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Abstract: Numerous prototypes of computational imaging systems have recently been presented
in the microwave and millimeter-wave domains, enabling the simplification of associated active
architectures through the use of radiating cavities and metasurfaces that can multiplex signals
encoded in the physical layer. This paper presents a new reconstruction technique leveraging the
sparsity of the signals in the time-domain and decomposition of the sensing matrix by support
detection, the size of the computational inverse problem being reduced significantly without
compromising the image quality.
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1. Introduction

Microwave and millimeter-wave imaging applications are becoming increasingly numerous
and cover a wide range of fields such as medical diagnostics [1–4], non-destructive testing [5–7],
and concealed weapon detection [8–10]. However, all of these systems, in order to satisfy reasonable
acquisition times, are constrained by the implementation of complex and redundant active systems,
which represents a major economic constraint on the large-scale development of these applications.
Faced with these limitations, a multiplicity of computational solutions have emerged, exploiting the
availability of increasingly powerful and affordable digital processing units. These solutions are based
on the development of predominantly passive components, capable of encoding and multiplexing
radiated information in transmission and reception, thus reducing the amount of active channels
required for imaging systems to function properly. The constraint is thus pushed back into the digital
layer where the formulation and resolution of inverse problems represent new challenges that can make
these solutions competitive. It has been demonstrated that such systems can be based on the use of
electrically large cavities connected to conventional antenna arrays [11–13], on the use of metasurfaces
encoding information directly in the radiating aperture [14–16], or even on hybrid solutions of leaky
cavities that demonstrate interesting performance in many imaging modalities [17–19]. Connections
can also be made with earlier systems based on the use of frequency scanning antennas whose radiation
patterns can encode a sum of information relative to the position of a target into a reduced number
of signals [20–22]. It is necessary to study all these systems in order to analyze them by means of
a unified formalism taking into account the propagation of signals, their filtering within dispersive
components, and their summation, as described in [23] and Figure 1.
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Figure 1. Computational imaging architectures based on the use of a cavity connected to a conventional
antenna array (a) and the design of a dispersive metasurface (b). In each case, the signals reflected by
the target are encoded by propagation within the reception system into a measured signal ρω .

Regardless of the passive computational system implemented, the objective is the estimate of
the reflection function of the target f (r) considered invariant according to frequency in the operating
bandwidth, from a single compressed signal represented here by ρω, where ω is the pulsation.
As a first approximation, it is possible to consider a scalar propagation model between two arbitrary
positions ra and rb represented by free space Green’s functions Gω(ra, rb) = exp(−jk|ra− rb|)/|ra− rb|.
The expression of the measured signal as a function of the signature of the target linearized assuming
Born’s first approximation is as follows:

ρω =
∫

rr

∫
r

Gω(rt, r) f (r) Gω(r, rr) d3r Hω(rr) d2rr (1)

where rr corresponds to the coordinates of the radiating aperture and where rt is the location
of the transmitting antenna. The most important element of this formula is the vector Hω(rr),
which corresponds to the response of the component encoding the received information. In the case of
an electrically large cavity connected to an array of isotropic antennas, Hω(rr) simply corresponds to
the transfer functions of the cavity. In the case of a radiating metasurface, or in the case where it is
not possible to neglect the impact of radiating elements connected to a cavity, Hω(rr) stands for the
near field radiated by this structure, which can be divided into a sum of secondary dipoles interacting
with the target. In general terms, the principle of computational imaging applied to the microwave
and millimeter-wave domains consists in using structured radiation patterns with a low degree of
correlation in order to encode the information contained in the target space into electrical signals
measured on a reduced number of ports in order to limit the costs and complexity associated with
active systems. In contrast to synthetic aperture systems, which can also satisfy these constraints,
computational systems also make it possible to quickly capture scenes to be imaged, making their usage
compatible with real-time applications [12]. The most comprehensive approach in this framework
consists of formalizing the interaction between measured signals and space to be imaged by means of
a matrix operator M, giving rise to the expression of the following direct problem:

ρ = M f (2)

where ρ ∈ C nω×1 and f ∈ C nr×1 are, respectively, the vectorized measured signal including
nω frequency samples and the reflection function of the target represented by nr spatial samples
(for the sake of clarity, bold notation is used for all the vectors), and M ∈ C nω×nr is the sensing
matrix accounting for the forward and backward wave propagations, as well as the response of the
computational imaging component, as described in Equation (1). Quite obviously, nω corresponds
to the number of frequency samples and nr to the number of voxels of the discretized target space.
This relation makes it clear that spatial information is encoded in a frequency signal and that the rank
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of the sensing matrix—directly related to the pseudo-orthogonality between the radiated patterns at
each frequency—is the main limitation of the number of unknowns that can be reconstructed. This
approach is undoubtedly the simplest and so far the most accurate way of reconstructing an estimation
f̂ by solving the inverse problem through, for example, a pseudo-inversion:

f̂ = M+ρ (3)

or through iterative reconstruction techniques, exploiting for example prior knowledge on the inherent
sparsity of the interrogated scene [24–27]. Although this approach is particularly precise and simple
to implement, it can suffer from prohibitive memory consumption and computing time, imposing
great constraints on the processing units implemented in this framework [23]. Alternative approaches
proposed in previous work explored the possibility of breaking down the M measurement matrix into
two operators of reduced dimensions, reconstructing in this context an estimate of the signals in the
radiating aperture [11,12,28]. The main advantage of this technique lies in the use of Fourier-based
image reconstruction techniques on the estimated signals, exploiting the formidable computational
efficiency of fast Fourier transforms [13,29]. Using the previous formalisms, the expression of the
signals in the radiating aperture is defined as follows:

sω(rr) =
∫

r
Gω(rt, r) f (r) Gω(r, rr) d3r (4)

so that the measured signal can be written as follows:

ρω =
∫

rr
sω(rr) Hω(rr) d2rr . (5)

The reconstruction of the target response can thus be achieved by introducing an intermediate
subspace corresponding to that of the signals in the radiating aperture, as shown in Figure 2
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Figure 2. Representation of the subspaces considered for these computational imaging problems.
An estimate of the target reflectivity function f is made from the measured signal ρ. The approach
studied in this article is based on a decomposition of the operator M linking the target to the
measurement ports via an estimate of the signals S in the radiating aperture.

The main limitation related to the current implementation of this technique is illustrated by
writing the last equation in matrix form, spatially discretizing the radiating aperture into nrr samples:

ρ = ∑
rr

H � S (6)

where H ∈ C nω×nrr and S ∈ C nω×nrr correspond, respectively, to the transfer functions of the
computational imaging component and the signals in its radiating aperture, and where � stands for
the Hadamard (or element-wise) product. Since the signal to be reconstructed Ŝ has more unknowns
than the number of measured samples in ρ, it seems impossible to calculate an accurate estimate of the
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latter unless the frequency dimension is sacrificed in a pseudo-inversion calculation, which would
prevent the backpropagation computation for the estimate of f̂ . The approach suggested in the
literature, initially inspired by time-reversal [11], was to use a simple equalization of the transfer
functions of the component using the pre-computed pseudo-inverse H+ [12,13]:

Ŝeq = H+ � P (7)

where P = (ρ, ..., ρ) is the concatenation of ρ nrr times to match the dimensions of H. It is then possible
to define an operator G ∈ C nω .nrr×nr taking into account the forward and backward wave propagation,
linking the antenna signals with the reflectivity of the target as follows:

vec(S) = G f (8)

where vec(S) ∈ C nω .nrr×1 is vectorized to match the number of columns of G. In this context, it is
finally possible to obtain an estimate of f̂ from the signals on the antennas reconstructed by equalization
using the pseudo-inverse G+:

f̂ = G+vec(Ŝeq). (9)

Although independent signal equalization estimation cannot be ideal due to the ratio of the
number of measured points to that of unknowns, the coherence of frequency content during the
backpropagation operation represented by G+ yields satisfactory results in various applications [12,13].
The distortions observed during the use of this method are counterbalanced by the great gain in
calculation time compared to the sensing matrix approach, realized by reducing the dimensions of the
problem and replacing the matrix operator G+ by range migration algorithms based on fast Fourier
transforms [23].

Based on all these elements, a technique based on an identical decomposition of the sensing matrix
M, compatible with the use of Fourier techniques for backpropagation but allowing more accurate
reconstructions of the signals in the radiating aperture, is proposed and studied here. The theoretical
principle, based on the exploitation of sparsity in the time-domain, is presented in the next section,
which is followed by theoretical and experimental studies.

2. Theoretical Principle of a Sparsity-Based Time-Domain Signal Estimation

All short-range imaging applications mentioned in the first part of the introduction of this
document share interesting characteristics, which are directly exploited by the proposed technique:
the targets studied have a limited depth extension and are interrogated with ultra-wideband signals.
These properties have the advantage of representing signals collected by the antennas from the target
in a limited number of points compared to the frequency domain where the corresponding phase
correction and subsampling operations are less intuitive and direct, as shown in Figure 3.
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Figure 3. Sparsity of the magnitude of a frequency signal collected in a short range imaging application
and its time-domain representation calculated from an inverse Fourier transform F−1. An approximate
knowledge of the depth spread of the area to be imaged allows for the direct selection of useful samples
in the time domain.

This attribute partly responds to the problem of reconstructing space-frequency signals in the
radiating aperture from a limited number of measured frequency information. The second constraint
that needs to be addressed is the replacement of this extremely simple yet inefficient equalization
operation with a matrix approach that can be solved by means of various pseudo-inversion techniques,
which may be direct such as the Tikhonov regularization [12] or the truncated singular value
decomposition [23], or iterative such as least squares-based techniques [16,30] or the generalized
minimal residual method [17,31]. Using the sparsity properties illustrated above, this reconstruction is
carried out in the time domain, working on the expression of the measured signal according to those
received in the radiating aperture, filtered by propagation in the computational imaging component.
Equation (6) takes the following form in the time domain:

ρt = ∑
rr

Ht(rr)⊗t St(rr) (10)

where ρt = F−1(ρ) (and equivalently for Ht and St) and where ⊗ stands for the time-domain
convolution product that can be substituted with Toeplitz matrices [32]:

ρt = ∑
rr

T(rr)St(rr) (11)

with T(rri ) ∈ C (2 nt−1)×nt , the Toeplitz matrix, built from the transfer function Ht(rri ) in the
following way:

T(rri ) =



Ht1(rri ) 0 ... 0 0

Ht2(rri ) Ht1(rri ) ...
...

...
Ht3(rri ) Ht2(rri ) ... 0 0

... Ht3(rri ) ... Ht1(rri ) 0

Hnt−1(rri )
... ... Ht2(rri ) Ht1(rri )

Hnt(rri ) Hnt−1(rri )
...

... Ht2(rri )

0 Hnt(rri ) ... Hnt−2(rri )
...

0 0 ... Hnt−1(rri ) Hnt−2(rri )
...

...
... Hnt(rri ) Hnt−1(rri )

0 0 0 ... Hnt(rri )



. (12)
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The circulant structure of this matrix thus makes it possible to have an algebraic representation
of the discrete convolution calculation in the matrix form, which paves the way for the use of
pseudo-inversion techniques in the considered application.

The expression obtained in Equation (11) must finally be modified so that it only requires a single
matrix operator corresponding to both filtering through all the component transfer functions and the
summation operation. It is thus proposed to consider the following formalism:

ρt = Tvec(St). (13)

In this final form, the matrix T ∈ C (2 nt−1)×(nt .nrr )corresponds to the concatenation in the discrete
aperture space of all the Toeplitz matrices, so that T = (T(rr1), ..., T(rrn)). In this context, it is now
possible to calculate an estimate of S from the measured signal:

vec(Ŝt) = T+ρt. (14)

Under these conditions, it may seem useful to reduce the dimensions of the problem by
exploiting the sparsity of the time-dependent signals, truncating the matrix T according to its two
dimensions (Figure 4).

=

tmin

tmax

tmin

tmax

tmin

tmax

tmin

tmax

tmin tmax tmin tmax tmin tmax tmin tmax

tρmin

tρmax

ρt T vec(St)

Figure 4. Illustration of the matrix formatting of the relationship between ρt and vec(St) for a system
with four radiating elements. The number of time samples is deliberately chosen small to facilitate the
representation. Time boundaries are identified according to the two dimensions of matrix T, limiting
the dimensions of the calculation by removing zero contributions, which represent a significant burden
on the total volume of the calculation.

A first truncation of T is possible in the dimension (nt.nrr ) corresponding to the vectorization of
St. For this purpose, it is necessary to determine the minimum and maximum times, respectively tmin
and tmax, where the signal is non-zero. This evaluation can be carried out using for example optical
imaging systems, converting distance information into equivalent flight time, or directly using a first
reconstruction with the equalization method as in the proposed studies. It is not necessary to be highly
precise in this evaluation to converge towards an acceptable reconstruction of the signals received
by the antennas, but the optimization of the selection of non-zero time domain samples significantly
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reduces the size of the final matrix to inverse. It is also possible to reduce the second dimension of
T by identifying in ρt the minimum and maximum boundaries of the measured signal, respectively,
called tρmin and tρmax . Finally, if the interval [tmin, tmax] is defined on ns time-domain samples and if
the interval [tρmin , tρmax ] corresponds to nρ samples, it is possible to reduce the matrix T to a smaller
matrix Ts ∈ C nρ×ns .nrr . The vectors corresponding to each dimension are also truncated so as to obtain
ρts ∈ C nρ×1 and vec(St)s ∈ C ns .nrr×1. A graphical representation corresponding to the reduced form
of the problem shown in Figure 4 is provided in Figure 5.

=

ρts Ts vec(St)s

Figure 5. Representation of the compact form of the matrix relation between ρts and vec(St)s, truncated
thanks to the sparse properties of the time-domain signals studied in the context of short-range
imaging applications.

In this reduced form, it is possible to identify that the only remaining parts of the initial matrix
correspond to the intersection of the identified time boundaries on the ρt and vec(St). This approach
thus makes it possible to give a new compact representation of the relation between the measured
signal and the signals received in the radiating aperture by identifying and then removing as many
elements as possible that do not contribute to this problem.

This double time-domain truncation finally makes it possible to express a more compact
relationship between the measured signal and the signals in the radiating aperture:

ρts = Tsvec(St)s (15)

allowing now for the computation of an approximation of the signals received by the radiating elements
vec(Ŝt)s by means of direct or iterative pseudo-inversion techniques:

vec(Ŝt)s = T+
s ρts (16)

An interesting property of circulant matrices simplifies the calculation of Ts, especially when
signals are acquired using frequency measurement tools, as they can be diagonalized using Fourier
basis. The compact sensing matrix Ts = (Ts(rr1), ..., Ts(rrn)) is obtained from the concatenation of
truncated Toeplitz matrices computed as follows:

Ts(rri ) = D[tmin ,tmax ] diag(H(rri )) D†
[tρmin ,tρmax ]

(17)

where H(rri ) is a frequency-dependent eigenvector of nω samples corresponding to the transfer
function of the computational imaging component measured at the location rri of the radiating
aperture and the couple of matrices D[tρmin ,tρmax ]

∈ C nρ×nω and D[tmin ,tmax ] ∈ C ns×nω are discrete
Fourier transform matrices computed in the bounds of the time-domain values specified in the
index. In this way, it is not necessary to calculate and then truncate the entirety of the sensing
matrix T, limiting memory consumption by directly estimating its compact form Ts. This technique
can finally be extended to the more general case of a component with several measurement ports.
The implementation of such a system remains justified insofar as the number of measured signals
remains lower than the number of antennas (Figure 6).
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...
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ρ H S

Figure 6. Illustration of a computational imaging component with several measurement ports.
The increase in the number of measured samples allows for a more accurate reconstruction of the
signals in the plane of the radiating aperture, especially when the number of antennas is large.

In such a system where mρ measurement ports are connected to the computational system,
the dimensions of the measured signal matrix then become ρt ∈ Cmρ×nt and the transfer function
matrix is also mρ times larger, such as H ∈ Cmρ×nω×nrr . It is possible to keep exactly the same
formalism as before by using a simple vectorization of the matrix of measured signals, which in
its compact form becomes ρts ∈ Cmρ×nρ , adapting the dimensions of the compact sensing matrix,
which then takes the following dimensions Ts ∈ Cmρ .nρ×ns .nrr , where, as a reminder, mρ corresponds
to the number of measurement ports, nρ to the number of time-domain samples of the measured
signals after truncation, ns to the number of time-domain samples of the signals on the antennas
after truncation, and nrr to the number of radiating elements connected to the computational imaging
system. In such conditions, the link between measured and antenna signals is expressed as follows:

vec(ρt)s = Tsvec(St)s. (18)

The quality of the reconstruction will directly depend on the properties and dimensions of the
sensing matrix Ts, which can be studied through a decomposition into singular values to determine the
degree of correlation between its different rows and columns and the number of unknowns that can be
reconstructed [33,34]. The effectiveness of the proposed technique depends directly on the estimation
of the time bounds within which the received signals are defined. The use of such properties for signal
estimation has interesting links with the principle of support detection used in the reconstruction of
sparse signals [35], notably considered in magnetic resonance imaging [36].

Now that the theoretical elements necessary for understanding this new technique have been
presented, it is necessary to validate its functionality. A first numerical simulation of computational
imaging is thus conducted in the next section in order to compare the quality and reconstruction time
of various image reconstruction methods.

3. Numerical Validation

A numerical simulation is carried out in the 2–10 GHz band sampled with 1000 frequency points.
A radar imaging system made of a transmitting antenna located in the center of a square reception
array composed of 36 antennas separated by 0.7λc = 3.5 cm according to the two transverse dimensions
x and z, λc being the central wavelength of the operating bandwidth (Figure 7), is proposed.
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Figure 7. Side (a), top (b) and transverse (c) views of the simulated radar experiment. All receiving
antennas are connected to an unrepresented component multiplexing waveforms into a single signal.

A set of nine target points are arranged in front of the array in order to be located by the imager.
The 36 signals collected by the receiving antennas are then numerically multiplexed to reproduce
the behavior of a dispersive component (for example, a cavity) connected to the array. A signal is
then measured on its unique output port, from which it is possible to calculate a radar image using
the computational approaches presented previously. The multiplexer component is characterized by
a quality factor determining the decay time of its time responses, which one wishes the longest possible
to limit the level of correlation between its different channels. In the simulated case, the quality factor
considered is Q = 377, corresponding to a decay time τ = 10 ns. In practice, these values are close to
the performance of two-dimensional cavities made with microwave substrates, and are well below the
decay times achievable with empty metal cavities whose quality factor easily reaches several thousand.
The time-dependent signal measured at the output of the simulated multiplexer component is shown
in Figure 8.
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Figure 8. Time signal measured on the single port of the computational imaging system. All 36 signals
received by the antennas are encoded by propagation in a passive component whose transfer functions
are known. The proposed technique allows for a more accurate estimation of these signals from this
single measurement for reconstructing a three-dimensional image. The red line corresponds to the time
gating performed on the signal in order to limit the size of the final matrix Ts.

The signal reconstruction is carried out using Equation (7) for the reference equalization technique
and Equation (14) for the proposed method. The reconstruction by the proposed technique is based
on an approximate prior knowledge of the range covered by the object to be imaged, which can be
refined by means of a series of reconstructions making it possible to reduce the size of the time window
considered to improve the reconstruction of the signals. The reconstructed signals are presented in
Figure 9, and compared to the original signals received by the antennas.
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Figure 9. Representation of the normalized magnitude of the time signals received by the antennas.
The reconstruction achieved using the proposed technique (c) is compared to that obtained in the case
of the equalization technique (b) described in [12]. The original signals are given for comparison (a).

The quality of the reconstructions is evaluated by computing the peak signal-to-noise ratio (PSNR),
considering the signals originally received by the radiating aperture as a reference. In the case of the
equalization reconstruction technique, the calculated PSNR is 13.6 dB, while the proposed method
yields a PSNR of up to 19.2 dB.

The proposed technique thus allows for a more accurate reconstruction of the signals received
by the antennas compared to the equalization technique initially developed in [12], while remaining
compatible with the use of Fourier domain image reconstruction techniques to limit the computation
time compared to direct matrix reconstruction as shown in Figure 2 and studied in [23]. In this case,
the measured signal time gated between tρmin = 0 ns and tρmin = 100 ns, and the antenna signal time is
truncated between tmin = 1.8 ns and tmax = 3.2 ns, allowing for reconstructions computed on average
in 9.5 ms by a generalized minimum residual method after a unique pre-computing time of 11 ms
for the evaluation of Ts, compared to 3 ms with the equalization approach. These calculations are
carried out on a computer equipped with a 2.8 GHz dual-core processor. In order to facilitate the
interpretation of these results, a reconstruction of the scene is carried out by back-propagation from
the signals directly received by the antennas, the signals reconstructed by the equalization technique
and by the proposed technique. The results are presented in Figure 10.
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Original signals Reconstruction: Equalization Reconstruction: Proposed technique
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Figure 10. The reconstruction performed from the original signals received by the antennas (side (a),
top (d)) is compared to those obtained in the case of reconstruction by equalization (side (b), top (e))
and to the proposed technique (side (c), top (f)). The magnitudes are normalized and displayed as
isosurfaces extracted at−3 dB,−6 dB, and−12 dB. Thanks to a better estimation of the signals received
compared to the equalization technique initially considered, the proposed technique makes it possible
to obtain images closer to those calculated using the original signals, making it possible to find the
position of the various targets and limiting the level of speckle present around these.

Once again, the results corresponding to the proposed reconstruction technique are close to those
obtained without the computational approach, in comparison with the image reconstructed using
the equalization technique that leads to the creation of artifacts that make the location of the source
points difficult. The PSNR is evaluated again to compare these two three-dimensional images with the
reference computed with the original signals. The image calculated using equalization corresponds
to a PSNR of 19 dB, while the image calculated by the proposed method yields a PSNR of 26.3 dB.
The application of such an approach thus enables the reconstruction of an estimate of the target
reflection function while decomposing the initial computational imaging problem as expressed by the
Equation (2). For an image such as the one presented composed of nr = 50× 50× 30 = 75,000 voxels,
the matrix linking the ρ measure to the f reflection function of the target would have the dimension
M ∈ Cnω×nr . The use of time-gating on the measured signal ρ can possibly reduce the dimensions
of this matrix to M ∈ Cnρ×nr . In comparison, the proposed technique decomposes this matrix into
two parts Ts ∈ Cnρ×ns .nrr and G ∈ Cns .nrr×nr , the latter not actually being calculated and replaced by
a Fourier domain range migration algorithm. Thus, in the example shown, memory consumption is
limited by switching from a matrix M ∈ C800×75,000 to a matrix Ts ∈ C800×432, correspond to a memory
consumption 173 times smaller. In an obvious way, the memory consumption and the computation
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speed is impacted by the depth of the area to be imaged. However, it is possible to reduce the size of
the problem even more by also removing the almost zero contributions within the measured signal
ρ itself, but such an approach would require the use of non-uniform fast Fourier transforms and is
therefore left aside to keep this proof of concept as simple as possible. This selection can be done
according to a signal level that may correspond to the noise floor or an arbitrarily higher selected level
that will obviously limit the quality of reconstructions of the signals and images but make the overall
computation faster and less memory-consuming.

Having presented a numerical validation of this technique that highlights the improvements
allowed by this new approach compared to the equalization techniques previously used, it is proposed
to validate the application of this technique in an experimental context in the following section.

4. Experimental Validation

The proposed reconstruction technique is now being confronted with experimental validation in
the 2–4 GHz band, using a set-up introduced in [33,34]. The computational imaging component for
this application is a 20× 20 cm2 planar cavity with 16 input ports connected to Vivaldi antennas and
up to 4 output ports (Figure 11).
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Figure 11. Illustration (a) and photographs of the 2D cavity (b) connected to both 16 antennas (c) and 4
ports of an oscilloscope enabling measurement of a number of signals lower than that of the antennas.

The cavity is fabricated with a 0.65-mm-thick microwave substrate RT/Duroid 6006 with
a hole engraved on its top conductor for minimizing the level of correlation between transfer
functions [34,37,38]. This experimental demonstration had previously revealed the relationship
between the number of signals measured on the ports of a single component and the quality of
the reconstructed images, exploiting the frequency diversity of the 4× 16 transfer functions measured
by 300 frequency samples [33,34]. The average quality factor estimated from the damping time of the
impulse responses of this component is about 200. The antenna spacing is 7 cm, which is 0.7 times
the central operating wavelength. It is proposed in this framework to compare the reconstruction
results obtained with one or several signals measured by the oscilloscope on the output ports of the
component, by successively applying the equalization reconstruction technique and the proposed
method. The effect of direct coupling is mitigated by performing a blank measurement, subtracted
from the acquisitions made when the targets are put in place. Two metal cylinders are arranged
opposite the antenna array used in reception and are illuminated by a horn antenna located above the
center of the array (Figure 12).



Sensors 2018, 18, 1536 13 of 16

a) One port:

b) Two ports:

c) Four ports:

Equalization

Equalization

Equalization

Proposed method

Proposed method

Proposed method

Figure 12. Experimental setup for the localization of two metal cylinders and reconstructions performed
by equalization and using the proposed technique with, successively, 1 (a), 2 (b), and 4 (c) signals
measured on the computational imaging component ports. The green circles corresponds to the actual
locations of the cylinders.

These experiments are conducted using an arbitrary signal generator (Agilent M8190A 12 GSa/s)
and oscilloscope (Agilent DSA90404A 20 GSa/s), which yield a maximum frequency of up to 4GHz
without the use of mixers. Image computations are performed using back-propagation with the signals
reconstructed on the antennas using the reference equalization technique and the proposed method.
In this context, the impact of the number of measured signals on the image reconstruction quality is
studied using, successively, 1, 2, and 4 responses measured on the 2D cavity ports.

The images are reconstructed from time gated signals between 0 and 30 ns, in each case limiting
the appearance of speckle around the targets and, in the proposed method, allowing for a better
estimation of the signals received by the antennas. The results obtained using the proposed method
seem to present, in each case, a lower level of speckle around the targets and yield a better identification
of their position than with the equalization technique. However, it can be seen that the quality of
the results obtained with the proposed technique remains limited when using a single signal. In
comparison with the numerical study presented above, this experimental demonstration is limited by
model approximations and measurement uncertainties that can prevent the algorithm from converging
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towards an accurate estimation of the signals received by the antennas. However, using more measured
information with 2 and 4 signals makes it much easier to converge towards better results.

5. Conclusions

A new reconstruction technique adapted to microwave and millimeter-wavecomputational
imaging is proposed in this article, taking advantage of the sparsity of signal representation in the
time domain. This technique is an interesting alternative to methods based on the use of sensing
matrix in computational imaging, which allow for high-quality reconstructions but impose significant
levels of memory consumption and computation times. Similar to the equalization techniques initially
introduced in this field, the presented approach is based on a decomposition of this sensing matrix
in order to reduce its dimensions and make use of conventional Fourier-domain imaging techniques
possible. The technique introduced in this article, however, allows more accurate antenna signal
estimates to be obtained, while maintaining reasonable computation times that are compatible with
real-time applications. After the theoretical concepts necessary for the use of this technique were
introduced, the effectiveness of such an approach was validated numerically and then experimentally
in the context of depth-limited radar imaging applications that are particularly well suited to this
technique.

All time-gating operations presented here are based on the preservation of uniform sampling in
order to simplify this proof of principle. The study of very large problems could therefore soon be
lightened by adapting this technique to the selection of only measurement samples with a significant
amplitude in order to propose reconstructions of comparable quality to the results presented in this
article, but calculated in reduced time.
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