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Abstract: Rapid detection of soil nutrient elements is beneficial to the evaluation of crop yield,
and it’s of great significance in agricultural production. The aim of this work was to compare the
detection ability of single-pulse (SP) and collinear double-pulse (DP) laser-induced breakdown
spectroscopy (LIBS) for soil nutrient elements and obtain an accurate and reliable method for rapid
detection of soil nutrient elements. 63 soil samples were collected for SP and collinear DP signal
acquisition, respectively. Macro-nutrients (K, Ca, Mg) and micro-nutrients (Fe, Mn, Na) were analyzed.
Three main aspects of all elements were investigated, including spectral intensity, signal stability,
and detection sensitivity. Signal-to-noise ratio (SNR) and relative standard deviation (RSD) of
elemental spectra were applied to evaluate the stability of SP and collinear DP signals. In terms of
detection sensitivity, the performance of chemometrics models (univariate and multivariate analysis
models) and the limit of detection (LOD) of elements were analyzed, and the results indicated that the
DP-LIBS technique coupled with PLSR could be an accurate and reliable method in the quantitative
determination of soil nutrient elements.

Keywords: soil; nutrient elements; laser-induced breakdown spectroscopy; single-pulse;
double-pulse; chemometrics

1. Introduction

Soil is the foundation of crop growth, and plays an important role in the whole ecosystem [1].
In particular, soil nutrient elements, including macro-nutrients and micro-nutrients, are the basic
resources for preserving the surface ecosystem. Meanwhile, the content of nutrient elements can
reflect the fertility of the soil, and are considered an important index of crop yield evaluation [2].
It is particularly important to obtain the content of soil nutrient elements quickly and accurately
for agricultural production. Currently, the main methods for the detection of nutrient elements
in soil include laboratory chemical analysis, such as atomic absorption spectrometry (AAS) [3];
inductively-coupled plasma optical emission spectrometry (ICP-OES) [4]; and inductively-coupled
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plasma mass spectrometry (ICP-MS) [5]. However, these traditional chemical detection methods are
time-consuming, complex, and cannot meet the demands of real-time detection.

Laser-induced breakdown spectroscopy (LIBS) is a recently developed spectral detection
technique [6]. Because of the advantages of fast analytical speed, simple sample pretreatment,
multi-element simultaneous detection capability, as well as the potential of in situ or stand-off
analysis [7], it has been widely used for the elemental analysis of various kinds of samples, including
plants [8], water [9], and especially soils. Martin et al. applied LIBS to determine the carbon and
nitrogen content of various soils, and the good results proved that LIBS technique had the potential
to be packaged into a field-deployable instrument for real-time and in situ analysis of soil carbon
and nitrogen [10]. Harris et al. presented their investigation on LIBS detection of nitrogen in sand at
atmospheric and reduced pressures. They found that a pressure below 0.04 torr air could be feasible
for nitrogen monitoring in sand or soil [11]. Dong et al. also reported on LIBS detection of nitrogen
in farmland soil. A good correlative relationship between nitrogen content and LIBS signal intensity
was obtained by using the adoption of buffer gases, which provided guidance for the development
of the real-time farmland nitrogen measurement system [12]. Yang et al. used LIBS coupled with
chemometrics methods to quantitatively analyze Cu and Zn concentrations in soil samples, and a good
performance was obtained using the PLS calibration model, with R2 reaching 0.94 in prediction set for
both Cu and Zn. The results indicated that LIBS combined with PLS could be a good method for the
soil analysis [13]. Popov et al. studied the possibility of quantitative detection of Zn in soils using LIBS,
and the limit of detection (LOD) of Zn reached 18 ppm, which was far below Occupational Exposure
Limits (OEL) in soil (150 ppm) and the mean abundance of Zn in the earth’s crust (83 ppm) [14].
Awasthi et al. employed LIBS combined with PLSR to analyze environmental reference materials
(RMs), and the predicted concentrations of elements (Al, Ca, Mg, Fe, K, Mn and Si) by LIBS are
comparable to the certified concentrations. The results demonstrated the ability of LIBS for rapid
analysis of RMs [15]. It is also worth noting that the element analysis mentioned above depends on the
information of the atomic or ionic spectra in the plasma, which is generated by the laser pulse ablation
of samples [16]. At present, single-pulse (SP) and collinear double-pulse (DP) are the most commonly
used methods for ablation of samples [17–19]. SP-LIBS has one laser beam to ablate samples, while
two laser beams with delay time are used in collinear DP-LIBS; one for sample ablation, and the other
for plasma reheating [20]. In recent years, several studies concerning on the detection of elements
contents using SP-LIBS and DP-LIBS have been published. Liu et al. used SP-LIBS combined with
chemometrics methods to detect the copper content in rice and obtained a good result using a partial
least squares regression (PLSR) model, with R2 more than 0.97 in both calibration and prediction
set, and the LOD reached as low as 1.95 ppm [21]. Afgan et al. focused on the determination of the
elements Si, Cr, Mn and Ni in various steel samples using a handheld SP-LIBS instrument. The average
relative standard deviation (RSD) for these elements was less than 5%, indicating that LIBS is a practical
method for the fast detection of elements [22]. Pedarnig et al. employed SP-LIBS and DP-LIBS to
analyze the halogen chlorine (Cl) in industrial iron oxide. It was proved that DP-LIBS had very
high excited state energies, which contributed to sensitive detection of Cl and other elements [23].
Kwak et al. reported on the quantitative analysis of arsenic (As) in mine tailing soils using DP-LIBS.
The results showed that the use of DP-LIBS enhanced the intensity and signal-to-noise ratio (SNR) of
emission lines, while decreasing the value of RSD. Furthermore, it provided a good quantification
performance, with a correlation coefficient of 0.94 [24]. To the best of our knowledge, the quantitative
detection of soil nutrient elements simultaneously based on SP-LIBS and collinear DP-LIBS haven’t
been investigated.

The purpose of this study was to explore the detection ability of SP-LIBS and collinear DP-LIBS
for soil nutrient elements, and to find a practical method for fast and accurate quantitative detection.
In this work, spectral intensity and signal stability of all elements for SP and DP signals were directly
compared. Chemometrics methods including the univariate method, PLSR and least-squares support
vector machine (LS-SVM) were employed to establish the calibration model for quantitative analysis
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of elements. The detection sensitivity for SP-LIBS and collinear DP-LIBS was further compared based
on the performance of chemometrics models.

2. Materials and Methods

2.1. Soil Samples

The certified reference material (CRM) of soil tested in this research was provided by National
Institute of Metrology, China, and 6 classes were involved. These were: sandy soil (GBW07446)
from Inner Mongolia Autonomous Region, sediment (GBW07452) from the Xiangshan east beach in
zhejiang province, sediment (GBW07453) from the Yangjiang south beach in Guangdong province,
loess (GBW07454) from Shaanxi province, sediment (GBW07455) from the Huaihe River in Anhui
province, and sediment (GBW07456) from the Zhangjiagang chengjiang River in Jiangsu province.
All soil powders were sieved through a 100-mesh screen, and then dried at 60 ◦C for 4 h in an oven.
In order to get more concentration gradient to establish stable quantitative analysis models, we took
6 certified soil samples and 15 mixed soil samples as our objects. Specifically, 0.25 g powders from
each of 6 certified soil samples was weighed and mixed at the ratio of 1:1. Additionally, 0.5 g powders
from each of 6 certified soil samples was weighed. All soil powders were pressed into tablets with
12 mm in diameter and 2 mm in thickness, using 10-MPa force for 60 s (FY-24, SCJS, Tianjin, China).
The sample of each concentration was repeated three times. Thus, 63 soil tablets were prepared for SP
experiment and collinear DP experiment, respectively. In addition, according to certified elemental
compositions of the oxide material (K2O, CaO, MgO, FeO, Mn, Na2O) in soil CRM, measured by the
Institute of Geophysical and Geochemical Exploration of the Chinese Academy of Geological Science,
we calculated the concentrations of major nutrient elements (K, Ca, Mg, Fe, Mn, Na), listed in Table 1.

Table 1. The concentrations (mg·g−1) of major nutrient elements in soil samples.

Number K Ca Mg Fe Mn Na

GBW07447 17.51 ± 0.17 48.28 ± 0.71 15.48 ± 0.42 8.58 ± 0.35 0.53 ± 0.01 22.57 ± 0.67
GBW07452 21.91 ± 0.25 29.89 ± 0.57 15.66 ± 0.36 11.70 ± 0.56 0.88 ± 0.02 14.13 ± 0.30
GBW07453 20.58 ± 0.33 2.41 ± 0.14 6.96 ± 0.24 6.24 ± 0.56 0.71 ± 0.01 6.14 ± 0.22
GBW07454 18.92 ± 0.17 50.98 ± 0.71 11.94 ± 0.30 10.14 ± 0.49 0.63 ± 0.02 12.88 ± 0.22
GBW07455 18.09 ± 0.33 32.59 ± 0.50 11.22 ± 0.36 8.40 ± 0.56 0.56 ± 0.02 14.06 ± 0.22
GBW07456 19.67 ± 0.33 34.86 ± 0.50 16.50 ± 0.48 13.26 ± 0.63 0.96 ± 0.04 9.03 ± 0.22

The values are expressed as mean ± SD.

2.2. Spectral Acquisition

The spectral acquisition system used in this experiment was presented in Figure 1. Q-switched
Nd:YAG pulsed laser (Vlite-200, Beamtech Optronics, Beijing, China) was used for generating laser
pulses, operated at 532 nm. An Echelle spectrograph (ME5000, Andor Technology, Belfast, UK) was
used for dispersion of spectral emission lines. An intensified charge-coupled device (ICCD) camera
(iStar DH340T, Andor Technology, Belfast, UK) was applied for detection of the optical signal. A digital
delay generator (DG645, Stanford Research Systems, San Jose, CA, USA) was used to control the delay
time between the laser and the ICCD camera, and the delay time between two lasers in DP system.
Lens, mirrors, and optics were used for laser transmission and beam guiding. For the SP experiment,
only laser A was needed, while laser A and B were transmitted in the same line with a pulse interval in
the collinear DP experiment. Before the experiment, we optimized the experimental parameters based
on the response surface methodology (RSM). As a result, under the conditions of SP, the parameters
of laser energy, delay time and gate width were optimized at 100 mJ, 6 µs and 10 µs, respectively.
Compared with the SP-LIBS experiment, the collinear DP-LIBS experiment has more parameters,
including laser energy for the first beam, laser energy for the second beam, delay time, gate width and
pulse interval, which were optimized at 25 mJ, 75 mJ, 6 µs, 10 µs and 1.2 µs, respectively. After setting
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parameters, we placed the sample on the X-Y-Z stage to avoid continuous ablation of the same spot.
In addition, in order to get a stable signal, the laser beam was focused 2 mm below the sample surface.
For each pellet, a total of 16 spots were struck, with continuous shots 5 times for each spot.
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Figure 1. Schematic diagram of LIBS system for soil samples.

2.3. Data Analysis

2.3.1. Data Preprocessing

Considering the matrix effect of the sample, and the systematic and random errors during the
experiment, we used spectral preprocessing methods to eliminate the influence and improve the
accuracy of data analysis. Data average means to replace the spectral value of the sample with the
accumulated average of multiple spectra, which could eliminate the obvious matrix effect. The wavelet
transform (WT) approach, as an efficient denoising method, was used to reduce the noise generated
by the instrument and the sampling process [25]. Daubechies 4 with decomposition scale 3 was
optimized when the maximal SNR was obtained; detailed information can be found in the literature [26].
In addition, area normalization was used to decrease the matrix effect and spectral error caused by the
change of experimental parameters.

2.3.2. Chemometrics Methods

Univariate analysis, also called the calibration curve method, is a traditional quantitative analysis
method in LIBS analysis. When the concentration of the analytical element is low and there is
no self-absorption, the spectral intensity is proportional to the element content in the sample [27].
Thus, the calibration curve of the element can be fitted according to the intensity of the detected LIBS
signal and the concentration of the corresponding element, and the concentration of an unknown
sample can be calculated by the calibration curve. However, the method has proved to be limited
with matrices, so it is more suitable for the analysis of CRM [16]. We employed this method for
analysis since the experimental samples were CRM soils. In addition, the coefficient of determination
for calibration (R2

C) and prediction (R2
P), the root mean squared error for calibration (RMSEC) and

prediction (RMSEP), and limit of detection (LOD) were adopted to evaluate the performance of the
univariate model.

Partial least-squares regression (PLSR), as a classical linear modeling method, is widely used for
quantitative analysis of spectra [28]. In particular, this method is designed to reflect spectral information
with the first few latent variables [29,30]. Thus, the selected latent variables are critical, and directly
determine the predictive performance of the model. In this study, we tried to establish the PLSR
model of the concentration of nutrients and signal intensity of SP and DP for soil samples. In order to
obtain a robust and reliable model, and to avoid the overfitting of the model, full cross-validation was
applied, and the number of latent variables was determined when the minimal mean squared error
was obtained. Additionally, evaluation indexes of the univariate model were also applicable to the
PLSR model.
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Least-squares support vector machine (LS-SVM) is a supervised machine learning method based
on the standard SVM, which is especially suitable for classification and regression of a small number
of samples [31–33]. Herein, the radial basis function (RBF) kernel function was utilized to establish
the LS-SVM model, due to the good nonlinear solving ability [34,35]. A grid-search procedure in
the range of 103–1010 was carried out to optimize parameters, and the best penalty parameters (c)
and kernel function parameters (g) were determined when the value of RMSECV reached its minimum.
Full cross-validation was also conducted to avoid the overfitting of the model. A detailed introduction
to the LS-SVM model can be found in these references: [36,37]. In addition, evaluation indicators of
the performance of the model were the same as those of the univariate model and the PLSR model.

2.3.3. Performance Evaluation

Signal-to-noise ratio (SNR) and relative standard deviation (RSD) are important indices for
measuring signal sensitivity and stability in spectral analysis [38]. In detail, SNR is the ratio of net
analytical signal to noise interference, and RSD is the ratio of standard deviation of signal to average
intensity of signal. Moreover, the greater the SNR is, the better the instrument’s detection ability will
be. The smaller the RSD is, the more stable the collected signal will be. Thus, we applied these two
indices to compare the stability of SP and collinear DP signals.

In terms of element detection, the performance of the calibration model plays a crucial role in
the evaluation of detection sensitivity. Thus, evaluation indicators of chemometrics models can be
further applied to compare the detection sensitivity of the SP-LIBS and collinear DP-LIBS. Specifically,
the greater the values of R2

C and R2
P, the better the detection sensitivity. The smaller the values

of RMSEC and RMSEP, the higher the accuracy of the detection. LOD is also a key indicator of
evaluation [39]. Generally, a lower LOD represents a better detection system. The indicators of the
univariate model could be calculated with the following equation:

LOD =
3σbackground

b
(1)

where σbackground means the standard deviation of the background intensities, b means the slope of
calibration curve. In contrast to the univariate model, the calculation method of LOD in the PLSR
model is more complicated. Detailed derivations can be found in the reference [40]. According to
the derivation process, we found that Beta Coefficients (a) in the results of PLSR model carried out in
Unscrambler X 10.1 could be used to calculate LOD. The value of LOD could be simplified as the
inverse of Beta Coefficients (a). However, the calculation method of LOD in the LS-SVM model needs to
be further studied.

2.4. Software Tools

Parameter optimization was performed in the software Design Expert (ver. 8.05, CAMO AS,
Oslo, Norway). LIBS data acquisition was conducted in Andor SOLIS for Imaging (v4.26, Andor
Technology, Belfast, UK). Data analysis was carried out by Unscrambler X 10.1 (CAMO, Process, AS,
OSLO, Norway) and MATLAB R2009a (v7.8, the MathWorks, Inc., Natick, MA, USA). Additionally,
Origin Pro 8.0 SR0 (Origin Lab Corporation, Northampton, MA, USA) was used for graphs designing.

3. Results and Discussion

3.1. Spectral Analysis

Referring to the National Institute of Standards and Technology (NIST) database and relevant
references, several common spectral lines of each element were chosen according to the characteristic
wavelengths of our experimental system, which are listed in Table 2.

A comparison of the spectral intensities of each element under the conditions of SP and collinear
DP is presented in Figure 2. Considering that the spectral intensity is relevant to the concentration
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of elements, we compared the spectral intensities at different element concentrations. In view of the
multiple lines of an element, we also took the difference of spectral lines into account, and found that
they had a similar trend with respect to the intensity of the SP and DP spectral lines. Thus, we took
only one line of the element as an example. As seen in Figure 2, macro-nutrients (K I 518.36 nm, Ca I
445.48 nm, Mg I 517.26 nm) and micro-nutrients (Fe I 404.58 nm, Mn I 403.07 nm, Na I 819.47 nm) were
analyzed. For all elements, the intensity of collinear DP signals was stronger than that of SP signals.
For SP analysis, the signal intensities of K, Fe, Mn and Na for samples with low element concentrations
were similar to those for samples with medium element concentrations; meanwhile, for DP analysis,
these signal intensities for samples with medium element concentrations were significantly stronger
than those for samples with low element concentrations. For Ca, the emission line for medium and high
concentrations could not be distinguished with SP, but could be discriminated with DP. These results
indicate that collinear DP can enhance spectral signal of elements and make quantitative analysis better.

Table 2. Spectral emission lines of nutrient elements in soil.

Elements Emission Lines (nm) Reference

K I 404.72, I 518.36, I 766.49, I 769.90 [41–43]
Ca I 445.48, I 616.21, I 643.91 [44]
Mg I 383.23, I 383.81, I 516.73, I 517.26, I 518.36 [44,45]
Fe I 404.58, I 406.36, I 428.2, I 428.8 [42,45,46]
Mn I 279.81, I 403.07, I 403.31, I 403.45 [44,45]
Na I 818.3, I 819.47 [44,47]
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3.2. Stability Analysis

Repeatability, as one of the most important indicators of experiments, is usually affected by
signal stability [48]. In this study, the signal stability of SP and collinear DP signals of each element
was investigated after the comparison of the spectral intensity. Specifically, SNR and RSD were
chosen for evaluating signal stability. The values of SNR and RSD for the element lines of all samples
were calculated. In addition, we conducted this calculation on the raw spectra of the elements; no
preprocessing methods were used. It was found that the variation trends were similar between multiple
lines of an element. Therefore, we only focused on one line, which was exactly the same as that used
in the section of Spectral Analysis. In addition, the element concentration difference was also analyzed.
The result is given in Figure 3.

It was obvious that all elements had a common trend. The values of SNR of collinear DP signals
were higher than those of SP signals, and the values of RSD were the opposite way around.
Additionally, the value of SNR of both SP and collinear DP signals generally increased with the
increase of concentrations. In detail, for SNR, the effect of collinear DP-LIBS on the elements K and
Mg was obvious when the concentration was low, whereas it was at the medium concentration for
Na, Fe, Mn, and the high concentration for Ca that collinear DP-LIBS was important. This might be
related to the content of the elements themselves in soil, and further research remains to be done.
Additionally, the SNR values of SP signals for the low- and medium-concentration samples were
close to each other, while there was a significant difference in collinear DP signals. This situation
occurred for the element K, as well as Fe, Mn, Na. As for the element Ca, it was the medium and
high concentration samples that were able to be distinguished by the SNR of collinear DP signals.
Moreover, this result was consistent with the results of spectral analysis. For the RSD of both SP and
collinear DP signals, there was no absolute change regulation with concentrations. The value of RSD
was lower at high concentrations for all elements, except Ca, which obtained a lower RSD at medium
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concentrations. These results confirmed that DP signals could be more stable and more suitable for
quantitative analysis of elements. Furthermore, the stability of the LIBS signal depends on the element
itself and its concentration, and the specific relationship remains to be further studied.
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3.3. Sensitivity Analysis

3.3.1. Univariate Analysis Models of SP and Collinear DP Signals

In order to intuitively compare the SP and collinear DP signals through elements, all spectral
lines of the elements in Table 2 were used to build univariate models. Before modeling, the sample set
partitioning based on the joint x-y distance (SPXY) method was used to divide sample sets. Soil samples
were split into a calibration set (42 for SP and collinear DP experiments, respectively) and a predication
set (21 for SP and collinear DP experiments, respectively) with a ratio of 2:1. For most spectral lines,
the correlation between the intensity of both SP and collinear DP signals and the concentration of
elements remains to be improved. The spectral lines (K I 518.36 nm, Ca I 445.48 nm, Mg I 517.26 nm Fe
I 404.58 nm, Mn I 403.07 nm, Na I 819.47 nm) that obtained the best modeling results were applied for
subsequent analysis. In addition, these spectral lines were also used for spectral analysis and stability
analysis above.

Figure 4 presents the results of univariate models based on these spectral lines. Calibration curves
of elements in Figure 4 were firstly fitted using the calibration set, and the predicted content of elements
could be obtained by taking the intensity of LIBS signals into the fitting curve. As seen in Figure 4,
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the slopes of calibration curves of the collinear DP signals were larger than those of the SP signals,
which is in alignment with the conclusions of the spectral analysis. The difference in the concentration
of elements was relatively obvious when comparing the intensity of collinear DP signals. In addition,
univariate models of collinear DP signals showed better performance than those of SP signals, with a
higher R2

C and R2
P and a lower RMSEC and RMSEP. The preliminary results indicated that collinear

DP signals were superior to SP signals for the quantitative analysis of elements.
LOD can reflect the analytical capabilities of systems and models for elements. According

to Equation (1), mentioned above, we calculated the value of LOD for each element based on the
calibration curve, and the results are given in Table 3. We can see that the LODs of different elements
varied greatly. For all elements, the LODs of collinear DP signals were obviously lower than those of SP
signals. For both SP and collinear DP signals, K had the lowest detection limit, while Ca had the highest
detection limit. According to the standard of grade of the soil nutrient elements, in which higher grades
indicate a shortage of the element, we found that DP-LIBS combined with univariate models could
detect the level 5 nutrition standard of k (30–50 ppm), the level 5 nutrition standard of Ca (<300 ppm),
and the level 4 nutrition standard of Mg (50–100 ppm). However, the LOD of the LIBS signals is higher
than the level 1 nutrition standard of Fe, Mn, Na. The results revealed that collinear DP-LIBS is able to
quantify the three macro-nutrients in the range needed for agricultural and environmental purposes,
and can provide a reference for the quantitative fertilization of these elements.

Table 3. Comparison of the LODs of elements’ SP and collinear DP signals based on univariate models.

Signal Parameter K Ca Mg Fe Mn Na

Single pulse
σbackground 8.127 9.487 5.883 10.629 20.196 7.229

b 507.929 123.201 161.914 236.183 1211.787 202.709
LOD (ppm) 48 231 109 135 50 107

Double pulse
σbackground 7.608 13.820 6.637 11.169 31.679 7.381

b 736.217 236.922 390.422 265.929 2375.932 393.389
LOD (ppm) 31 175 51 126 40 54
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3.3.2. Multivariate Analysis Models of SP and Collinear DP Signals

Because of the complex soil matrix, as well as the rich and overlapped spectral lines of the
elements, an analysis focusing only on a single band of elements might result in the loss of valid
information, which wouldn’t meet the requirements of the quantitative analysis of elements. In contrast,
the multivariate calibration method could make full use of the spectral information, reduce the
matrix effect more effectively, and improve the accuracy and repeatability of quantitative analysis.
Thus, multivariate analysis methods, including PLSR and LS-SVM, were adopted to evaluate the
sensitivity of SP-LIBS and collinear DP-LIBS in the detection of soil elements. In order to avoid
overfitting of the model and improve the processing speed at the same time, we selected nearly
200 bands of each element for modeling analysis, which contained the common spectral lines listed in
Table 2. Sample sets were the same as those of univariate models.

Figure 5a–f shows the calibration and prediction results of PLSR model for K, Ca, Mg, Fe, Mn,
and Na, respectively. As seen in Figure 5, for both SP and collinear DP data, most of the calibration and
prediction data points were distributed around the fitting curve, indicating that the PLSR model of all
elements performed well in predicting their content. In addition, under the condition of collinear DP,
R2 of calibration sets and prediction sets for all elements were obviously improved, and the RMSEC
and RMSCP were reduced. All the values of R2 were greater than 0.95, except that the prediction set
of the Mg element was 0.9428, which was still acceptable. Additionally, the value of R2 of different
elements increased in different degrees. The promotion effect for the Mn element was especially
obvious, with R2 in the prediction set changing from 0.8718 to 0.9664. This might be credited to the
concentration of the element. Compared with other elements, the concentration of Mn was relatively
low. These results indicate that the detection sensitivity and the prediction accuracy of collinear
DP-LIBS were better than that of SP-LIBS.

LODs for each element based on PLSR models were also calculated, and the results are given
in Table 4. It could be seen that LODs of collinear DP signals were obviously lower than those of
SP signals. For both SP and collinear DP signals, K had the lowest detection limit, while Ca had
the highest detection limit. The results were the same as that of univariate models. According to
standard for grade of soil nutrient elements, DP-LIBS combined with PLSR models could satisfy the
agricultural and environmental demand for the three macro-nutrients K, Ca and Mg, with LODs
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below the low nutritional levels of these elements. However, it was still not feasible to quantify the
three micro-nutrients in the range needed for agricultural and environmental purposes.

Table 4. Comparison of the LODs of elements’ SP and collinear DP signals based on PLSR models.

Signal Parameter K Ca Mg Fe Mn Na

Single pulse a 25.746 10.405 12.491 8.962 24.680 14.329
LOD (ppm) 39 96 80 112 41 70

Double pulse a 32.823 12.524 13.398 14.342 26.672 20.130
LOD (ppm) 30 80 75 70 37 50
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The calibration and prediction results of LS-SVM models for all analyzed elements are provided
in Figure 6. It could be observed that the calibration and prediction data points of both SP and
collinear DP signals fitted well, indicating that the LS-SVM model had a reliable prediction power for
quantitative analysis of soil elements. Moreover, compared with SP-LIBS, the detection sensitivity of
collinear DP-LIBS for each element was higher, with all R2 being greater than 0.96, higher than those of
the SP signals. Meanwhile, for all elements, the value of RMSEC and RMSEP of collinear DP signals
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were lower than that of SP signals. It was also noticed that the influence degree of collinear DP on
the value of R2 of each element was different, with the most demonstrable effect being shown on Mn,
with R2 in the prediction set increasing from 0.8723 to 0.9786. This result was roughly in accordance
with that of PLSR model, which further proved that it was the concentration of Mn that mattered.
Combining the result of PLSR models, we could conclude that collinear DP-LIBS was more suitable for
quantitative analysis of soil elements.
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3.3.3. Comparison of Univariate and Multivariate Analysis Models

In order to investigate the reliability of SP and collinear DP detection sensitivity, we compared
the evaluation parameters of three models. The results are stated in Table 5. It could be seen
clearly that the value of R2 of LS-SVM models for both SP and collinear DP signals were higher
than those of PLSR models and univariate models, and the values of RMSEC and RMSEP were the
opposite way around. However, the performance of PLSR models was also satisfactory. Moreover,
the LODs of elements of PLSR models were lower than that of univariate models, and there was
no exact way to calculate the LOD in the LS-SVM model. Taken together, it was the PLSR model
that was more suitable for quantitative analysis of elements. In summary, the totality of results of
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the chemometrics models illustrated that collinear DP-LIBS showed better reliability and sensitivity
than SP-LIBS. With the advantages of fast analysis speed, high detection precision, little sample
preparation, and multi-element analysis availability, collinear DP-LIBS technique has the potential
to be packaged into a field-deployable instrument for real-time and in situ analysis of soil nutrient
elements, and provides guidance for precision fertilization in agriculture. High detection limit has
always been a difficult problem in the application of LIBS. Since DP-LIBS coupled with the two kinds
of models could only deal with the analysis of three macro-nutrients of K, Ca and Mg for practical
application, great importance should be attached to the methods of reducing the LODs of elements in
future research. Signal enhancement method such as nanoscale signal enhancement, spatial constraint
signal enhancement and technology integration can be further studied to improve the ability of
quantitative detection of LIBS.

Table 5. Comparison of three chemometrics models of elements’ SP and collinear DP signals.

Data Model Parameter R2
C RMSEC R2

P RMSEP LOD (ppm)

Single-pulse of K
Univariate - 0.864 1.205 0.833 1.913 48

PLS-DA 7 0.927 0.300 0.902 0.343 39
LS-SVM (10,10) 0.941 0.271 0.936 0.277 -

Double-pulse of K
Univariate - 0.955 0.709 0.948 0.945 31

PLS-DA 5 0.965 0.218 0.961 0.231 30
LS-SVM (10,10) 0.969 0.199 0.966 0.256 -

Single-pulse of Ca
Univariate - 0.822 2.599 0.817 3.558 231

PLS-DA 10 0.953 2.559 0.951 2.706 96
LS-SVM (8,10) 0.997 0.608 0.961 2.506 -

Double-pulse of Ca
Univariate - 0.898 1.853 0.876 2.675 175

PLS-DA 8 0.989 1.236 0.979 2.055 80
LS-SVM (9,9) 0.999 0.226 0.998 0.578 -

Single-pulse of Mg
Univariate - 0.894 0.709 0.872 1.171 109

PLS-DA 5 0.912 0.734 0.880 0.864 80
LS-SVM (3,7) 0.990 0.247 0.931 0.652 -

Double-pulse of Mg
Univariate - 0.901 0.559 0.888 1.063 51

PLS-DA 6 0.954 0.535 0.943 0.589 75
LS-SVM (10,10) 0.997 0.120 0.984 0.311 -

Single-pulse of Fe
Univariate - 0.839 0.911 0.811 1.031 135

PLS-DA 9 0.931 0.449 0.915 0.504 112
LS-SVM (5,4) 0.944 0.410 0.932 0.449 -

Double-pulse of Fe
Univariate - 0.864 0.645 0.851 0.672 126

PLS-DA 8 0.979 0.251 0.969 0.407 70
LS-SVM (7,9) 0.989 0.179 0.970 0.463 -

Single-pulse of Mn
Univariate - 0.871 0.044 0.866 0.063 50

PLS-DA 7 0.904 0.037 0.872 0.043 41
LS-SVM (10,10) 0.958 0.024 0.873 0.042 -

Double-pulse of Mn
Univariate - 0.899 0.039 0.892 0.056 40

PLS-DA 11 0.981 0.016 0.966 0.025 37
LS-SVM (10,10) 0.992 0.011 0.979 0.029 -

Single-pulse of Na
Univariate - 0.901 0.723 0.897 1.021 107

PLS-DA 9 0.949 0.862 0.936 0.952 70
LS-SVM (7,7) 0.995 0.157 0.967 0.562 -

Double-pulse of Na
Univariate - 0.917 0.713 0.899 0.933 54

PLS-DA 7 0.985 0.457 0.980 0.624 50
LS-SVM (8,10) 0.999 0.076 0.997 0.162 -
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4. Conclusions

This research focused on the comparison of the ability of SP-LIBS and collinear DP-LIBS for the
quantitative determination of soil nutrient elements. Several aspects, including spectral intensity,
signal stability, quantitative analysis models of elements, and the LOD of elements were investigated.
It could be found that collinear DP signals had a higher spectral intensity and better signal stability
than SP signals. In the aspect of quantitative analysis of elements, chemometrics models of collinear
DP signals showed better accuracy and reliability than those of SP signals. Additionally, the LODs of
collinear DP signals in univariate models and PLSR models for all elements were lower than those of SP
signals. After considering the evaluation indicators of models comprehensively, the PLSR model was
regarded most suitable for quantitative analysis of elements, with a satisfactory modeling performance
and a relatively low LOD. Generally, collinear DP-LIBS technique combined with chemometrics
methods could be a great tool for quantitative analysis of soil nutrient elements. It could therefore
provide a theoretical guidance for on-line detection of soil nutrient elements and development of
portable instrument. Furthermore, methods of reducing the LOD of LIBS will be the focus of the
future work.
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