◦ E meridians with the equator are denoted as the transverse
South Pole S′ and the transverse North Pole N′, respectively. Xe′, Ye′ and Ze′ denote the three axes
of the transverse Earth-fixed frame (e′-frame). The Xe′ axis points toward the traditional North Pole
N, the Ye′ axis points toward the intersection of the equator and the Greenwich meridian, and the
Ze′ axis points toward N′. For a point, P, above the Earth’s surface, P0 denotes the intersection of the
local-level plane with its normal PP0. This normal will intersect with the Xe′ axis at point Q. Point M is
the projection of P onto the transverse equatorial plane. The included angle of PP0 and the transverse
equatorial plane is denoted as the transverse latitude, L′, the included angle of line QM and the Xe′ axis
is denoted as the transverse longitude, λ′, and the transverse height, h′, has the same definition as the
traditional one. Xn′, Yn′ and Zn′ denote the three axes of the transverse geographic frame (n′-frame).
Xn′ points to the transverse north, which is along the intersecting line of plane PQM and the local-level
plane. Zn′ is the vector along the normal of the local-level plane and downwards. Yn′ points to the
transverse east to form the right-handed coordinate system.
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The low and mid latitude part of the hybrid navigation algorithm and the corresponding error
analysis were proposed in reference [25]. In this research, the high-latitude part, namely the hybrid
transverse polar navigation method, will be mainly discussed. The calculations from the solutions of
Equation (7) for the transverse position, velocity and attitude are given by the following equations.

(1) Transverse latitude and longitude

Based on their definitions and geometrical relationship, transverse latitude and longitude can be
calculated iteratively using

L′ = arctan

(
re

y√
(re

x)
2+(re

z+e2RN sin L)2

)
λ′ = arctan

(
re

x
re

z+e2RN sin L

)
h′ =

√
(re

x)
2+(re

y)
2

cos L − RN


, (9)
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where [13]
RN =

a

(1− e2 cos2 L′ cos2 λ′)1/2 . (10)

(2) Transverse velocity and attitude

The direction cosine matrix from the e-frame to the n′-frame could be calculated as

Cn′
e =

 − sin λ′ sin L′ cos L′ − cos λ′ sin L′

cos λ′ 0 − sin λ′

− sin λ′ cos L′ − sin L′ − cos λ′ cos L′

. (11)

Then, the transverse velocity relative to the Earth is

vn′ = Cn′
e ve. (12)

The direction cosine matrix from the body frame (b-frame) to the n′-frame is

Cn′
b = Cn′

e Ce
b, (13)

The transverse attitude angles are defined as the transverse roll, Φ′, the transverse pitch, θ′,
and the transverse yaw, ψ′, which are the Euler angles calculated from Cn′

b .

4. Error Models of Pure-Inertial Hybrid Transverse Navigation

According to the analysis around Equation (8), error models in the e-frame are globally consistent.
On the basis of the solutions of Equation (8), transverse navigation errors could be obtained by the
following equations.

4.1. Transverse Position Errors

Transverse latitude and longitude errors can be calculated from the horizontal transverse position
errors. According to reference [13] and the approximate relationship, RN ≈ RM ≈ R, they can be
calculated with

δL′ = δrN′
R

δλ′ = δrE′
R cos L′

}
, (14)

where RM is the radius in the direction of the meridian, and R is the geocentric distance of the system.
Using the transformation, δrn′ = Cn′

e δre, the vector consisting of transverse latitude and longitude
errors δΛ′ = (δL′δλ′)T can be calculated from the e-frame position errors, with

δΛ′ = J′3δre, (15)

where

J′3 =
1
R

(
− sin λ′ sin L′ cos L′ − cos λ′ sin L′

cos λ′
cos L′ 0 − sin λ′

cos L′

)
. (16)

The height error can be calculated as

δh′= −δrD′

=
(

sin λ′ cos L′ sin L′ cos λ′ cos L′
)
δre

= J′2
Tδre

. (17)
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4.2. Transverse Velocity Error

Perturbing the equation, vn′= Cn′
e ve, yields the transverse velocity error

δvn′ = J′1δΛ′+ Cn
eδve, (18)

where

J′1 =

 vD′ − sin L′vE′
0 sin L′vN′ + cos L′vD′
−vN′ − cos L′vE′

. (19)

4.3. Transverse Phi Angle and Attitude Errors

The phi angle, Φ, is the rotation vector that reflects the difference between the platform frame
and the true frame. It is composed of the psi angle, Ψ, and δΘ [29,30]:

Φ = Ψ + δΘ, (20)

where δΘ represents the discrepancy between the computer frame and the true frame. When specified
in the n′-frame, Equation (20) will be

Φn′ = −A′3δΛ′+ Cn′
e Ψe, (21)

where

A′3 =

 0 − cos L′

1 0
0 sin L′

. (22)

Then, the transverse attitude errors and the transverse phi angle have a relationship:

Φn′ =

 0 sin ψ′ − cos ψ′ cos θ′

0 − cos ψ′ − sin ψ′ cos θ′

−1 0 sin θ′


 δψ′

δθ′

δφ′

. (23)

From comparing the formulae given in this section with those regarding the n-frame navigation
errors [8,25], it can be seen that the methods to calculate the n′-frame and the n-frame navigation errors
from the e-frame error models share the same structure, in spite of nuances in the calculation of some
matrices. Therefore, with the e-frame error models being globally consistent, the global error models
of the hybrid navigation scheme can achieve consistency in their forms.

5. Error Propagation Characteristics and Damping Technology

For high-precision INSs, damping is essential for long-term accuracy. To discuss the damping
technology for hybrid transverse polar navigation, the first step is to analyze the pure-inertial error
propagation characteristics.

No matter which frame is chosen for time integral, the error models will be the same when they
have been transformed into one certain coordinate system. Therefore, the n′-frame error model shown
in Equation (24) [13] can be used directly:

δ
.
rn′

= δvn′ − [ωn′
en′δ]r

n′

δ
.
vn′

= −[2ωn′
ie + ωn′

en′δ]v
n′ + (Γn′

s − [ωn′
ie ][ω

n′
ie ])δrn′ + [fn′ ]Ψn′ + ∆fn′ + δgn′

.
Ψ

n′
= −[ωn′

in′ ]Ψ
n′ + εn′

. (24)
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As the transverse height and the traditional height are actually the same, the characteristics of the
vertical channel remain unchanged. Thus, the traditional vertical damping assisted by the altimeter is
still an appropriate method for stabilizing the transverse vertical channel.

According to their definitions, in polar areas, the transverse latitude is quite small, and the
transverse longitude is close to 0◦ (near the North Pole) or 180◦ (near the South Pole). Thus, ωie cos λ′

is close to ±ωie, and the rates of transverse latitude and longitude are far less than ωie according to
Equation (14), which means that the static and kinematic error models are approximately the same.
Based on Equation (24), the state equation of the transverse horizontal channels is simplified as

δ
.
rN′
δ

.
rE′

δ
.
vN′
δ

.
vE′.

ψN′.
ψE′.
ψD′


=



0 0 1 0 0 0 0
0 0 0 1 0 0 0
−ω2

s 0 0 −ω′1 0 g 0
0 −ω2

s ω′1 0 −g 0 0
0 0 0 0 0 −ω′2 ωie sin λ′

0 0 0 0 ω′2 0 −ω′3
0 0 0 0 −ωie sin λ′ ω′3 0





δrN′
δrE′
δvN′
δvE′
ψN′
ψE′
ψD′


+



0
0
∇N′
∇E′
εN′
εE′
εD′


,

(25)
where

ω′1 = 2ωie cos λ′ cos L′

ω′2 = ωie cos λ′ cos L′

ω′3 = ωie cos λ′ sin L′

. (26)

Using Equation (25), the characteristic equation is

s
(

s2 + ω2
ie

)[
s4 + 2

(
ω2

s + 2ω2
ie cos2 L′ cos2 λ′

)
s2 + ω4

s

]
= 0. (27)

The roots of Equation (27) consist of zero, a pair of purely imaginary numbers (±jωie) and two
pairs of complex numbers whose angular frequencies are approximately ωs ±ωie cos L′ cos λ′. This
result is similar to the conditions of traditional horizontal channels at low or mid latitudes. In the short
term, Schuler oscillations dominate, and thus, the traditional horizontal damping network could be
transplanted onto the n′-frame. The error curves of the damped system oscillate with a 24-h period.

Fortunately, as the mechanization is based on e-frame, the horizontal damping network has the
same global structure. The damped e-frame differential equations are [8,25]

.
re

= ve − K1DJ′2(h
′ − h′a)

.
ve

= Ce
mfm − [2ωe

ie]v
e + ge − K2DJ′2(h

′ − h′a)− Ce
n′C(v

n′ − vn′
r )

.
C

e
m = −[ωe

ie]C
e
m + Ce

m[ω
m
im]

, (28)

where K1D and K2D are the vertical damping coefficients, C represents the horizontal damping
coefficient matrix, h′a is the external height reference and vn′

r is the external velocity reference.
Ce

n′C(vn′ − vn′
r ) is the only part that needs to be changed as the vehicle travels across the polar circles.

At low and mid latitudes, it will be replaced by Ce
nC(vn − vn

r ). The error propagation of the damped
hybrid transverse navigation is shown in Figure 2, and the coefficient matrices were given in Section 4.
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6. Long-Term Error Analysis for Damped Hybrid Transverse Navigation

In order to improve the system’s performance, it is necessary to determine the contribution of
each error source to the navigation errors. Although INSs are actually nonlinear and time-varying,
it is possible to obtain the approximate analytical expressions of the navigation errors through
proper simplification.

According to the error propagation of the damped hybrid transverse navigation shown in Figure 2,

with the coupling between vertical and horizontal channels and terms related to ωie,
.
L
′

and
.
λ
′

being
neglected, transverse horizontal position and velocity errors satisfy the differential equations:

δ
.
rN′ = δvN′

δ
.
rE′ = δvE′

δ
.
vN′ + CδvN′ + ω2

sδrN′ = ∆ fN′ − fD′ψE′ + fE′ψD′ + C(−vD′ψE′ + vE′ψD′)

δ
.
vE′ + CδvE′ + ω2

sδrE′ = ∆ fE′ + fD′ψN′ − fN′ψD′ + C(vD′ψN′ + vN′ψD′)

. (29)

Then, the Laplace transformation of horizontal position errors is

δrN′(s) =
(s+C(s))δrN′0+δvN′0

s2+C(s)s+ω2
s

+ C(s)(ψD′vE′−ψE′vD′)+ψD′ fE′−ψE′ fD′
s2+C(s)s+ω2

s

δrE′(s) =
(s+C(s))δrE′0+δvE′0

s2+C(s)s+ω2
s

+ C(s)(−ψD′vN′+ψN′vD′)−ψD′ fN′+ψE′ fD′
s2+C(s)s+ω2

s

. (30)

Based on the final-value theorem and Equation (21), the steady-state transverse horizontal position,
velocity and attitude errors are:

δL′ = ψE′ +
∆ fN′

g

δλ′ cos L′ = −ψN′ +
∆ fE′

g

δvN′ = Rδ
.
L
′
= RεE′ +

∆
.
f N′

ω2
s

δvE′ = Rδ
.
λ
′
cos L′ = −RεN′ +

∆
.
f E′

ω2
s

φN′ =
∆ fE′

g

φE′ = −∆ fN′
g

φD′ = ψD′ + (ψN′ − ∆ fE′
g ) tan L′



. (31)
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If the right side is calculated from the e-frame values, Equation (31) can be written as

δL′ = ψe
x cos λ′ − ψe

z sin λ′ + 1
g (−∆ f e

x sin λ′ sin L′ + ∆ f e
y cos L′ − ∆ f e

z cos λ′ sin L′)
δλ′ cos L′ = ψe

x sin λ′ sin L′ − ψe
y cos L′ + ψe

z cos λ′ sin L′ + 1
g (∆ f e

x cos λ′ − ∆ f e
z sin λ′)

δvN′ = R[
.
ψ

e
x cos λ′ −

.
ψ

e
z sin λ′ + 1

g (−∆
.
f

e
x sin λ′ sin L′ + ∆

.
f

e
y cos L′ − ∆

.
f

e
z cos λ′ sin L′)]

δvE′ = R[
.
ψ

e
x sin λ′ sin L′ −

.
ψ

e
y cos L′ +

.
ψ

e
z cos λ′ sin L′ + 1

g (∆
.
f

e
x cos λ′ − ∆

.
f

e
z sin λ′)]

φN′ =
1
g (∆ f e

x cos λ′ − ∆ f e
z sin λ′)

φE′ = − 1
g (−∆ f e

x sin λ′ sin L′ + ∆ f e
y cos L′ − ∆ f e

z cos λ′ sin L′)

φD′ = − 1
cos L′ (sin λ′ψe

x + cos λ′ψe
z)− tan L′

g (∆ f e
x cos λ′ − ∆ f e

z sin λ′)


. (32)

Equation (32) uses the e-frame accelerometer errors and gyro drifts, which are related to the
orientation of the m-frame and the error models of inertial measurement units (IMUs). As the
mechanization of space-stable INSs best matches the hybrid transverse algorithm, the detailed
analytical expressions of long-term navigation errors are given for such systems.

6.1. Error Model of Accelerometer Unit

For low-speed cruising, the specific forces measured can be approximately expressed as f P
x

f P
y

f P
z

 ≈ CP
n′

 0
0
−g

 = g

 Aϕ cos
(
γP

2 + ϕ
)

Aϕ sin
(
γP

2 + ϕ
)

cos λ′ cos L′

, (33)

where
Aϕ =

√
1− cos2 L′ cos2 λ′

sin ϕ = sin L′/Aϕ

cos ϕ = cos L′ sin λ′/Aϕ

. (34)

The superscript P denotes the platform frame (P-frame), and γP
2 represents the rotation of the

space-stable platform, which is ωiet.
In the P-frame, the error model of the three-axis accelerometer unit is [28] ∆ f P

x
∆ f P

y
∆ f P

z

 =


∆SFx
SFx

−∆βxz ∆βxy

∆βyz
∆SFy
SFy

−∆βyx

−∆βzy ∆βzx
∆SFz
SFz


 f P

x
f P
y

f P
z

−
 ∇x

∇y

∇z

, (35)

where ∇, ∆SF
SF and ∆β represent the zero bias, scale factor error and installation angle error with

corresponding subscripts denoting the direction. Combining Equation (35) with Equation (33) and
transforming the result to e-frame yields
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∆ f e
x

g
=−

(
∇x

g
− ∆βxy cos L′ cos λ′

)
cos γP

2 −
(∇y

g
+ ∆βyx cos L′ cos λ′

)
sin γP

2

+Aϕ

(
∆βyz

2
− ∆βxz

2

)
sin
(

2γP
2 + ϕ

)
+ Aϕ

(
∆SFx

2SFx
−

∆SFy

2SFy

)
cos
(

2γP
2 + ϕ

)
−Aϕ

(
∆βyz

2
+

∆βxz

2

)
sin ϕ + Aϕ

(
∆SFx

2SFx
+

∆SFy

2SFy

)
cos ϕ

∆ f e
y

g
=

(
∇x

g
− ∆βxy cos L′ cos λ′

)
sin γP

2 −
(∇y

g
+ ∆βyx cos L′ cos λ′

)
cos γP

2

+Aϕ

(
∆βyz

2
− ∆βxz

2

)
cos
(

2γP
2 + ϕ

)
− Aϕ

(
∆SFx

2SFx
−

∆SFy

2SFy

)
sin
(

2γP
2 + ϕ

)
+Aϕ

(
∆βyz

2
+

∆βxz

2

)
cos ϕ + Aϕ

(
∆SFx

2SFx
+

∆SFy

2SFy

)
sin ϕ

∆ f e
z

g
=−∇z

g
+

∆SFz

SFz
cos L′ cos λ′ + ∆βzx Aϕ sin

(
γP

2 + ϕ
)
− ∆βzy Aϕ cos

(
γP

2 + ϕ
)



. (36)

6.2. Gyro Dift and Psi Angle

Based on the fundamental gyro drift models [25,28,31], the residual drift rates of gyros on the
space-stable platform after proper calibration and error compensation can be modeled as

∆ω1x = ∆ε1x + Aϕ∆d11 cos
(
γP

2 + ϕ
)

∆ω1y = ∆ε1y + Aϕ∆d11 sin
(
γP

2 + ϕ
) } polargyro, (37)

∆ω2z = ∆ε2z + ∆d22 cos L′ cos λ′Aϕ cos
(

γP
2 + ϕ

)
equatorialgyro, (38)

where ∆ε1x, ∆ε1y and ∆ε2z are called the g0 coefficients, and ∆d11 and ∆d22 are called the g1 coefficients.
Substituting Equations (37) and (38) into the differential equations of the perturbed motion of the

space-stable platform [25] yields the three components of the psi angle as

ψe
x(t)≈

∆d11 Aϕ

ωie
(sin ϕ + sin(ωiet− ϕ0)) + ψe

x(0) cos ωiet

+ψe
y(0) sin ωiet + ∆ε1xt cos

[
ωiet + γP

2 (0)
]
+ ∆ε1yt sin

[
ωiet + γP

2 (0)
]

ψe
y(t)≈ −

∆d11 Aϕ

ωie
(cos ϕ− cos(ωiet− ϕ0))− ψe

x(0) sin ωiet

+ψe
y(0) cos ωiet− ∆ε1xt sin

[
ωiet + γP

2 (0)
]
+ ∆ε1yt cos

[
ωiet + γP

2 (0)
]

ψe
z(t)= ψe

z(0) + ∆ε2zt +
∆d22 cos L′ cos l′Aϕ

ωie +
.
ϕ

{
sin
[
ωiet + γP

2 (0) + ϕ
]
− sin

[
γP

2 (0) + ϕ0

]}



, (39)

where the time-varying characteristic of ϕ in polar areas has been considered, and ϕ0 is its initial value.

6.3. Long-Term Contribution of Main Error Sources

Substituting Equations (36) and (39) into Equation (32) yields the approximate analytical
expressions of the long-term navigation errors of the low-speed space-stable INSs, which reflect
the propagation of the main error sources. As the horizontal position errors and the azimuth error
are the most concerning, the impacts of different error coefficients on them are listed in Table 1.
Second-order small quantities have been neglected based on the fact that the sine and tangent of
transverse latitude and longitude gradually approach zero as the vehicle moves towards the poles.

From Table 1, it can be concluded that:
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(1) The terms dominated in transverse latitude and longitude errors are the slowly divergent 24-h
period oscillation caused by ∆ε1x and ∆ε1y and the persistent 24-h period oscillation caused by
∇x, ∇y, ∆βxy, ∆βyx, Ψe

x(0) and Ψe
y(0).

(2) For the transverse azimuth error, the linear growth caused by ∆ε2z predominates. The initial
alignment error, Ψe

z (0), will induce a constant bias. The slowly divergent 24-h period oscillation
caused by ∆ε1x and ∆ε1y also exists. Although it is attenuated by sin λ′, it is possible for this
fluctuation to become apparent after a sufficient length of time.

(3) All the dominant terms in error curves will account for larger proportions, and others gradually
disappear as the system comes close to the poles. Specifically, transverse latitude and longitude
errors will symmetrically and divergently oscillate, and the transverse azimuth error curve will
be an oblique line when the system is close enough to the poles.

Table 1. Long-term horizontal position errors and azimuth error induced by error coefficients in the
space-stable inertial navigation systems (INSs).

Error Coefficients
Corresponding Navigation Errors

δL′ δ˘′ cos L′ ŒD′

Gyro drift model
coefficients

∆ε1x ∆ε1xt cos λ′ cos ωiet Aϑ∆ε1xt sin(ωiet + ϑ) − 1
cos L′∆ε1xt sin λ′ cos ωiet

∆ε1y ∆ε1yt cos λ′ sin ωiet Aϑ∆ε1yt cos(ωiet + ϑ) − 1
cos L′∆ε1yt sin λ′ sin ωiet

∆ε2z −∆ε2zt sin λ′ ∆ε2zt cos λ′ sin L′ − 1
cos L′∆ε2zt cos λ′

∆d11
∆d11 Aϕ cos λ′

ωie

[
sin ϕ

+ sin(ωiet− ϕ0)

]
∆d11 Aϕ Aϑ

ωie

[
cos(ϑ− ϕ)

− cos(ωiet + ϑ− ϕ0)

]
≈ 0

∆d22 ≈ 0 ≈ 0 −∆d22 Aϕ cos2 λ′

ωie+
.
ϕ

[
sin(ωiet + ϕ)
− sin ϕ0

]

Accelerometer
error model
coefficients

∆SFx
SFx

∆SFx
2SFx

[
cos2 λ′ cos L′ sin L′

−Aϕ Aϑ sin(2ωiet + ϑ + ϕ)

]
∆SFx
2SFx

[
Aϕ cos λ′ cos(2ωiet + ϕ)
+ cos L′ cos λ′ sin λ′

]
≈ 0

∆SFy
SFy

∆SFy
2SFy

[
cos2 λ′ cos L′ sin L′

+Aϕ Aϑ sin(2ωiet + ϑ + ϕ)

]
∆SFy
2SFy

[
−Aϕ cos λ′ cos(2ωiet + ϕ)

+ cos L′ cos λ′ sin λ′

]
≈ 0

∆SFz
SFz

−∆SFz
SFz

cos2 λ′ cos L′ sin L′ −∆SFz
SFz

cos L′ sin λ′ cos λ′ ≈ 0

∇x
g

∇x
g Aϑ sin(ωiet + ϑ) −∇x

g cos λ′ cos ωiet
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(
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≈ 0
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)
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(
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Initial alignment
errors
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cos L′ Ψ
e
x (0)sin λ′ cos ωiet

Ψe
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y (0) cos λ′ sin ωiet −Ψe
y (0)Aϑ cos(ωiet + ϑ) − 1

cos L′Ψ
e
y (0)sin λ′ sin ωiet
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z (0) −Ψe
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e
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where
Aϑ =

√
1− sin2 L′ cos2 λ′

sin ϑ = sin L′ sin λ′/Aϑ

cos ϑ = cos L′/Aϑ

 (40)

7. Simulation and Discussion

Simulation results of the proposed method are presented in this section. Outputs of gyros and
accelerometers were generated by the space-stable INS simulator. The errors of IMUs were generated
based on the error models presented in Section 6, where the g0 and g1 coefficients of gyro drifts were all
10−4 ◦/h, the initial alignment errors were 10”, and the zero biases, scale factor errors and installation
errors of the accelerometers were 2× 10−5 g, 10 ppm and 10”, respectively. These values of error
parameters were chosen based on the general performance of IMUs in the navigation grade (1 nm/h)
class [31,32] and a certain high-precision INS [33]. In addition, it is assumed that proper calibration
and error compensation have been carried out during the initialization.
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7.1. e-Frame Navigation Errors at Different Latitudes

First, it was demonstrated that the e-frame mechanization would not be affected by the system’s
position. The vehicle was set to move along the parallels of 1◦ N, 40◦ N and 89.5◦ N eastwards at
a speed of 5 m/s for 3 days. The e-frame position errors, velocity errors and phi angles are shown
in Figures 3–5, respectively, where all of the error curves are normalized by the maximum absolute
values in the corresponding directions among the three latitudes.

From Figures 3 and 4, it can be seen that position and velocity errors at different latitudes showed
no sharp increases but only variance in the distribution of the components in three directions. At low
latitudes, components in the x and y directions were distinctly smaller than the one in the z direction,
while the situation at high latitudes is the opposite. Also, the drifts in the x- and y-direction position
errors were more obvious at lower latitudes. As for the e-frame phi angles, Figure 5 shows that
they were finite and almost unrelated to the latitude. Such results validate the use of the e-frame
mechanization globally.
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7.2. Long-Term Hybrid Transverse Navigation Errors in Polar Areas

The initial position was set to be (89.5◦ N 116◦ E 0 m)T, which is quite an extreme condition.
The simulation involved the vehicle moving along the 89.5◦ N parallel at a speed of 5 m/s eastwards
for 3 days. The horizontal position errors and the azimuth error using the traditional navigation
algorithm and the hybrid transverse navigation algorithm are shown in Figures 6 and 7, respectively,
where all error curves are normalized by the maximum absolute values of the traditional latitude errors.
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From Figure 6, it can be seen that the longitude error and azimuth error were far larger than the
latitude error and that they became over 100 times larger on the third day. Moreover, oscillations in the
error curves had about seven cycles within 3 days, which is obviously different from the long-term
oscillation characteristics at low and mid latitudes. The angular frequency of the oscillations actually
matches (

.
λ + ωie) and conforms to the proposal that in polar areas, movements along the parallels will

result in more drastic fluctuations in navigation errors.
The error curves shown in Figure 7 do not have similar problems to Figure 6. Using the hybrid

transverse navigation algorithm, navigation errors are at normal levels and their oscillation period
is approximately 24 h. Such results are consistent with use of the traditional algorithm at low and
mid latitudes. In addition, analytical errors were calculated based on Table 1 and compared with the
simulated errors in Figure 7. The results show that they fit with each other and validate the analytical
expressions in Section 6. At 89.5◦ N, the transverse latitude errors and longitude errors were mainly
due to symmetrical divergent oscillation caused by the x- and y-direction g0 gyro drift coefficients,
and the transverse azimuth error was mainly due to the linear drift caused by the z-direction g0 gyro
drift coefficient. The analytical expressions theoretically explain the error curves shown in existing
research and could be used to assist the design of high-precision INSs for polar applications.

8. Conclusions

This research proposed a hybrid transverse polar navigation method based on a combination of
e-frame navigation and transverse navigation. A kinematic pure-inertial error analysis was conducted
to introduce proper damping technology for high-precision and long-term INSs in polar areas.
According to the theoretical analysis, the error models proposed can retain the same structure globally
and the damping network can be globally consistent. This means that the hybrid global navigation is
mathematically convenient and can be easily implemented by merely switching the coordinate system
for navigation outputs, without any break in the core integral process. The simulation results showed
that the e-frame mechanization is not influenced by the system’s position, and that the proposed polar
navigation method can ensure the same accuracy and oscillation characteristics as the traditional
algorithm in low and mid latitude regions. The proposed polar navigation method could be used in
INSs of different types, and it is most suitable for the space-stable INSs, in principle. The analytical
expressions of the long-term navigation errors in the damped space-stable INSs were deduced to
figure out the contributions of main error sources, which were also validated by the simulation results.
They could help to further improve the systems’ polar accuracy.
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